CN108295649B - Organic waste gas purification method - Google Patents

Organic waste gas purification method Download PDF

Info

Publication number
CN108295649B
CN108295649B CN201810026690.6A CN201810026690A CN108295649B CN 108295649 B CN108295649 B CN 108295649B CN 201810026690 A CN201810026690 A CN 201810026690A CN 108295649 B CN108295649 B CN 108295649B
Authority
CN
China
Prior art keywords
organic waste
waste gas
alumina
filter screens
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810026690.6A
Other languages
Chinese (zh)
Other versions
CN108295649A (en
Inventor
刘岳林
罗国平
刘锦阳
刘哲昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Meiyuan Environmental Protection Technology Co ltd
Original Assignee
Hunan Meiyuan Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Meiyuan Environmental Protection Technology Co ltd filed Critical Hunan Meiyuan Environmental Protection Technology Co ltd
Priority to CN201810026690.6A priority Critical patent/CN108295649B/en
Publication of CN108295649A publication Critical patent/CN108295649A/en
Application granted granted Critical
Publication of CN108295649B publication Critical patent/CN108295649B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027

Abstract

The invention provides a method for purifying organic waste gas. The method comprises the following steps of (1) preheating the organic waste gas to 190-220 ℃ through a heat exchanger and then entering an exhaust channel; (2) filter screens are arranged at two ends of the organic waste gas discharge channel; (3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel. Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% of tetraethoxysilane and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3. Compared with the prior art, the organic waste gas purification method has the advantages of short flow, simple equipment, easy disassembly and replacement and good purification treatment effect, and is particularly suitable for treating various industrial organic waste gases.

Description

Organic waste gas purification method
Technical Field
The invention belongs to the field of air purification, and particularly relates to a method for purifying organic waste gas.
Background
At present, volatile organic waste gases such as benzene, toluene, ethyl acetate, acetone, dichloroethane and the like are discharged in the production processes of the industries such as petrochemical industry, tin printing and can making, coating, printing, medical chemistry and the like, so that the environment is greatly polluted, the human health is harmed, the attention of governments, enterprises and the public is gradually paid, and measures must be taken for effective treatment.
The treatment method for volatile organic waste gas mainly comprises a recovery method, an adsorption and desorption method, a thermal incineration method, a thermal storage incineration method, a catalytic oxidation method and the like, and the catalytic oxidation method is more and more widely applied because the reaction temperature required for purifying the organic waste gas is low, the purification efficiency of organic pollutants is high, and the operation cost is low. However, the existing organic waste gas treatment effect is not ideal, the types of the targeted purifying agents are few, most of the targeted purifying agents need to be matched with a complex purifying device for use, otherwise, the purifying efficiency is not high, and the development of the organic waste gas purifying technology is limited.
Disclosure of Invention
The invention aims to overcome the defects of the background technology and provide a method for purifying organic waste gas.
In order to achieve the object of the present invention, the method for purifying organic waste gas of the present invention comprises the steps of:
(1) preheating the organic waste gas to 190-220 ℃ through a heat exchanger, and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% of tetraethoxysilane and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
In the invention, the filter screens arranged at two ends are a ceramic fiber filter screen and an active carbon filter screen.
In the invention, a ceramic fiber filter screen is arranged at the inlet end of the organic waste gas, and an active carbon filter screen is arranged at the outlet end of the gas purified by the purifying cylinder.
In the invention, the alumina, the diatomite and the ferric oxychloride respectively account for 30-45%, 15-25% and 25-35% of the total mass of the purifying cylinder.
In the invention, the Pd and the Pt account for 0.13-0.16% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 5: 1-6: 1.
in the invention, the alumina sol accounts for 3-4% of the total mass of the purifying cylinder.
In the invention, the alumina sol, 90 percent of tetraethoxysilane and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1-2: 1-2: 1-2: 0.5-1: 0.3-0.4: 0.5-0.8: 0.6 to 0.9.
In the invention, the particle size of the nano alumina in the nano alumina sol is 260-340 nm.
Preferably, in the step (1), the organic waste gas is preheated to 210 ℃ by a heat exchanger before entering the discharge passage.
In the invention, the preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into a cylindrical thin-wall honeycomb, drying at 130-150 ℃, roasting at 900 ℃ for 1-2 hours, cooling, impregnating nano silica sol and noble metal active components Pd and Pt, drying at 110 ℃ for 1-2 hours, roasting at 380 ℃ for 2-3 hours, and coating alumina sol, 90% of ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3Drying at 100 ℃ for 2-3 hours, and roasting at 240 ℃ for 3-4 hours.
Compared with the prior art, the organic waste gas purification method has the advantages of short flow, simple equipment, easy disassembly and replacement and good purification treatment effect, and is particularly suitable for treating various industrial organic waste gases.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. In addition, the technical features involved in the embodiments of the present invention described below may be combined with each other as long as they do not conflict with each other.
Unless otherwise specified, the drying and firing times in the following examples of the method of making the purification cartridge are intermediate in the ranges given in the summary of the invention.
Example 1:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in certain proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.c, roasting at 900 deg.c, cooling, soaking in nanometer silica sol and noble metal active component Pd and Pt, drying and roastingThen coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 2:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 190 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
Wherein, the preparation method of the purification cylinderThe method comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 3:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 220 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 4:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 180 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11:2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 5:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) the organic waste gas is preheated to 230 ℃ through a heat exchanger and then enters an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 6:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% of tetraethoxysilane and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the aluminum oxide and the ferric oxychloride respectively account for 48 percent and 40 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate, SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 7:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, noble metal active components Pd,Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina and the diatomite respectively account for 53 percent and 35 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina and diatomite in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, roasting at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, roasting, coating alumina sol, 90% ethyl orthosilicate, SmVO, and silica sol on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 8:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Cr2O3
Example 9:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 10:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 2.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 11:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano alumina sol, 90% of tetraethoxysilane and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 300 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, and mechanically extrudingCylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate, and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Example 12:
the organic exhaust gas purification method of the present embodiment includes the steps of:
(1) preheating the organic waste gas to 210 ℃ through a heat exchanger and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel.
Wherein the purifying cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The filter screens arranged at two ends are ceramic fiber filter screens and activated carbon filter screens, the ceramic fiber filter screens are arranged at the inlet ends of the organic waste gas, and the activated carbon filter screens are arranged at the outlet ends of the gas purified by the purifying cylinder.
Wherein, the alumina, the diatomite and the ferric oxychloride respectively account for 38 percent, 20 percent and 30 percent of the total mass of the purifying cylinder; the Pd and the Pt account for 0.15% of the total mass of the purification cylinder, wherein the mass ratio of the Pd to the Pt is 11: 2; the alumina sol accounts for 3.5% of the total mass of the purifying cylinder; alumina sol, 90% ethyl orthosilicate and SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1.5: 1.5: 1.5: 0.8: 0.35: 0.65: 0.75.
wherein the particle size of the nano alumina in the nano alumina sol is 400 nm.
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into cylindrical thin-wall honeycomb, drying at 140 deg.C, calcining at 900 deg.C, cooling, soaking in nano silica sol and noble metal active components Pd and Pt, drying, calcining, coating alumina sol, 90% ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3
Evaluation of purification effect:
simulating volatile organic waste gas by mixing benzene, dichloroethane, epichlorohydrin and ethyl acetate with air (the concentrations of benzene, dichloroethane, epichlorohydrin and ethyl acetate are 3000mg/m respectively)3、3000mg/m3、3000mg/m3、4000mg/m3) Airspeed of 20000h-1The organic waste gas was purified by the method of each example, wherein the purification cartridge of each example had a length of 100mm and a diameter of 40mm, the concentration of volatile organic compounds before and after the reaction was analyzed by gas chromatography (FID), and the conversion of the volatile organic waste gas is shown in the following table.
Figure BDA0001545187470000141
It will be understood by those skilled in the art that the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the invention, and that any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (9)

1. A method for purifying an organic waste gas, characterized by comprising the steps of:
(1) preheating the organic waste gas to 190-220 ℃ through a heat exchanger, and then entering an exhaust channel;
(2) filter screens are arranged at two ends of the organic waste gas discharge channel;
(3) a cylindrical purification cylinder with the diameter smaller than that of the discharge channel is inserted into the organic waste gas discharge channel, wherein the purification cylinder is honeycomb-shaped and comprises alumina, diatomite, ferric oxychloride, noble metal active components Pd and Pt, nano silica sol, nano alumina sol, 90% of tetraethoxysilane, SmVO4、C3N4、CeO2、Pr6O11、Y2O3And Cr2O3
The preparation method of the purification cylinder comprises the following steps: preparing alumina, diatomite and ferric oxychloride in proportion, mechanically extruding into a cylindrical thin-walled honeycomb shape, drying at 130-150 ℃, roasting at 900 ℃ for 1-2 hours, cooling, impregnating nano silica sol and noble metal active components Pd and Pt, drying at 110 ℃ for 1-2 hours, roasting at 380 ℃ for 2-3 hours, and coating alumina sol, 90% of ethyl orthosilicate and SmVO on the surface4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3Drying at 100 ℃ for 2-3 hours, and roasting at 240 ℃ for 3-4 hours.
2. The method according to claim 1, wherein the filter nets installed at both ends are a ceramic fiber filter net and an activated carbon filter net.
3. The method according to claim 2, wherein a ceramic fiber filter screen is installed at the organic waste gas inlet end, and an activated carbon filter screen is installed at the gas outlet end purified by the purification cartridge.
4. The method according to claim 1, wherein the alumina, the diatomaceous earth, and the iron oxychloride account for 30% to 45%, 15% to 25%, and 25% to 35%, respectively, of the total mass of the purification cartridge.
5. The method according to claim 1, wherein the Pd and the Pt account for 0.13 to 0.16 percent of the total mass of the purification cartridge, and the mass ratio of the Pd to the Pt is 5: 1-6: 1.
6. the method according to claim 1, wherein the alumina sol accounts for 3 to 4% of the total mass of the purification cartridge.
7. The method according to claim 6, wherein the alumina sol, 90% ethyl orthosilicate, SmVO4、C3N4、CeO2、Pr6O11、Y2O3、Cr2O3The mass ratio of (A) to (B) is 6: 1-2: 1-2: 1-2: 0.5-1: 0.3-0.4: 0.5-0.8: 0.6 to 0.9.
8. The method for purifying organic waste gas according to claim 1, wherein the nano alumina sol has a particle size of 260 to 340 nm.
9. The method for purifying an organic waste gas as claimed in claim 1, wherein the organic waste gas in the step (1) is preheated to 210 ℃ by a heat exchanger before entering the discharge passage.
CN201810026690.6A 2018-01-11 2018-01-11 Organic waste gas purification method Active CN108295649B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810026690.6A CN108295649B (en) 2018-01-11 2018-01-11 Organic waste gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810026690.6A CN108295649B (en) 2018-01-11 2018-01-11 Organic waste gas purification method

Publications (2)

Publication Number Publication Date
CN108295649A CN108295649A (en) 2018-07-20
CN108295649B true CN108295649B (en) 2020-12-11

Family

ID=62868931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810026690.6A Active CN108295649B (en) 2018-01-11 2018-01-11 Organic waste gas purification method

Country Status (1)

Country Link
CN (1) CN108295649B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030275A1 (en) * 1996-02-15 1997-08-21 Atmi Ecosys Corporation Point-of-use catalytic oxidation apparatus and method for treatment of voc-containing gas streams
CN1442231A (en) * 2002-01-24 2003-09-17 日产自动车株式会社 Spent gas purifying catalyst
CN101157032A (en) * 2006-10-05 2008-04-09 日产自动车株式会社 Catalyst for exhaust gas purification
CN102099111A (en) * 2008-07-16 2011-06-15 日产自动车株式会社 Exhaust gas purifying catalyst and method for producing the same
CN102240557A (en) * 2011-05-12 2011-11-16 南京工业大学 Catalyst containing nickel-iron-manganese compound oxide for processing industrial waste gas and preparation method thereof
CN102355950A (en) * 2009-01-16 2012-02-15 巴斯夫公司 Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
CN103338863A (en) * 2011-01-27 2013-10-02 丰田自动车株式会社 Exhaust gas purification catalyst
US9044734B2 (en) * 2011-09-23 2015-06-02 Basf Se Diesel oxidation catalyst with layered structure containing ceria composition as palladium support material for enhanced HC and CO gas conversion
CN105008046A (en) * 2013-02-25 2015-10-28 优美科触媒日本有限公司 Exhaust gas purifying catalyst and exhaust gas purification method using same
CN105289599A (en) * 2015-11-23 2016-02-03 杭州尹力环保科技有限公司 Granular Pd-Pt organic exhaust purification catalyst and preparation method thereof
CN105473221A (en) * 2013-08-23 2016-04-06 巴斯夫公司 Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
CN105457439A (en) * 2015-12-04 2016-04-06 佛山市中科院环境与安全检测认证中心有限公司 Organic waste gas purifying agent
CN105916580A (en) * 2013-12-16 2016-08-31 巴斯夫公司 Manganese-containing diesel oxidation catalyst
CN106732576A (en) * 2015-11-19 2017-05-31 中国石油化工股份有限公司 A kind of catalyst for catalytic oxidation and its preparation method and application
CN107335447A (en) * 2017-06-15 2017-11-10 华南理工大学 A kind of catalyst for purifying volatile organic matter and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090263297A1 (en) * 2007-09-19 2009-10-22 General Electric Company Catalyst and method of manufacture
US10030559B2 (en) * 2013-03-15 2018-07-24 N.E. Chemcat Corporation Oxidation catalyst and exhaust gas purification device using same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030275A1 (en) * 1996-02-15 1997-08-21 Atmi Ecosys Corporation Point-of-use catalytic oxidation apparatus and method for treatment of voc-containing gas streams
CN1442231A (en) * 2002-01-24 2003-09-17 日产自动车株式会社 Spent gas purifying catalyst
CN101157032A (en) * 2006-10-05 2008-04-09 日产自动车株式会社 Catalyst for exhaust gas purification
CN102099111A (en) * 2008-07-16 2011-06-15 日产自动车株式会社 Exhaust gas purifying catalyst and method for producing the same
CN102355950A (en) * 2009-01-16 2012-02-15 巴斯夫公司 Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
CN103338863A (en) * 2011-01-27 2013-10-02 丰田自动车株式会社 Exhaust gas purification catalyst
CN102240557A (en) * 2011-05-12 2011-11-16 南京工业大学 Catalyst containing nickel-iron-manganese compound oxide for processing industrial waste gas and preparation method thereof
US9044734B2 (en) * 2011-09-23 2015-06-02 Basf Se Diesel oxidation catalyst with layered structure containing ceria composition as palladium support material for enhanced HC and CO gas conversion
CN105008046A (en) * 2013-02-25 2015-10-28 优美科触媒日本有限公司 Exhaust gas purifying catalyst and exhaust gas purification method using same
CN105473221A (en) * 2013-08-23 2016-04-06 巴斯夫公司 Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
CN105916580A (en) * 2013-12-16 2016-08-31 巴斯夫公司 Manganese-containing diesel oxidation catalyst
CN106732576A (en) * 2015-11-19 2017-05-31 中国石油化工股份有限公司 A kind of catalyst for catalytic oxidation and its preparation method and application
CN105289599A (en) * 2015-11-23 2016-02-03 杭州尹力环保科技有限公司 Granular Pd-Pt organic exhaust purification catalyst and preparation method thereof
CN105457439A (en) * 2015-12-04 2016-04-06 佛山市中科院环境与安全检测认证中心有限公司 Organic waste gas purifying agent
CN107335447A (en) * 2017-06-15 2017-11-10 华南理工大学 A kind of catalyst for purifying volatile organic matter and preparation method thereof

Also Published As

Publication number Publication date
CN108295649A (en) 2018-07-20

Similar Documents

Publication Publication Date Title
CN108854446A (en) The system of zeolite runner treating organic exhaust gas by adsorptive-catalytic combustion
CN106807177A (en) The gas cleaning plant and purification method of a kind of removing VOCs
WO2017055094A1 (en) Air cleaning by photocatalytic oxidation system
CN109011868B (en) Catalytic system, application thereof, purification method and purification system
KR102136290B1 (en) Low Energy Consumption Concentrating Rotor For Treating Malodor And VOCs Gases, And Treating System Comprising The Same
US20090232718A1 (en) Multi-stage catalytic air purification system
JP2017170427A (en) Volatile organic compound removal device and volatile organic compound removal method
JP2008086942A (en) Apparatus and method for cleaning air
TW201027008A (en) Temperature-control device in the processing system of volatile organic exhaust gas, and method thereof
CN108295649B (en) Organic waste gas purification method
CN206094118U (en) An organic waste gas purifier
CN101224384A (en) Indoor air depurative method for newly decorated house
CN207279653U (en) A kind of kitchen fumes filtering and ozone catalytic combined purifying device
CN205570039U (en) Desorption device is inhaled to VOCs microwave
CN108452637A (en) Tandem runner high efficiency purification system and tandem runner high efficiency purification method
WO2020245646A1 (en) Device for controlling air pollution emanating from a pollution source
CN106039995A (en) Integrated VOCs adsorption concentration-catalytic oxydative degradation turning wheel device and process thereof
WO2019107811A1 (en) Energy saving type concentration rotor and waste gas treatment system comprising same
CN105135544B (en) A kind of air cleaning unit
CN208694621U (en) The system of zeolite runner treating organic exhaust gas by adsorptive-catalytic combustion
CN105546556A (en) Waste gas catalytic combustion purification device
CN210861242U (en) Oil fume purification device
CN201225724Y (en) Mobile indoor air purifier
CN111151126B (en) Device and process for purifying VOCs (volatile organic compounds) through graphene adsorption-heat accumulation type catalytic combustion
CN109821408B (en) Device and method for cooperatively treating volatile organic compounds through ozone-catalytic oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant