CN108299242A - 一种手性三氟甲基胺衍生物的制备方法 - Google Patents

一种手性三氟甲基胺衍生物的制备方法 Download PDF

Info

Publication number
CN108299242A
CN108299242A CN201810200158.1A CN201810200158A CN108299242A CN 108299242 A CN108299242 A CN 108299242A CN 201810200158 A CN201810200158 A CN 201810200158A CN 108299242 A CN108299242 A CN 108299242A
Authority
CN
China
Prior art keywords
acid
substituent
group
alkyl
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810200158.1A
Other languages
English (en)
Inventor
罗三中
尤扬恩
张龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201810200158.1A priority Critical patent/CN108299242A/zh
Publication of CN108299242A publication Critical patent/CN108299242A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种手性三氟甲基乙胺衍生物及其制备方法。本发明提供的手性三氟甲基乙胺衍生物,其结构式如式I所示,其制备方法包括如下步骤:将羰基化合物、N,O‑缩醛与手性伯叔二胺有机小分子催化剂、酸混合后进行反应,即得到所述手性三氟甲基胺化合物。本发明手性三氟甲基胺化合物采用具有简单结构的手性伯叔二胺有机小分子催化剂催化、无溶剂、一步法合成,简单、高效。

Description

一种手性三氟甲基胺衍生物的制备方法
技术领域
本发明涉及一种手性三氟甲基胺衍生物的制备方法。
背景技术
20世纪初,Mannich等人报导了第一例Mannich反应,通过催化不对称Mannich 反应实现立体选择性构筑C-C键是有效的有机合成手段。可以成功实现了对于N的α位的不对称官能化过程,在之前的研究中我们成功通过这一策略实现了高选择性合成 a-氨基酸以及b-氨基酸衍生物。
手性三氟甲基乙胺化合物在药物化学中具有重要应用,众多的抗癌药物,治疗骨质疏松药物,治疗风湿疾病药物及抗生素药物包含这一结构,例如:cathepsin Kinhibitor,neutral endopeptidase inhibitor,CF3-Ac Docetaxel等药物活性分子结构。并且这种三氟甲基乙胺化合物也在多肽合成中具有重要应用,可以选择性合成N-端包含三氟甲基的多肽以及α-位包含三氟甲基的胺多肽结构。因此,立体选择性实现三氟甲基乙胺结构化合物的构建在有机合成中具有重要意义。前期的工作中这种骨架的合成往往都要使用当量的手性试剂通过手性诱导的手段来实现,而手性源来源于催化剂的报导几乎没有。
发明内容
本发明的目的是提供一种手性三氟甲基乙胺衍生物的制备方法。本发明的采用具有简单结构的手性伯叔二胺有机小分子催化剂催化、一步法合成手性三氟甲基乙胺衍生物,具有简单、高效的特点。
所述手性三氟甲基乙胺衍生物,其结构式如式I所示:
式I中,R1选自下述任意一种:氢原子、烷基取代基和芳基取代基;且R2选自下述任意一种:氢原子、烷基取代基、芳基取代基和芳胺基;
或,R1、R2形成碳原子数为3~8之间整数的环烷基;
R3选自下述任意一种:氢原子、烷基取代基、COR31、COOR32和CONHR33;其中,R31为碳原子数1~5的烷基或苯基,R32为碳原子数1~5的烷基、烯丙基或苄基, R33为对甲氧基苯基、对甲基苯基或苄基;
所述PG为氨基保护基;
所述X可为F、Cl、Br、I中的至少一种。
所述烷基取代基为C1-C5的饱和烷基和/或C1-C5的不饱和烷基,具体可为炔丙基;
所述芳基取代基选自下述任意一种:苯基、苄基、对氯苯基、邻氯苯基、对甲氧基苯基、对甲氧基苯基和对甲基苯基;
所述R2中,所述芳胺基选自下述任意一种:苯胺基、苄胺基、对甲氧基苯胺基和对甲基苯胺基;
所述氨基保护基包括叔丁氧羰基(简称Boc)、苄氧羰基(简称Cbz)、芴甲氧基羰基(简称Fmoc)、对甲苯磺酰基(简称Ts)、三苯甲基(简称Tr)、乙酰基(简称 Ac)、苄基(简称Bn)、邻苯二甲酰亚胺(英文名称Benzylideneamine),苯甲酰基(PhCO) 和三氟甲基乙酰基(英文名称Trifluoroacetamide)中的至少一种。
本发明所提供的式I所示手性三氟甲基胺衍生物的制备方法,包括如下步骤:将羰基化合物、N,O-缩醛与手性伯叔二胺有机小分子催化剂、酸混合后进行反应,即得到所述手性三氟甲基胺化合物。
上述的制备方法中,所述羰基化合物的结构式如式1或式2所示:
式1中,R6为氢原子、烷基取代基或芳基取代基;R6中,所述烷基取代基为碳原子数1~5的烷基或烯丙基,所述芳基取代基为苯基、对氯苯基、对甲氧基苯基或对甲基苯基;
式1中,R7为氢原子、烷基取代基或芳基取代基;R7中,所述烷基取代基为碳原子数1~3的烷基,所述芳基取代基为苯基、苄基、对氯苯基或对甲氧基苯基;
式1和式2中,R8为吸电子基,所述吸电子基包括酯基、酰胺基、酰基、氰基、三氟甲基和硝基中的任意一种;n2为0~5中的整数。
上述的制备方法中,所述N,O-缩醛的结构式如式Ⅱ所示:
式Ⅱ中,PG为氨基保护基,所述氨基保护基包括叔丁氧羰基、苄氧羰基、芴甲氧基羰基、对甲苯磺酰基、三苯甲基、乙酰基、苯甲酰基、苄基、邻苯二甲酰基和三氟甲基乙酰基中的至少一种;
LG为离去基团,所述离去基团选择下述任意一种:OAc、Cl、Br、OMe和OTs;
上述的式Ⅱ所示N,O-缩醛中的X可为F、Cl、Br、I中的至少一种。
上述的制备方法中,所述手性伯叔二胺有机小分子催化剂的结构如式3或4所示:
上述式3和4中,R4为氢原子、烷基取代基或芳基取代基,所述烷基取代基为碳原子数1~6的烷基,具体可为甲基、异丙基或叔丁基,所述芳基取代基为苄基或苯基; R5为氢原子、烷基取代基或芳基取代基,所述烷基取代基为碳原子数1~6的烷基,具体可为甲基或乙基,所述芳基取代基为苄基或苯基;n1为0~9中的整数。
本发明中,所述手性伯叔二胺有机小分子催化剂的结构式具体可为式5-1所示的催化剂:
上述的制备方法中,所述酸可以只为强酸,或强酸和弱酸的混合物;
所述强酸包括三氟乙酸、三氯乙酸、乙酸、三氟甲磺酸、甲磺酸、苯磺酸、对甲基苯磺酸、四氟硼酸、四芳基硼酸、六氟磷酸、高氯酸和次氯酸中的至少一种;
所述弱酸包括苯甲酸和/或带取代基的苯甲酸;所述带取代基的苯甲酸包括萘甲酸、2,4-二硝基苯甲酸、间硝基苯甲酸和邻硝基苯甲酸中的至少一种;
所述羰基化合物与所述N,O-缩醛的摩尔比可为1:0.1~5,具体可为1.2:1或 1:0.5~4;
所述手性伯叔二胺有机小分子催化剂与所述羰基化合物的摩尔比可为0.5~30:100,具体可为1:12;
所述手性伯叔二胺有机小分子催化剂、所述强酸和所述弱酸的摩尔比可为1: 0.5~2:0~2,具体可为:所述手性伯叔二胺有机小分子催化剂与所述强酸的摩尔比可为1:1,所述弱酸的量为0;
所述反应的温度可为20℃~100℃,具体可为60℃,时间可为1~6天,具体可为 1天、2天、1~2天或1~5天;
所述反应在溶剂中进行,所述溶剂可为三氯甲烷。
所述制备方法中,还包括分离提纯的步骤;所述提纯方法包括柱层析、减压蒸馏和重结晶中的至少一种。
本发明还提供了上述式Ⅱ所示N,O-缩醛的制备方法。
所述N,O-缩醛的制备方法,包括如下的步骤:
将结构式为PGNH2的氨与结构式为CX3CHOH(OEt)、CX3CHOH(OMe)或CX3CHO 的缩醛或醛混合,在溶剂中加热条件下进行缩合反应,即得到所述N,O-缩醛的半缩醛;再用保护试剂在吡啶催化条件下保护羟基,即得到所述N,O-缩醛;
其中,PG为氨基保护基,所述氨基保护基包括叔丁氧羰基、苄氧羰基、芴甲氧基羰基、对甲苯磺酰基、三苯甲基、乙酰基、苄基、邻苯二甲酰基和三氟甲基乙酰基中的任意一种;
上述制备方法中,所述氨与所述半缩醛的摩尔比可为1:1.1~1.5,具体可为1:1.3;所述溶剂为二氯甲烷或1,4-二氧六环;所需加热条件可为30-120℃,具体可为110℃;所述保护试剂为乙酸酐;所述保护试剂与N,O-半缩醛的摩尔比可为1:1~5,具体可为1:3;所需催化量的吡啶可为N,O-半缩醛的摩尔量的1%-20%。
本发明提供的制备手性三氟甲基胺衍生物的方法,不仅能提高其产率,更提高其光学选择性,得到光学纯的手性化合物。
本发明合成的手性三氟甲基胺衍生物经1HNMR、13CNMR鉴定为纯的目标产物。
本发明手性三氟甲基胺衍生物可应用于手性三氟甲基胺化合物的制备;
本发明手性三氟甲基胺衍生物也可应用在制备手性配体骨架中。
本发明具有以下优点:
1、本发明所使用的催化剂结构简单,合成路线较短,合成方法简单、易于操作;
2、本发明制备方法采用一步法合成,大大降低了合成成本和合成周期;
3、本发明制备方法得到产物的光学选择性高,得到的目标产物即为光学纯的单一异构体,无需进一步的纯化,拆分等操作;
4、本发明所涉及的合成方法所用催化剂的量能降低到5mol%,催化效率高、对映选择性好;
5、本发明采用无溶剂的合成方法,绿色环保;
6、本发明所涉及的方法易于大规模生产,而且放大后产率和对映选择性都能够保持。
附图说明
图1为本发明实施例1中式Ⅱ-1所示的N,O-缩醛的制备反应方程式。
图2为本发明实施例2中式I-1所示手性三氟甲基胺化合物的制备反应方程式。
具体实施方式
下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、式Ⅱ-1所示的N,O-缩醛的制备
将CbzNH2(氨基甲酸苄酯),CF3CH(OH)(OEt)按1:1.3的摩尔比混合,在1,4- 二氧六环中于110℃下反应4天,旋蒸除去溶剂,得到固体N,O半缩醛。在二氯甲烷中重结晶纯化,再加入5摩尔当量的乙酸酐,1%摩尔当量的吡啶,在25℃下反应 1天,除去未反应的乙酸酐,即得到式Ⅱ-1所示的支链的Cbz保护胺基的CF3-N,O-缩醛化合物(反应方程式见图1)。
结构确证如下:1H NMR(400MHz,CDCl3)δ7.36(s,5H),6.80(dd,J=9.8,4.7Hz,1H),5.64(d,J=9.6Hz,1H),5.27–5.07(m,2H),2.14(s,3H).13C NMR(101MHz, CDCl3)δ168.05,135.32,128.80,128.75,128.51,121.73(d,J=281.2Hz),72.36(d,J= 37.5Hz),68.34,20.50.19F NMR(377MHz,CDCl3)δ-80.23(s,3F).
实施例2、式I-1所示手性三氟甲基胺化合物的制备
式I-1按照图2所示的反应方程式进行制备。
将乙酰丙酮(60mmol)与式Ⅱ-1所示CF3-N,O-缩醛(50mmol)加入反应器中,再将式5-1所示的手性伯叔二胺有机小分子催化剂(5.0mmol)用1ml二氯甲烷溶解,低温冰浴下滴入三氟甲磺酸(5.0mmol),蒸除二氯甲烷后将此催化剂加入上述反应器中,再加入10ml三氯甲烷,加热至60℃,搅拌2天后反应完成,柱色谱分离(PE:EA =3:1)得到目标产物手性三氟甲基胺72%,>99%ee。其结构确证的核磁数据如下:1H NMR(500MHz,CDCl3)δ7.34(dd,J=12.1,6.0Hz,5H),6.18(d,J=9.7Hz,1H),5.22 –5.10(t,2H),5.08(dd,J=9.8,7.5Hz,1H),4.08(d,J=4.9Hz,1H),2.28(s,3H),2.24(s, 3H).13C NMR(126MHz,CDCl3)δ202.85,199.39,155.90,135.74,134.52,128.72,128.52, 128.21,124.38(q,J=282.9Hz),67.88,62.98,52.52(q,J=32.0Hz),31.11,29.51.19F NMR(377MHz,CDCl3)δ-73.99(s,3F).
同样的方法可以合成如下1-23种化合物:
1、
产率为87%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.76(d,J=7.5Hz,2H),7.55(t,J=6.6Hz,2H),7.40(t, J=7.4Hz,2H),7.32(t,J=7.2Hz,2H),5.09(tt,J=14.8,7.2Hz,1H),4.50–4.33(m,2H),4.22(t,J=7.0Hz,1H),4.10(d,J=4.8Hz,1H),2.28(d,J=14.1Hz,6H).13C NMR(126 MHz,CDCl3)δ203.00,199.37,155.87,143.61,143.59,141.44,127.96,127.75,127.30,127.28,125.26(t,J=25.0Hz),120.18,67.87,62.92,52.53(q,J=32.1Hz),47.13,31.19,29.56.19F NMR(377MHz,CDCl3)δ-73.95(s,3F).
2、
产率为82%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ5.77(d,J=9.9Hz,1H),5.16–4.95(m,1H),4.05(d,J =5.4Hz,1H),2.29(s,3H),2.24(s,3H),1.43(s,9H).13C NMR(126MHz,CDCl3)δ 202.71,199.82,155.03,124.48(q,J=283.0Hz),81.39,63.59,51.96(q,J=31.9Hz), 30.71,29.60,28.25.HRMS(ESI)calcd for C12H17O4F3N-:296.1115,found 296.1112.19F NMR(377MHz,CDCl3)δ-74.13(s,3F).
3、
产率为87%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ6.17(d,J=9.3Hz,1H),5.05(dd,J=14.6,7.3Hz,1H),4.09(d,J=5.0Hz,1H),3.69(s,3H),2.26(d,J=17.4Hz,6H).13C NMR(126MHz, CDCl3)δ202.81,199.48,156.51,127.76,124.39(q,J=283.1Hz),63.10,52.46(q,J= 32.0Hz),30.95,29.51.
4、
产率为99%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.04(d,J=9.0Hz,1H),5.49–5.26(m,1H),4.10(d,J =3.8Hz,1H),2.29(d,J=25.3Hz,6H),2.04(s,3H).13C NMR(126MHz,CDCl3)δ 203.89,199.90,170.26,124.25(q,J=282.8Hz),61.98,49.97(q,J=32.2Hz),31.71, 29.46,23.15.19F NMR(377MHz,CDCl3)δ-73.27(s,3F).
5、
产率为67%,90%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.98(d,J=9.3Hz,1H),7.80(d,J=7.3Hz,2H),7.54 (t,J=7.4Hz,1H),7.45(t,J=7.6Hz,2H),5.71–5.47(m,1H),4.23(d,J=3.7Hz,1H), 2.32(d,J=8.1Hz,6H).13C NMR(126MHz,CDCl3)δ204.47,199.73,167.25,132.70, 132.58,128.91,127.40,124.39(q,J=282.9Hz),61.91,50.53(q,J=32.2Hz),31.90, 29.40.
6、
产率为99%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.41–7.27(m,5H),6.27(d,J=9.8Hz,1H),5.13(s, 2H),5.06(ddd,J=9.8,7.5,4.9Hz,1H),4.07(d,J=4.8Hz,1H),2.68–2.37(m,4H),1.04 (dt,J=9.6,7.2Hz,6H).13C NMR(126MHz,CDCl3)δ205.95,202.17,155.92,135.86, 128.68,128.44,128.14,124.46(q,J=283.5Hz),67.76,61.20,52.64(q,J=31.5Hz),37.61,35.60,7.56,7.37.19F NMR(377MHz,CDCl3)δ-74.04(s,3F).
7、
产率为99%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.96(d,J=7.6Hz,2H),7.87(d,J=7.4Hz,2H),7.66 (t,J=7.4Hz,1H),7.58(t,J=7.4Hz,1H),7.53(t,J=7.7Hz,2H),7.44(t,J=7.8Hz,2H),7.41–7.27(m,5H),6.81(d,J=9.8Hz,1H),5.85(d,J=3.1Hz,1H),5.24–5.13(m,1H), 5.08(q,J=12.3Hz,2H).13C NMR(126MHz,CDCl3)δ194.10,191.48,156.08,136.02, 135.97,134.68,134.37,129.56,129.21,128.98,128.77,128.63,128.47,128.40,128.30,128.07,124.58(q,J=283.1Hz),67.59,53.56(q,J=32.4Hz),51.42.19F NMR(377MHz,CDCl3)δ-73.19(s,3F).
8、
产率为87%,98%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.43–7.27(m,5H),6.32(d,J=9.7Hz),6.10(d,J=9.9Hz),(1H),5.21–5.11(m,2H),5.07(ddd,J=11.8,8.4,5.2Hz,1H),4.07(dd,J=8.8,5.0Hz,1H),2.67–2.42(m,2H),2.26(s,1H),2.22(s,2H),1.05(dd,J=15.3,7.3Hz,3H). 13CNMR(126MHz,CDCl3)δ206.14,202.70,202.05,199.55,155.95,155.91,135.79, 132.66,128.79,128.71,128.51,128.48,128.40,128.18,124.41(q,J=283.1Hz),77.41, 77.16,76.91,67.86,67.83,62.60,61.64,52.60(q,J=31.9Hz),38.02,35.93,30.68,29.83,29.30,7.55,7.34.
9、
产率为73%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.40–7.28(m,5H),6.29(d,J=9.9Hz),6.09(d,J=10.0Hz),(1H),5.18–5.10(m,2H),5.06(ddd,J=9.5,8.0,2.6Hz,1H),4.10–3.97(m, 1H),2.49–2.31(m,2H),2.31–2.17(m,3H),2.13(ddd,J=19.8,13.3,6.7Hz,1H),0.98– 0.80(m,6H).13C NMR(126MHz,CDCl3)δ204.73,202.57,201.06,199.49,155.91, 135.78,128.71,128.49,128.22,124.43(q,J=283.0Hz),67.84,63.25,62.32,53.21,53.05 –51.98(m),51.27,30.59,29.37,24.09,23.63,22.40,22.36,22.24,22.16.19F NMR(377 MHz,CDCl3)δ-73.88(s),-74.07(s),(3F).
10、
产率为65%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.41–7.28(m,5H),6.22(d,J=9.9Hz),5.99(d,J=9.9Hz),(1H),5.22–5.10(m,2H),4.31–4.07(m,1H),2.27(s),2.23(s),(3H),2.10–1.95(m,1H),1.36–1.20(m,1H),1.20–1.05(m,2H),1.05–0.89(m,2H).13C NMR(126MHz, CDCl3)δ204.83,202.81,201.83,198.67,155.86,155.78,135.90,135.86,128.80,128.69,128.49,128.42,128.30,128.23,124.50(q,J=282.9Hz),67.77,64.17,62.90,52.42(dd,J=48.0,31.8Hz),31.02,29.74,21.84,20.72,13.52,13.35,12.67.
11、
产率为69%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.94(t,J=8.2Hz,2H),7.73–7.57(m,1H),7.52(td, J=7.9,2.9Hz,2H),7.36(dd,J=14.0,8.1Hz,5H),6.54(d,J=9.5Hz),5.99(d,J=10.3 Hz),(1H),5.36–5.19(m,1H),5.19–5.06(m,2H),4.95(t,J=5.3Hz,1H),2.23(s),2.16 (s),(3H).13C NMR(126MHz,CDCl3)δ201.21,198.62,195.77,191.70,156.02,155.83, 136.42,135.93,135.81,135.08,134.78,134.73,134.35,129.38,129.36,128.88,128.74,128.70,128.68,128.48,128.41,128.20,128.17,124.5(q,J=283.0Hz),67.83,67.75,59.31,56.63,52.79(q,J=31.5Hz),29.19,28.94.19F NMR(377MHz,CDCl3)δ-73.53(s), -74.29(s),(3F).
12、
产率为90%,98%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.40–7.29(m,5H),6.39(dd,J=30.6,9.6Hz,1H), 5.22–5.10(m,2H),5.10–4.99(m,1H),4.32–4.10(m,2H),3.91(dd,J=84.9,3.4Hz, 1H),2.35(s),2.29(s,3H),1.39–1.12(m,3H).13C NMR(126MHz,CDCl3)δ202.53, 197.71,167.96,165.75,155.89,155.85,136.02,135.90,128.77,128.70,128.68,128.46, 128.43,128.26,128.21,125.52,123.27,67.79,67.66,62.90,62.63,56.32,53.84,52.98(q,J =32.0Hz),51.58(d,J=32.3Hz),32.00,28.66,14.00,13.98.19F NMR(377MHz,CDCl3) δ-73.90(s),-74.59(s),(3F).
13、
产率为83%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.35(d,J=5.4Hz,5H),6.40(d,J=9.6Hz,1H), 5.23–5.08(m,2H),5.08–4.96(m,1H),3.70(d,J=3.4Hz,1H),2.35–2.18(m,3H),1.64 –1.34(m,9H).13C NMR(126MHz,CDCl3)δ197.97,167.19,155.86,135.98,128.68, 128.42,128.28,124.59,84.30,67.70,57.14,51.38(t,J=32.0Hz),28.61,27.83.19F NMR (377MHz,CDCl3)δ-74.60(s,3F).
14、
产率为93%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.45–7.29(m,5H),6.80(s,1H),5.85(ddd,J=11.8,10.6,5.9Hz),5.73(d,J=10.7Hz),5.59(s,1H),5.42–5.21(m),5.21–5.06(m),4.62(dd, J=6.3,3.0Hz,1H),2.27(s,1H),2.14(s,2H),1.60(s),1.54(s).13C NMR(126MHz, CDCl3)δ203.05,169.39,168.06,155.71,154.23,135.85,135.27,130.83,128.81,128.78,128.73,128.54,128.30,123.09(m),120.58,120.09,72.28(q,J=36.3Hz),68.35,67.85,67.11,59.98,56.51(d,J=30.7Hz),27.49,20.56,17.27.
15、
产率为64%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.34(t,J=6.1Hz,5H),7.07(d,J=8.9Hz),5.67(d, J=10.6Hz),(1H),5.30–5.19(m),5.19–5.10(m,2H),5.10–5.01(m),(1H),4.01(d,J= 3.0Hz,1H),3.76–3.65(m,4H),3.57(d,J=57.9Hz,4H),2.20(d,J=30.0Hz,3H).13C NMR(126MHz,CDCl3)δ201.06,198.76,166.38,163.40,156.13,155.87,136.09,135.78, 128.72,128.65,128.52,128.33,128.16,128.12,126.88–121.03(m),67.91,67.58,66.71, 66.42,55.09,53.65–51.50(m).,47.08,46.70,43.11,42.74,29.84,29.00,28.22,27.85.19F NMR(377MHz,CDCl3)δ-74.14(s),-74.39(s),(3F).
16、
产率为93%,11:1dr,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,DMSO)δ10.04(d,J=28.4Hz,1H),8.16(d,J=9.0Hz),8.01 (d,J=9.3Hz,1H),7.66(d,J=9.3Hz),7.42–7.28(m,5H),7.28–7.20(m,2H),7.15(t,J =8.4Hz,2H),5.08(t,J=12.4,4.5Hz,2H),5.08(d,1H),4.35(d,J=8.5Hz,1H),2.33(s,3H),2.27(s),2.21(s),2.18(s,3H).13C NMR(126MHz,DMSO)δ199.20,163.26,155.65,136.50,135.31,132.55,130.45,128.37,127.94,127.84,127.72,126.75(d,J=102.7Hz),126.13,126.01,125.39,124.09,66.06,57.63,51.21(d,J=29.5Hz),28.88,17.70.
17、
产率为95%,11:1dr,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,DMSO)δ9.07(t,J=5.6Hz,1H),7.91(d,J=9.1Hz,1H), 7.58(d,J=9.2Hz),7.42–7.19(m,10H),5.08(s,2H),4.99(dd,J=16.1,8.0Hz,1H), 4.31(d,J=5.4Hz,2H),4.05(d,J=7.7Hz,1H),2.19(s,3H).13C NMR(126MHz,DMSO) δ199.38,164.77,155.59,138.40,136.55,128.39,128.32,127.95,127.68,127.36,127.00, 125.18(d,J=282.8Hz),66.06,57.08,51.31(q,J=30.2Hz),42.71,28.60.
18、
产率为34%,>19:1dr,>99%ee。相应的产物核磁数据如下:
1H NMR(400MHz,CDCl3)δ7.43–7.27(m,10H),5.72(d,J=101.3Hz,1H), 5.33–5.18(m,2H),5.18–5.06(m,2H),4.17(s,1H),2.20(s,3H),1.60(s,3H).
19、
产率为50%,>19:1dr,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.43–7.28(m,5H),6.27(d,J=10.0Hz,1H), 5.16(m,1H),5.12(d,2H),4.16(q,J=7.1Hz,2H),2.55–2.42(m,2H),2.28(dd,J=19.1, 9.5Hz,1H),2.24–2.11(m,1H),2.10–2.00(m,1H),1.96(dd,J=18.1,10.6Hz,1H),1.20 (t,J=7.1Hz,3H).13C NMR(126MHz,CDCl3)δ212.77,168.53,155.62,135.97,128.81, 128.69,128.48,128.41,128.35,124.68(q,J=283.6Hz),67.73,62.76,59.78,55.37(q,J= 30.7Hz),38.32,30.56,19.63,13.96.19F NMR(377MHz,CDCl3)δ-68.60(s,3F).
20、
产率为50%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.43–7.28(m,5H),5.71(d,J=10.7Hz,1H),5.42– 5.24(m,1H),5.14(d,J=13.9Hz,2H),2.16(d,J=6.9Hz,6H),1.55(s,3H).13C NMR (126MHz,CDCl3)δ204.67,203.87,155.76,135.69,128.81,128.75,128.59,128.43, 128.25,124.52(d,J=284.5Hz),67.97,66.30,56.00(q,J=30.5Hz),27.16,26.39,16.13. 19F NMR(377MHz,CDCl3)δ-67.91(s,3F).
21、
产率为50%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.42–7.27(m,5H),6.46(d,J=10.2Hz,1H),5.39 (dd,J=10.3,4.8Hz,1H),5.19–5.10(m,2H),4.47(d,J=4.8Hz,1H),2.30(s,3H),2.22 (s,3H).13CNMR(126MHz,CDCl3)δ203.00,199.67,155.95,135.85,128.64,128.44, 128.17,101.61,67.80,65.70,65.48,31.26,29.76.
22、
产率为58%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ7.76(d,J=7.5Hz,2H),7.58(d,J=7.5Hz,2H),7.40(t,J= 7.4Hz,2H),7.32(t,J=7.4Hz,2H),6.51(d,J=10.2Hz,1H),5.38(dd,J=10.3,4.6Hz,1H),4.54–4.48(m,2H),4.49–4.45(m,1H),4.24(t,J=6.8Hz,1H),2.31(s,3H),2.24(s,3H).13C NMR(126MHz,CDCl3)δ203.18,199.63,155.91,143.60,143.55,141.42,127.90,127.23,125.16,125.11,120.12,101.63,67.62,65.55,65.50,47.19,31.40,29.79.
23、
产率为41%,>99%ee。相应的产物核磁数据如下:
1H NMR(500MHz,CDCl3)δ5.98(d,J=10.4Hz,1H),5.37(dd,J=10.5,5.4Hz,1H),4.41(d,J=5.3Hz,1H),2.31(s,3H),2.22(s,3H),1.44(s,9H).13C NMR(126MHz, CDCl3)δ202.73,200.12,155.05,101.95,81.33,66.62,64.77,30.64,29.93,28.29。

Claims (10)

1.式I所示手性三氟甲基胺衍生物的制备方法,包括如下步骤:将羰基化合物、N,O-缩醛与手性伯叔二胺有机小分子催化剂、酸混合后进行反应,即得到所述手性三氟甲基胺化合物;
式I中,R1选自下述任意一种:氢原子、烷基取代基和芳基取代基;且R2选自下述任意一种:氢原子、烷基取代基、芳基取代基和芳胺基;
或,R1、R2形成碳原子数为3~8之间整数的环烷基;
R3选自下述任意一种:氢原子、烷基取代基、COR31、COOR32和CONHR33;其中,R31为碳原子数1~5的烷基或苯基,R32为碳原子数1~5的烷基、烯丙基或苄基,R33为对甲氧基苯基、对甲基苯基或苄基;
所述PG为氨基保护基;
所述X为F、Cl、Br、I中的任意一种。
2.根据权利要求1所述的制备方法,其特征在于:所述烷基取代基为C1-C5的饱和烷基或C1-C5的不饱和烷基;
所述芳基取代基选自下述任意一种:苯基、苄基、对氯苯基、邻氯苯基、对甲氧基苯基、对甲氧基苯基和对甲基苯基;
所述R2中,所述芳胺基选自下述任意一种:苯胺基、苄胺基、对甲氧基苯胺基和对甲基苯胺基;
所述氨基保护基包括叔丁氧羰基、苄氧羰基、芴甲氧基羰基、对甲苯磺酰基、三苯甲基、乙酰基、苄基、邻苯二甲酰亚胺,苯甲酰基和三氟甲基乙酰基中的至少一种。
3.根据权利要求1或2所述的制备方法,其特征在于:
所述羰基化合物的结构式如式1或式2所示:
式1中,R6为氢原子、烷基取代基或芳基取代基;R6中,所述烷基取代基为碳原子数1~5的烷基或烯丙基,所述芳基取代基为苯基、对氯苯基、对甲氧基苯基或对甲基苯基;
式1中,R7为氢原子、烷基取代基或芳基取代基;R7中,所述烷基取代基为碳原子数1~3的烷基,所述芳基取代基为苯基、苄基、对氯苯基或对甲氧基苯基;
式1和式2中,R8为吸电子基,所述吸电子基包括酯基、酰胺基、酰基、氰基、三氟甲基和硝基中的任意一种;n2为0~5中的整数。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于:所述N,O-缩醛的结构式如式Ⅱ所示:
式Ⅱ中,PG为氨基保护基,所述氨基保护基包括叔丁氧羰基、苄氧羰基、芴甲氧基羰基、对甲苯磺酰基、三苯甲基、乙酰基、苯甲酰基、苄基、邻苯二甲酰基和三氟甲基乙酰基中的至少一种;
LG为离去基团,所述离去基团选自下述任意一种:OAc、Cl、Br、OMe和OTs;
X为F、Cl、Br和I中的任意一种。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于:所述手性伯叔二胺有机小分子催化剂的结构如式3或4所示:
上述式3和4中,R4为氢原子、烷基取代基或芳基取代基,所述烷基取代基为碳原子数1~6的烷基,所述芳基取代基为苄基或苯基;R5为氢原子、烷基取代基或芳基取代基,所述烷基取代基为碳原子数1~6的烷基,具体为甲基或乙基,所述芳基取代基为苄基或苯基;n1为0~9中的整数。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于:所述酸为强酸,或强酸和弱酸的混合物;
所述强酸包括三氟乙酸、三氯乙酸、乙酸、三氟甲磺酸、甲磺酸、苯磺酸、对甲基苯磺酸、四氟硼酸、四芳基硼酸、六氟磷酸、高氯酸和次氯酸中的至少一种;
所述弱酸包括苯甲酸和/或带取代基的苯甲酸;所述带取代基的苯甲酸包括萘甲酸、2,4-二硝基苯甲酸、间硝基苯甲酸和邻硝基苯甲酸中的至少一种。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于:所述羰基化合物与所述N,O-缩醛的摩尔比为1:0.1~5;
所述手性伯叔二胺有机小分子催化剂与所述羰基化合物的摩尔比为0.5~30:100;
所述手性伯叔二胺有机小分子催化剂、所述酸的摩尔比为1:0.5~2;
所述反应的温度可为20℃~100℃,时间可为1~6天;
所述反应在溶剂中进行,所述溶剂为三氯甲烷。
8.根据权利要求1-7中任一项所述的制备方法,其特征在于:所述制备方法还包括分离提纯的步骤;所述提纯方法包括柱层析、减压蒸馏和重结晶中的至少一种。
9.根据权利要求4所述的制备方法,其特征在于:所述式Ⅱ所示N,O-缩醛的制备方法包括下述步骤:
将结构式为PGNH2的氨与缩醛或醛混合,在溶剂中加热条件下进行缩合反应,即得到所述N,O-缩醛的半缩醛;再用保护试剂在吡啶催化条件下保护羟基,即得到所述N,O-缩醛;
PGNH2中,PG为氨基保护基,所述氨基保护基包括叔丁氧羰基、苄氧羰基、芴甲氧基羰基、对甲苯磺酰基、三苯甲基、乙酰基、苄基、邻苯二甲酰基和三氟甲基乙酰基中的任意一种;
所述缩醛的结构式为CX3CHOH(OEt)或CX3CHOH(OMe);所述醛的结构式为CX3CHO;其中X为F、Cl、Br、I中的任意一种。
10.根据权利要求9所述的制备方法,其特征在于:所述氨与所述半缩醛的摩尔比为1:1.1~1.5;所述溶剂为二氯甲烷或1,4-二氧六环;所需加热条件为30-120℃;所述保护试剂为乙酸酐;所述保护试剂与N,O-半缩醛的摩尔比可为1:1~5;所需催化量的吡啶为N,O-半缩醛的摩尔量的1%-20%。
CN201810200158.1A 2018-03-12 2018-03-12 一种手性三氟甲基胺衍生物的制备方法 Pending CN108299242A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810200158.1A CN108299242A (zh) 2018-03-12 2018-03-12 一种手性三氟甲基胺衍生物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810200158.1A CN108299242A (zh) 2018-03-12 2018-03-12 一种手性三氟甲基胺衍生物的制备方法

Publications (1)

Publication Number Publication Date
CN108299242A true CN108299242A (zh) 2018-07-20

Family

ID=62849576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810200158.1A Pending CN108299242A (zh) 2018-03-12 2018-03-12 一种手性三氟甲基胺衍生物的制备方法

Country Status (1)

Country Link
CN (1) CN108299242A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348691A1 (en) * 1999-07-28 2003-10-01 Ajinomoto Co., Inc. Process for producing alpha-aminohalomethyl ketone derivatives
CN107325025A (zh) * 2017-07-17 2017-11-07 中国科学院化学研究所 一种手性α‑氨基酸衍生物及其制备方法
CN107382783A (zh) * 2017-07-17 2017-11-24 中国科学院化学研究所 一种手性β‑氨基酸衍生物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348691A1 (en) * 1999-07-28 2003-10-01 Ajinomoto Co., Inc. Process for producing alpha-aminohalomethyl ketone derivatives
CN107325025A (zh) * 2017-07-17 2017-11-07 中国科学院化学研究所 一种手性α‑氨基酸衍生物及其制备方法
CN107382783A (zh) * 2017-07-17 2017-11-24 中国科学院化学研究所 一种手性β‑氨基酸衍生物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANASTASIA A ET AL: "A novel convenient synthesis of 5-acyl-1,2-dihydropyrimidin-2-ones via 4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones", 《TETRAHEDRON》 *
LUO SANZHONG ET AL: "Catalytic Asymmetric Mannich Reaction with N-Carbamoyl Imine Surrogates of Formaldehyde and Glyoxylate", 《ANGEW. CHEM》 *
李成林等: "β-三氟甲基-β-氨基酸及其衍生物的合成研究进展", 《化学试剂》 *

Similar Documents

Publication Publication Date Title
Pellissier Recent developments in asymmetric aziridination
Shimizu et al. Palladium-catalyzed [3+ 2] cycloaddition reaction using 2-(sulfonylmethyl)-or 2-(cyanomethyl) allyl carbonate
Qi et al. Synthesis of 3-alkoxy/aryloxy-β-lactams using diazoacetate esters as ketene precursors under photoirradiation
Sepe et al. Concise synthesis of AHMHA unit in perthamide C. Structural and stereochemical revision of perthamide C
Cai et al. Tertiary enamides: Versatile and available substrates in synthetic chemistry
Borzilleri et al. Imino ene reactions in organic synthesis
Kostenko et al. Asymmetric Michael addition between kojic acid derivatives and unsaturated ketoesters promoted by C 2-symmetric organocatalysts
Bao et al. Enantioselective Ring Opening of meso‐Epoxides with Aromatic Amines Catalyzed by Dinuclear Magnesium Complexes
Ding et al. Recent advances in catalytic nonenzymatic kinetic resolution of tertiary alcohols
CN107382783B (zh) 一种手性β-氨基酸衍生物及其制备方法
CN102766004B (zh) 一种氨基酰芳胺的合成方法
Kammler et al. Asymmetric synthesis of a tricyclic core structure of the securinega alkaloids virosecurinine and allosecurinine
CN108299242A (zh) 一种手性三氟甲基胺衍生物的制备方法
Ma et al. Synthesis and protein kinase C binding activity of benzolactam-V7
Jacobine et al. Tandem chain extension–Mannich reaction: an approach to β-proline derivatives
Kumareswaran et al. Asymmetric synthesis of 1, 4-dideoxy-1, 4-imino-D-ribitol via stereoselective addition of allylphenylsulfone to an aryl N-sulfinylimine
Ambrosini et al. Development of oxidative formylation and ketonylation reactions
Smith et al. Highly selective directed hydrogenation of enantiopure 4-(tert-butoxycarbonylamino) cyclopent-1-enecarboxylic acid methyl esters
Tolomelli et al. A straightforward route to enantiopure 2-substituted-3, 4-dehydro-β-proline via ring closing metathesis
Vakarov et al. Kinetic resolution of racemic 3-tert-butyl-3, 4-dihydro-2 H-[1, 4] benzoxazine via acylation with chiral acyl chlorides
Fan et al. Rhodium (I)‐Catalyzed Cycloadditions Involving Vinylcyclopropanes and Their Derivatives
Petakamsetty et al. Diastereoselective synthesis of furanose and pyranose substituted glycine and alanine derivatives via proline-catalyzed asymmetric α-amination of aldehydes
Spangenberg et al. Expeditious Syntheses of (±)-allo-Sedamine and (±)-allo-Lobeline via a Combination of Aza-Sakurai-Hosomi and Hydroformylation Reactions
Aliev et al. Radical cyclisation studies of β-nitroamines from the nitro-Mannich reaction
Cui et al. Multimodule Assembly Strategy for Diverted Total Synthesis and Stereochemical Determination of Laingolide A and Laingolide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180720