CN108280413A - 人脸识别方法和装置 - Google Patents
人脸识别方法和装置 Download PDFInfo
- Publication number
- CN108280413A CN108280413A CN201810044630.7A CN201810044630A CN108280413A CN 108280413 A CN108280413 A CN 108280413A CN 201810044630 A CN201810044630 A CN 201810044630A CN 108280413 A CN108280413 A CN 108280413A
- Authority
- CN
- China
- Prior art keywords
- image
- network
- face
- face recognition
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本申请实施例公开了人脸识别方法和装置。该方法的一具体实施方式包括:获取待处理图像,其中,待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;将待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像,其中,优化图像为在正面均匀光源条件下所呈现的人脸图像,图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;将优化图像输入预先训练的人脸识别模型中,得到优化图像中人脸的人脸识别结果,其中,人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。该实施方式提高了人脸识别的准确性。
Description
技术领域
本申请实施例涉及计算机技术领域,具体涉及图像处理领域,尤其涉及人脸识别方法和装置。
背景技术
随着互联网技术的发展,人脸识别技术应用到了越来越多的领域。例如,可以通过人脸识别来进行身份验证等。通常,在光照环境较差的情况下(例如逆光、侧光等情况),图像中的对象不清晰、不易辨认,现有的方式通常是直接对该图像中的人脸进行人脸识别。
发明内容
本申请实施例提出了人脸识别方法和装置。
第一方面,本申请实施例提供了一种人脸识别方法,包括:获取待处理图像,其中,待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;将待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像,其中,优化图像为在正面均匀光源条件下所呈现的人脸图像,图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;将优化图像输入预先训练的人脸识别模型中,得到优化图像中人脸的人脸识别结果,其中,人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。
在一些实施例中,图像生成模型通过如下步骤训练得到:获取预置的训练样本和预先建立的生成式对抗网络,其中,生成式对抗网络包括生成网络、第一判别网络和第二判别网络,生成网络用于对输入的图像进行光线调整并输出调整后的图像,第一判别网络用于确定所输入的图像是否由生成网络输出,第二判别网络用于确定生成网络输出的图像中人脸的人脸识别结果是否与输入至生成网络的图像中人脸的人脸识别结果相匹配,生成网络输出的图像中人脸的人脸识别结果是将生成网络输出的图像输入到预先训练的人脸识别模型中得到的,输入至生成网络的图像中人脸的人脸识别结果是预先获取的;利用机器学习方法,基于生成网络、第一判别网络和第二判别网络进行训练,将训练后的生成网络确定为图像生成模型。
在一些实施例中,训练样本包括多个在非正面均匀光源条件下对人脸拍摄得到的第一图像、在正面均匀光源条件下对人脸拍摄得到的第二图像和第二图像中人脸的人脸识别结果。
在一些实施例中,利用机器学习方法,基于生成网络、第一判别网络和第二判别网络进行训练,将训练后的生成网络确定为图像生成模型,包括:执行如下训练步骤:固定生成网络的参数,将第一图像作为生成网络的输入,将生成网络输出的图像输入至预先训练的人脸识别模型中得到待识别人脸的人脸识别结果;将生成网络输出的图像和第二图像作为第一判别网络的输入,将待识别人脸的人脸识别结果和第二图像中人脸的人脸识别结果作为第二判别网络的输入,利用机器学习方法对第一判别网络和第二判别网络进行训练;固定训练后的第一判别网络和第二判别网络的参数,将第一图像作为生成网络的输入,利用机器学习方法、反向传播方法和梯度下降算法对生成网络进行训练;确定训练后的第一判别网络和第二判别网络的损失函数值,响应于确定出损失函数值收敛,将训练后的生成网络确定为图像生成模型。
在一些实施例中,利用机器学习方法,基于生成网络、第一判别网络和第二判别网络进行训练,将训练后的生成网络确定为图像生成模型,包括:响应于确定出损失函数值不收敛,使用训练后的生成网络、第一判别网络和第二判别网络重新执行训练步骤。
在一些实施例中,训练样本通过如下步骤生成:获取预先建立的三维人脸模型;分别设置不同的光源参数对三维人脸模型进行渲染,得到具有不同光源参数的第一图像和第二图像,其中,第一图像的光源参数为非正面均匀光源条件下的参数,第二图像的光源参数为正面均匀光源条件下的参数;将第二图像输入至预先训练的人脸识别模型,得到第二图像中人脸的人脸识别结果;将第一图像、第二图像和第二图像中人脸的人脸识别结果组成训练样本。
第二方面,本申请实施例提供了一种人脸识别装置,包括:第一获取单元,配置用于获取待处理图像,其中,待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;第一输入单元,配置用于将待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像,其中,优化图像为在正面均匀光源条件下所呈现的人脸图像,图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;第二输入单元,配置用于将优化图像输入预先训练的人脸识别模型中,得到优化图像中人脸的人脸识别结果,其中,人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。
在一些实施例中,该装置还包括:第二获取单元,配置用于获取预置的训练样本和预先建立的生成式对抗网络,其中,生成式对抗网络包括生成网络、第一判别网络和第二判别网络,生成网络用于对输入的图像进行光线调整并输出调整后的图像,第一判别网络用于确定所输入的图像是否由生成网络输出,第二判别网络用于确定生成网络输出的图像中人脸的人脸识别结果是否与输入至生成网络的图像中人脸的人脸识别结果相匹配,生成网络输出的图像中人脸的人脸识别结果是将生成网络输出的图像输入到预先训练的人脸识别模型中得到的,输入至生成网络的图像中人脸的人脸识别结果是预先获取的;训练单元,配置用于利用机器学习方法,基于生成网络、第一判别网络和第二判别网络进行训练,将训练后的生成网络确定为图像生成模型。
在一些实施例中,训练样本包括多个在非正面均匀光源条件下对人脸拍摄得到的第一图像、在正面均匀光源条件下对人脸拍摄得到的第二图像和第二图像中人脸的人脸识别结果。
在一些实施例中,训练单元进一步配置用于:执行如下训练步骤:固定生成网络的参数,将第一图像作为生成网络的输入,将生成网络输出的图像输入至预先训练的人脸识别模型中得到待识别人脸的人脸识别结果;将生成网络输出的图像和第二图像作为第一判别网络的输入,将待识别人脸的人脸识别结果和第二图像中人脸的人脸识别结果作为第二判别网络的输入,利用机器学习方法对第一判别网络和第二判别网络进行训练;固定训练后的第一判别网络和第二判别网络的参数,将第一图像作为生成网络的输入,利用机器学习方法、反向传播方法和梯度下降算法对生成网络进行训练;确定训练后的第一判别网络和第二判别网络的损失函数值,响应于确定出损失函数值收敛,将训练后的生成网络确定为图像生成模型。
在一些实施例中,训练单元进一步配置用于:响应于确定出损失函数值不收敛,使用训练后的生成网络、第一判别网络和第二判别网络重新执行训练步骤。
在一些实施例中,该装置还包括:第三获取单元,配置用于获取预先建立的三维人脸模型;设置单元,配置用于分别设置不同的光源参数对三维人脸模型进行渲染,得到具有不同光源参数的第一图像和第二图像,其中,第一图像的光源参数为非正面均匀光源条件下的参数,第二图像的光源参数为正面均匀光源条件下的参数;第三输入单元,配置用于将第二图像输入至预先训练的人脸识别模型,得到第二图像中人脸的人脸识别结果;组成单元,配置用于将第一图像、第二图像和第二图像中人脸的人脸识别结果组成训练样本。
第三方面,本申请实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如人脸识别方法中任一实施例的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如人脸识别方法中任一实施例的方法。
本申请实施例提供的人脸识别方法和装置,通过将所获取的待处理图像输入至预先训练的图像生成模型,得到对该待处理图像进行光线调整后的优化图像,而后将该优化图像输入至预先训练的人脸识别模型,得到该优化图像中人脸的人脸识别结果,从而对于光照环境较差的情况下(例如逆光、侧光等情况)所拍摄的图像,可以准确确定其人脸的人脸识别结果,提高了人脸识别的准确性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1是本申请可以应用于其中的示例性系统架构图;
图2是根据本申请的人脸识别方法的一个实施例的流程图;
图3是根据本申请的人脸识别方法的一个应用场景的示意图;
图4是根据本申请的人脸识别装置的一个实施例的结构示意图;
图5是适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了可以应用本申请的人脸识别方法或人脸识别装置的示例性系统架构100。
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如摄影摄像类应用、图像处理类应用、人脸识别类应用、搜索类应用等。
终端设备101、102、103可以是具有摄像头并且支持信息交互的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。
服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上传的图像进行处理的图像处理服务器。图像处理服务器可以对接收到的待处理图像等进行分析等处理,并将处理结果(例如人脸识别结果)反馈给终端设备。
需要说明的是,本申请实施例所提供的人脸识别方法一般由服务器105执行,相应地,人脸识别装置一般设置于服务器105中。
需要指出的是,服务器105的本地也可以直接存储待处理图像,服务器105可以直接获取本地的待处理图像进行人脸识别,此时,示例性系统架构100可以不存在终端设备101、102、103和网络104。
还需要指出的是,终端设备101、102、103中也可以安装有图像处理类应用,终端设备101、102、103也可以基于图像处理类应用对待处理图像进行人脸识别,此时,人脸识别方法也可以由终端设备101、102、103执行,相应地,人脸识别装置也可以设置于终端设备101、102、103中。此时,示例性系统架构100可以不存在服务器105和网络104。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
继续参考图2,示出了根据本申请的人脸识别方法的一个实施例的流程200。该人脸识别方法,包括以下步骤:
步骤201,获取待处理图像。
在本实施例中,人脸识别方法运行于其上的电子设备可以首先获取待处理图像,其中,上述待处理图像可以是在非正面均匀光源条件下对人脸拍摄的图像。实践中,对某个目标对象(例如人脸、物品等)拍摄时,从上述目标对象的正面向上述目标对象的中心所投射的点光源或面光源可以认为是正面均匀光源;从上述目标对象的非正面或者向上述目标对象的非中心所投射的点光源或面光源可以认为是非正面均匀光源。此处,上述目标对象的正面可以是目标对象前部(例如人脸前部)所向的一面,也可以是指目标对象较为主要的一面(例如水杯正视图所示的平面),还可以是技术人员预先指定的目标对象的任意一面。上述目标对象的正面可以是目标对象的正视图所示的平面,从上述目标对象的正面观察,目标对象的影像投影在背后的投影面上,这个投影影像称为正视图。上述目标对象的中心可以是视觉中心、几何中心、距离摄像装置最近的点等,也可以是技术人员预先指定的目标对象的某个位置(例如鼻尖),还可以是技术人员预先指定的目标对象的某个区域(例如鼻子所在区域)。此处,若光源为点光源,则正面均匀点光源可以理解为,该点光源的出光点与上述目标对象的中心的连线与上述目标对象的正视图所在平面垂直。若光源为面光源,则正面均匀面光源可以理解为,该面光源的中心与上述目标对象的中心的连线与该面光源的出光面所在的平面以及上述目标对象的正视图所在平面分别垂直。
需要说明的是,上述待处理图像可以直接存储在上述电子设备的本地,此时,上述电子设备可以直接从本地获取上述待处理图像。此外,上述待处理图像也可以是与上述电子设备相连接的其余电子设备通过有线连接方式或者无线连接方式发送给上述电子设备的。其中,上述无线连接方式可以包括但不限于3G/4G连接、WiFi连接、蓝牙连接、WiMAX连接、Zigbee连接、UWB(ultra wideband)连接、以及其他现在已知或将来开发的无线连接方式。
步骤202,将待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像。
在本实施例中,上述电子设备可以将上述待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像,其中,上述优化图像可以是在正面均匀光源条件下所呈现的图像。
需要说明的是,图像生成模型可以用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像。作为示例,上述图像生成模型可以是预先利用机器学习方法,基于训练样本对用于进行图像处理的模型(例如,卷积神经网络(Convolutional Neural Network,CNN))进行训练后所得到的模型。上述卷积神经网络可以包括卷积层、池化层、反池化层和反卷积层,其中,卷积层可以用于提取图像特征,池化层可以用于对输入的信息进行降采样(downsample),反池化层可以用于对输入的信息进行上采样(upsample),反卷积层用于对输入的信息进行反卷积,将卷积层的卷积核的转置作为反卷积层的卷积核对所输入的信息进行处理。反卷积是卷积的逆运算,实现了信号的复原。上述卷积神经网络的最后一个反卷积层可以输出优化图像,所输出的优化图像可以用RGB(red green blue,红绿蓝)三通道的矩阵进行表达,且所输出的优化图像的大小可以与上述待处理图像相同。实践中,卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于图像处理有出色表现,因而,可以利用卷积神经网络进行图像的处理。需要说明的是,上述电子设备可以利用各种方式(例如有监督训练、无监督训练等方式)训练上述卷积神经网络得到图像生成模型。
在本实施例的一些可选的实现方式中,上述图像生成模型可以通过如下步骤训练得到:
第一步,获取预置的训练样本和预先建立的生成式对抗网络(GenerativeAdversarial Nets,GAN)。例如,上述生成式对抗网络可以是深度卷积生成对抗网络(DeepConvolutional Generative Adversarial Network,DCGAN)。其中,上述生成式对抗网络可以包括生成网络、第一判别网络和第二判别网络,上述生成网络可以用于对所输入的图像进行光线调整并输出调整后的图像,上述第一判别网络可以用于确定所输入的图像是否由上述生成网络输出,上述第二判别网络可以用于确定上述生成网络输出的图像中人脸的人脸识别结果是否与输入至上述生成网络的图像中的人脸的人脸识别结果相匹配。此处,上述生成网络输出的图像中人脸的人脸识别结果是通过将上述生成网络输出的图像输入到预先训练的人脸识别模型中得到的,上述待输入至上述生成网络的图像中人脸的人脸识别结果是预先获取到的人工标注出的人脸识别结果。其中,上述人脸识别模型可以用于对图像中的人脸进行识别得到人脸识别结果,上述人脸识别模型可以是利用机器学习方法对现有的模型(例如卷积神经网络)进行有监督训练后得到的。其中,训练上述人脸识别模型所使用的样本可以包括大量的人脸图像和每一张人脸图像中人脸的人脸识别结果。实践中,可以将样本中的人脸图像作为模型的输入,将人脸识别结果作为模型的输出,利用机器学习方法对该模型进行训练,将训练后的该模型确定为人脸识别模型。
需要说明的是,人脸识别结果可以包括人脸对应的用户的身份信息,包括,身份证号、护照号码、姓名、职业、就读学校、就职单位等等。上述生成网络可以是用于进行图像处理的卷积神经网络(例如包含卷积层、池化层、反池化层、反卷积层的各种卷积神经网络结构,可以依次进行降采样和上采样);上述第一判别网络、上述第二判别网络可以是卷积神经网络(例如包含全连接层的各种卷积神经网络结构,其中,上述全连接层可以实现分类功能)或者可以用于实现分类功能的其他模型结构,例如支持向量机(Support VectorMachine,SVM)等。需要说明的是,上述生成网络所输出的图像可以用RGB三通道的矩阵进行表达。此处,上述第一判别网络若判定输入的图像是上述生成网络所输出的图像(来自生成数据),则可以输出1;若判定输入的图像不是上述生成网络所输出的图像(来自真实数据,即上述第二图像),则可以输出0。上述第二判别网络若判定上述生成网络输出的图像中人脸的人脸识别结果与输入至上述生成网络的图像中的人脸的人脸识别结果相匹配,可以输出1;若上述第二判别网络判定出上述生成网络输出的图像中人脸的人脸识别结果与输入至上述生成网络的图像中人脸的人脸识别结果不匹配,可以输出0。需要说明的是,上述第一判别网络、第二判别网络也可以基于预先设定输出其他数值,不限于1和0。
第二步,利用机器学习方法,基于上述训练样本对上述生成网络、上述第一判别网络和上述第二判别网络进行训练,将训练后的上述生成网络确定为图像生成模型。具体地,可以首先固定生成网络和判别网络(包括第一判别网络和第二判别网络)中的任一网络(可称为第一网络)的参数,对未固定参数的网络(可称为第二网络)进行优化;再固定第二网络的参数,对第一网络进行改进。不断进行上述迭代,直到第一判别网络和第二判别网络的损失函数值收敛,可以将此时的生成网络确定为图像生成模型。需要说明的是,上述不断进行迭代直到第一判别网络和第二判别网络的损失函数值收敛的过程即为反向传播过程。
在本实施例的一些可选的实现方式中,上述训练样本可以包括多个在非正面均匀光源条件下对人脸拍摄得到的第一图像、在正面均匀光源条件下对人脸拍摄得到的第二图像和上述第二图像中人脸的人脸识别结果。实践中,在相同光源环境下的第一图像和第二图像的拍摄角度一致、所拍摄的对象一致且所拍摄的对象的位置一致,因此,在相同光源环境下的第一图像中人脸的人脸识别结果与第二图像中人脸的人脸识别结果相同。在获取预置的训练样本和预先建立的生成式对抗网络之后,上述电子设备可以通过如下训练步骤训练得到上述图像生成模型:
第一步,固定上述生成网络的参数,将上述第一图像作为上述生成网络的输入,将上述生成网络输出的图像输入至预先训练的人脸识别模型,得到待识别人脸的人脸识别结果。
第二步,将上述生成网络输出的图像、上述第二图像作为上述第一判别网络的输入,将上述待识别人脸的人脸识别结果和上述第二图像中人脸的人脸识别结果作为上述第二判别网络的输入,利用机器学习方法对上述第一判别网络和上述第二判别网络进行训练。需要说明的是,由于生成网络输出的图像均为生成数据,且已知第二图像为真实数据,因此,对于输入到第一判别网络的图像,可以自动生成用于指示该图像为生成数据或真实数据的标注。
第三步,固定训练后的上述第一判别网络和上述第二判别网络的参数,将上述第一图像作为上述生成网络的输入,利用机器学习方法、反向传播算法和梯度下降算法对上述生成网络进行训练。实践中,上述反向传播算法、上述梯度下降算法是目前广泛研究和应用的公知技术,在此不再赘述。
第四步,确定训练后的上述第一判别网络和上述第二判别网络的损失函数值,响应于确定上述损失函数值收敛,将上述生成网络确定为上述图像生成模型。
需要说明的是,响应于确定出上述损失函数值不收敛,上述电子设备可以使用训练后的上述生成网络、上述第一判别网络和上述第二判别网络重新执行上述训练步骤。由此,生成式对抗网络训练得到的图像生成模型的参数不仅基于训练样本得到,还可以基于第一判别网络和第二判别网络的反向传播而确定的,因而不需要依赖大量的有标注的样本即可实现生成模型的训练得到图像生成模型,减少了人力成本,进一步提高了图像处理的灵活性。
在本实施例的一些可选的实现方式中,上述训练样本可以通过以下步骤生成:
第一步,获取预先建立的三维人脸模型。此处,上述三维人脸模型可以是技术人员利用各种现有的三维模型设计工具预先建立的,且上述三维模型设计工具可以支持设置不同类型的光源对所建立的三维人脸模型进行渲染,并支持由三维模型到二维图像的投影变换等功能,此处不再赘述。
第二步,分别设置不同的光源参数对上述三维人脸模型进行渲染,得到具有不同光照参数的第一图像和第二图像,其中,上述第一图像的光源参数为非正面均匀光源条件下的参数,上述第二图像的光源参数为正面均匀光源条件下的参数。实践中,可以在三维人脸模型的顶部、底部、背后、侧面、正面等各个角度设置光源,且光源可以是点光源、面光源等各种类型的光源。此处,由于三维模型设计工具支持投影变换,因此可以直接利用三维模型设计工具得到上述第一图像和第二图像。并且,可以设置第一图像和第二图像相对于上述三维人脸模型具有相同的视觉角度。
第三步,将上述第二图像输入至预先训练的人脸识别模型,得到上述第二图像中人脸的人脸识别结果。需要说明的是,本步骤所使用的人脸识别模型与上述得到处理之后的图像中人脸的人脸识别结果、待输入至上述生成网络的图像中人脸的人脸识别结果以及待识别人脸的人脸识别结果的人脸识别模型为同一个模型;本步骤的操作方法与上述得到处理之后的图像中人脸的人脸识别结果、待输入至上述生成网络的图像中人脸的人脸识别结果以及上述待识别人脸的人脸识别结果的操作方法基本相同,在此不再赘述。
第四步,将上述第一图像、上述第二图像和上述第二图像中人脸的人脸识别结果组成训练样本。利用三维人脸模型建立训练样本,相比于直接利用摄像头采集真实图像,能够灵活且快速地生成更多的样本;并且,利用三维人脸模型建立训练样本,可以模拟各种角度、各种类型的光照条件,使训练样本的数据更丰富、覆盖范围更广。
步骤203,将优化图像输入预先训练的人脸识别模型中,得到优化图像中人脸的人脸识别结果。
在本实施例中,上述电子设备可以将上述优化图像输入至预先训练的人脸识别模型中,得到上述优化图像中人脸的人脸识别结果,其中,人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。需要说明的是,本步骤所使用的人脸识别模型与上述得到处理之后的图像中人脸的人脸识别结果、待输入至上述生成网络的图像中人脸的人脸识别结果、待识别人脸的人脸识别结果和第二图像中人脸的人脸识别结果的人脸识别模型为同一个模型;本步骤的操作方法与上述得到处理之后的图像中人脸的人脸识别结果、待输入至上述生成网络的图像中人脸的人脸识别结果、待识别人脸的人脸识别结果、第二图像中人脸的人脸识别结果的操作方法基本相同,在此不再赘述。
继续参见图3,图3是根据本实施例的人脸识别方法的应用场景的一个示意图。在图3的应用场景中,用于处理图像的电子设备(例如手机)可以首先开启摄像头,在当前非正面均匀光源条件下(例如逆光)对某个对象(例如人脸)进行拍照,以获取到待处理图像(如标号301所示)。而后,可以将该待处理图像输入至预先训练的图像生成模型,得到对上述待处理图像进行光线调整后的优化图像(如标号302所示)。需要说明的是,标号301、标号302所指示的图像仅为示意。最后,可以将优化图像(如标号302所示)输入至预先训练的人脸识别模型,得到该优化图像中人脸的人脸识别结果(如标号303所示),如身份证号为12345。
本申请的上述实施例提供的方法,通过将所获取的待处理图像输入至预先训练的图像生成模型,得到对该待处理图像进行光线调整后的优化图像,而后将该优化图像输入至预先训练的人脸识别模型,得到该优化图像中人脸的人脸识别结果,从而对于光照环境较差的情况下(例如逆光、侧光等情况)所拍摄的图像,可以准确确定其人脸的人脸识别结果,提高了人脸识别的准确性。
进一步参考图4,作为对上述各图所示方法的实现,本申请提供了一种人脸识别装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图4所示,本实施例的人脸识别装置400包括:第一获取单元401、第一输入单元402和第二输入单元403。其中,第一获取单元401配置用于获取待处理图像,其中,待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;第一输入单元402配置用于将待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像,其中,优化图像为在正面均匀光源条件下所呈现的人脸图像,图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;第二输入单元403配置用于将优化图像输入预先训练的人脸识别模型中,得到优化图像中人脸的人脸识别结果,其中,人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。
在本实施例中,人脸识别装置400的第一获取单元401、第一输入单元402和第二输入单元403的具体处理可以参考图2对应实施例中的步骤201、步骤202和步骤203。
在本实施例的一些可选的实现方式中,上述人脸识别装置400还可以包括第二获取单元(图中未示出)和训练单元(图中未示出)。第一步,上述第二获取单元可以获取预置的训练样本和预先建立的生成式对抗网络。例如,上述生成式对抗网络可以是深度卷积生成对抗网络。其中,上述生成式对抗网络可以包括生成网络、第一判别网络和第二判别网络,上述生成网络可以用于对所输入的图像进行光线调整并输出调整后的图像,上述第一判别网络可以用于确定所输入的图像是否由上述生成网络输出,上述第二判别网络可以用于确定上述生成网络输出的图像中人脸的人脸识别结果是否与输入至上述生成网络的图像中的人脸的人脸识别结果相匹配。此处,上述生成网络输出的图像中人脸的人脸识别结果是通过将上述生成网络输出的图像输入到预先训练的人脸识别模型中得到的,上述待输入至上述生成网络的图像中人脸的人脸识别结果是预先获取到的人工标注出的人脸识别结果。其中,上述人脸识别模型可以用于对图像中的人脸进行识别得到人脸识别结果,上述人脸识别模型可以是利用机器学习方法对现有的模型进行有监督训练后得到的。其中,训练上述人脸识别模型所使用的样本可以包括大量的人脸图像和每一张人脸图像中人脸的人脸识别结果。实践中,可以将样本中的人脸图像作为模型的输入,将人脸识别结果作为模型的输出,利用机器学习方法对该模型进行训练,将训练后的该模型确定为人脸识别模型。
需要说明的是,人脸识别结果可以包括人脸对应的用户的身份信息,包括,身份证号、护照号码、姓名、职业、就读学校、就职单位等等。上述生成网络可以是用于进行图像处理的卷积神经网络;上述第一判别网络、上述第二判别网络可以是卷积神经网络或者可以用于实现分类功能的其他模型结构,例如支持向量机等。需要说明的是,上述生成网络所输出的图像可以用RGB三通道的矩阵进行表达。此处,上述第一判别网络若判定输入的图像是上述生成网络所输出的图像,则可以输出1;若判定输入的图像不是上述生成网络所输出的图像,则可以输出0。上述第二判别网络若判定上述生成网络输出的图像中人脸的人脸识别结果与输入至上述生成网络的图像中的人脸的人脸识别结果相匹配,可以输出1;若上述第二判别网络判定出上述生成网络输出的图像中人脸的人脸识别结果与输入至上述生成网络的图像中人脸的人脸识别结果不匹配,可以输出0。需要说明的是,上述第一判别网络、第二判别网络也可以基于预先设定输出其他数值,不限于1和0。
第二步,上述训练单元可以利用机器学习方法,基于上述训练样本对上述生成网络、上述第一判别网络和上述第二判别网络进行训练,将训练后的上述生成网络确定为图像生成模型。具体地,上述训练单元可以首先固定生成网络和判别网络(包括第一判别网络和第二判别网络)中的任一网络(可称为第一网络)的参数,对未固定参数的网络(可称为第二网络)进行优化;再固定第二网络的参数,对第一网络进行改进。不断进行上述迭代,直到第一判别网络和第二判别网络的损失函数值收敛,可以将此时的生成网络确定为图像生成模型。需要说明的是,上述不断进行迭代直到第一判别网络和第二判别网络的损失函数值收敛的过程即为反向传播过程。
在本实施例的一些可选的实现方式中,上述训练样本可以包括多个在非正面均匀光源条件下对人脸拍摄得到的第一图像、在正面均匀光源条件下对人脸拍摄得到的第二图像和上述第二图像中人脸的人脸识别结果。实践中,在相同光源环境下的第一图像和第二图像的拍摄角度一致、所拍摄的对象一致且所拍摄的对象的位置一致,因此,在相同光源环境下的第一图像中人脸的人脸识别结果与第二图像中人脸的人脸识别结果相同。
在本实施例的一些可选的实现方式中,在获取预置的训练样本和预先建立的生成式对抗网络之后,上述训练单元可以通过如下训练步骤训练得到上述图像生成模型:
第一步,固定上述生成网络的参数,将上述第一图像作为上述生成网络的输入,将上述生成网络输出的图像输入至预先训练的人脸识别模型,得到待识别人脸的人脸识别结果。
第二步,将上述生成网络输出的图像、上述第二图像作为上述第一判别网络的输入,将上述待识别人脸的人脸识别结果和上述第二图像中人脸的人脸识别结果作为上述第二判别网络的输入,利用机器学习方法对上述第一判别网络和上述第二判别网络进行训练。需要说明的是,由于生成网络输出的图像均为生成数据,且已知第二图像为真实数据,因此,对于输入到第一判别网络的图像,可以自动生成用于指示该图像为生成数据或真实数据的标注。
第三步,固定训练后的上述第一判别网络和上述第二判别网络的参数,将上述第一图像作为上述生成网络的输入,利用机器学习方法、反向传播算法和梯度下降算法对上述生成网络进行训练。实践中,上述反向传播算法、上述梯度下降算法是目前广泛研究和应用的公知技术,在此不再赘述。
第四步,确定训练后的上述第一判别网络和上述第二判别网络的损失函数值,响应于确定上述损失函数值收敛,将上述生成网络确定为上述图像生成模型。
在本实施例的一些可选的实现方式中,响应于确定出上述损失函数值不收敛,上述训练单元可以使用训练后的上述生成网络、上述第一判别网络和上述第二判别网络重新执行上述训练步骤。由此,生成式对抗网络训练得到的图像生成模型的参数不仅基于训练样本得到,还可以基于第一判别网络和第二判别网络的反向传播而确定的,因而不需要依赖大量的有标注的样本即可实现生成模型的训练得到图像生成模型,减少了人力成本,进一步提高了图像处理的灵活性。
在本实施例的一些可选的实现方式中,上述人脸识别装置400还可以包括第三获取单元(图中未示出)、设置单元(图中未示出)、第三输入单元(图中未示出)和组成单元(图中未示出)。
第一步,上述第三获取单元可以获取预先建立的三维人脸模型。此处,上述三维人脸模型可以是技术人员利用各种现有的三维模型设计工具预先建立的,且上述三维模型设计工具可以支持设置不同类型的光源对所建立的三维人脸模型进行渲染,并支持由三维模型到二维图像的投影变换等功能,此处不再赘述。
第二步,上述设置单元可以分别设置不同的光源参数对上述三维人脸模型进行渲染,得到具有不同光照参数的第一图像和第二图像,其中,上述第一图像的光源参数为非正面均匀光源条件下的参数,上述第二图像的光源参数为正面均匀光源条件下的参数。实践中,可以在三维人脸模型的顶部、底部、背后、侧面、正面等各个角度设置光源,且光源可以是点光源、面光源等各种类型的光源。此处,由于三维模型设计工具支持投影变换,因此可以直接利用三维模型设计工具得到上述第一图像和第二图像。并且,可以设置第一图像和第二图像相对于上述三维人脸模型具有相同的视觉角度。
第三步,上述第三输入单元可以将上述第二图像输入至预先训练的人脸识别模型,得到上述第二图像中人脸的人脸识别结果。需要说明的是,本步骤所使用的人脸识别模型与上述得到处理之后的图像中人脸的人脸识别结果、待输入至上述生成网络的图像中人脸的人脸识别结果以及待识别人脸的人脸识别结果的人脸识别模型为同一个模型;本步骤的操作方法与上述得到处理之后的图像中人脸的人脸识别结果、待输入至上述生成网络的图像中人脸的人脸识别结果以及上述待识别人脸的人脸识别结果的操作方法基本相同,在此不再赘述。
第四步,上述组成单元可以将上述第一图像、上述第二图像和上述第二图像中人脸的人脸识别结果组成训练样本。利用三维人脸模型建立训练样本,相比于直接利用摄像头采集真实图像,能够灵活且快速地生成更多的样本;并且,利用三维人脸模型建立训练样本,可以模拟各种角度、各种类型的光照条件,使训练样本的数据更丰富、覆盖范围更广。
本申请的上述实施例提供的装置,通过第一输入单元402将第一获取单元401所获取的待处理图像输入至预先训练的图像生成模型,得到对该待处理图像进行光线调整后的优化图像,而后第二输入单元403将该优化图像输入至预先训练的人脸识别模型,得到该优化图像中人脸的人脸识别结果,从而对于光照环境较差的情况下(例如逆光、侧光等情况)所拍摄的图像,可以准确确定其人脸的人脸识别结果,提高了人脸识别的准确性。
下面参考图5,其示出了适于用来实现本申请实施例的电子设备的计算机系统500的结构示意图。图5示出的电子设备仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图5所示,计算机系统500包括中央处理单元(CPU)501,其可以根据存储在只读存储器(ROM)502中的程序或者从存储部分508加载到随机访问存储器(RAM)503中的程序而执行各种适当的动作和处理。在RAM 503中,还存储有系统500操作所需的各种程序和数据。CPU 501、ROM 502以及RAM 503通过总线504彼此相连。输入/输出(I/O)接口505也连接至总线504。
以下部件连接至I/O接口505:包括触摸屏、触摸板等的输入部分506;包括诸如液晶显示器(LCD)等以及扬声器等的输出部分507;包括硬盘等的存储部分508;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分509。通信部分509经由诸如因特网的网络执行通信处理。驱动器510也根据需要连接至I/O接口505。可拆卸介质511,诸如半导体存储器等等,根据需要安装在驱动器510上,以便于从其上读出的计算机程序根据需要被安装入存储部分508。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分509从网络上被下载和安装,和/或从可拆卸介质511被安装。在该计算机程序被中央处理单元(CPU)501执行时,执行本申请的方法中限定的上述功能。需要说明的是,本申请所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括第一获取单元、第一输入单元和第二输入单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。例如,第一获取单元还可以被描述为“获取待处理图像的单元”。
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的装置中所包含的;也可以是单独存在,而未装配入该装置中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该装置执行时,使得该装置:获取待处理图像,其中,待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;将待处理图像输入至预先训练的图像生成模型,得到对待处理图像进行光线调整后的优化图像,其中,优化图像为在正面均匀光源条件下所呈现的人脸图像,图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;将优化图像输入预先训练的人脸识别模型中,得到优化图像中人脸的人脸识别结果,其中,人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (14)
1.一种人脸识别方法,包括:
获取待处理图像,其中,所述待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;
将所述待处理图像输入至预先训练的图像生成模型,得到对所述待处理图像进行光线调整后的优化图像,其中,所述优化图像为在正面均匀光源条件下所呈现的人脸图像,所述图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;
将所述优化图像输入预先训练的人脸识别模型中,得到所述优化图像中人脸的人脸识别结果,其中,所述人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。
2.根据权利要求1所述的方法,其中,所述图像生成模型通过如下步骤训练得到:
获取预置的训练样本和预先建立的生成式对抗网络,其中,所述生成式对抗网络包括生成网络、第一判别网络和第二判别网络,所述生成网络用于对输入的图像进行光线调整并输出调整后的图像,所述第一判别网络用于确定所输入的图像是否由所述生成网络输出,所述第二判别网络用于确定所述生成网络输出的图像中人脸的人脸识别结果是否与输入至所述生成网络的图像中人脸的人脸识别结果相匹配,所述生成网络输出的图像中人脸的人脸识别结果是将所述生成网络输出的图像输入到预先训练的人脸识别模型中得到的,所述输入至所述生成网络的图像中人脸的人脸识别结果是预先获取的;
利用机器学习方法,基于所述生成网络、所述第一判别网络和所述第二判别网络进行训练,将训练后的所述生成网络确定为图像生成模型。
3.根据权利要求2所述的方法,其中,所述训练样本包括多个在非正面均匀光源条件下对人脸拍摄得到的第一图像、在正面均匀光源条件下对人脸拍摄得到的第二图像和所述第二图像中人脸的人脸识别结果。
4.根据权利要求3所述的方法,其中,所述利用机器学习方法,基于所述生成网络、所述第一判别网络和所述第二判别网络进行训练,将训练后的所述生成网络确定为图像生成模型,包括:
执行如下训练步骤:固定所述生成网络的参数,将所述第一图像作为所述生成网络的输入,将所述生成网络输出的图像输入至预先训练的人脸识别模型中得到待识别人脸的人脸识别结果;将所述生成网络输出的图像和所述第二图像作为所述第一判别网络的输入,将所述待识别人脸的人脸识别结果和所述第二图像中人脸的人脸识别结果作为所述第二判别网络的输入,利用机器学习方法对所述第一判别网络和所述第二判别网络进行训练;固定训练后的所述第一判别网络和所述第二判别网络的参数,将所述第一图像作为所述生成网络的输入,利用机器学习方法、反向传播方法和梯度下降算法对所述生成网络进行训练;确定训练后的所述第一判别网络和所述第二判别网络的损失函数值,响应于确定出所述损失函数值收敛,将训练后的所述生成网络确定为图像生成模型。
5.根据权利要求4所述的方法,其中,所述利用机器学习方法,基于所述生成网络、所述第一判别网络和所述第二判别网络进行训练,将训练后的所述生成网络确定为图像生成模型,包括:
响应于确定出所述损失函数值不收敛,使用训练后的所述生成网络、所述第一判别网络和所述第二判别网络重新执行所述训练步骤。
6.根据权利要求3-5之一所述的方法,其中,所述训练样本通过如下步骤生成:
获取预先建立的三维人脸模型;
分别设置不同的光源参数对所述三维人脸模型进行渲染,得到具有不同光源参数的第一图像和第二图像,其中,所述第一图像的光源参数为非正面均匀光源条件下的参数,所述第二图像的光源参数为正面均匀光源条件下的参数;
将所述第二图像输入至预先训练的人脸识别模型,得到所述第二图像中人脸的人脸识别结果;
将所述第一图像、所述第二图像和所述第二图像中人脸的人脸识别结果组成训练样本。
7.一种人脸识别装置,包括:
第一获取单元,配置用于获取待处理图像,其中,所述待处理图像为在非正面均匀光源条件下对人脸拍摄的图像;
第一输入单元,配置用于将所述待处理图像输入至预先训练的图像生成模型,得到对所述待处理图像进行光线调整后的优化图像,其中,所述优化图像为在正面均匀光源条件下所呈现的人脸图像,所述图像生成模型用于对在非正面均匀光源条件下所拍摄的图像进行光线调整以生成正面均匀光源条件下的图像;
第二输入单元,配置用于将所述优化图像输入预先训练的人脸识别模型中,得到所述优化图像中人脸的人脸识别结果,其中,所述人脸识别模型用于对图像中的人脸进行识别得到人脸识别结果。
8.根据权利要求7所述的装置,其中,所述装置还包括:
第二获取单元,配置用于获取预置的训练样本和预先建立的生成式对抗网络,其中,所述生成式对抗网络包括生成网络、第一判别网络和第二判别网络,所述生成网络用于对输入的图像进行光线调整并输出调整后的图像,所述第一判别网络用于确定所输入的图像是否由所述生成网络输出,所述第二判别网络用于确定所述生成网络输出的图像中人脸的人脸识别结果是否与输入至所述生成网络的图像中人脸的人脸识别结果相匹配,所述生成网络输出的图像中人脸的人脸识别结果是将所述生成网络输出的图像输入到预先训练的人脸识别模型中得到的,所述输入至所述生成网络的图像中人脸的人脸识别结果是预先获取的;
训练单元,配置用于利用机器学习方法,基于所述生成网络、所述第一判别网络和所述第二判别网络进行训练,将训练后的所述生成网络确定为图像生成模型。
9.根据权利要求8所述的装置,其中,所述训练样本包括多个在非正面均匀光源条件下对人脸拍摄得到的第一图像、在正面均匀光源条件下对人脸拍摄得到的第二图像和所述第二图像中人脸的人脸识别结果。
10.根据权利要求9所述的装置,其中,所述训练单元进一步配置用于:
执行如下训练步骤:固定所述生成网络的参数,将所述第一图像作为所述生成网络的输入,将所述生成网络输出的图像输入至预先训练的人脸识别模型中得到待识别人脸的人脸识别结果;将所述生成网络输出的图像和所述第二图像作为所述第一判别网络的输入,将所述待识别人脸的人脸识别结果和所述第二图像中人脸的人脸识别结果作为所述第二判别网络的输入,利用机器学习方法对所述第一判别网络和所述第二判别网络进行训练;固定训练后的所述第一判别网络和所述第二判别网络的参数,将所述第一图像作为所述生成网络的输入,利用机器学习方法、反向传播方法和梯度下降算法对所述生成网络进行训练;确定训练后的所述第一判别网络和所述第二判别网络的损失函数值,响应于确定出所述损失函数值收敛,将训练后的所述生成网络确定为图像生成模型。
11.根据权利要求10所述的装置,其中,所述训练单元进一步配置用于:
响应于确定出所述损失函数值不收敛,使用训练后的所述生成网络、所述第一判别网络和所述第二判别网络重新执行所述训练步骤。
12.根据权利要求9-11之一所述的装置,其中,所述装置还包括:
第三获取单元,配置用于获取预先建立的三维人脸模型;
设置单元,配置用于分别设置不同的光源参数对所述三维人脸模型进行渲染,得到具有不同光源参数的第一图像和第二图像,其中,所述第一图像的光源参数为非正面均匀光源条件下的参数,所述第二图像的光源参数为正面均匀光源条件下的参数;
第三输入单元,配置用于将所述第二图像输入至预先训练的人脸识别模型,得到所述第二图像中人脸的人脸识别结果;
组成单元,配置用于将所述第一图像、所述第二图像和所述第二图像中人脸的人脸识别结果组成训练样本。
13.一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-6中任一所述的方法。
14.一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-6中任一所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810044630.7A CN108280413B (zh) | 2018-01-17 | 2018-01-17 | 人脸识别方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810044630.7A CN108280413B (zh) | 2018-01-17 | 2018-01-17 | 人脸识别方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108280413A true CN108280413A (zh) | 2018-07-13 |
CN108280413B CN108280413B (zh) | 2022-04-19 |
Family
ID=62803870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810044630.7A Active CN108280413B (zh) | 2018-01-17 | 2018-01-17 | 人脸识别方法和装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108280413B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108364029A (zh) * | 2018-03-19 | 2018-08-03 | 百度在线网络技术(北京)有限公司 | 用于生成模型的方法和装置 |
CN109241830A (zh) * | 2018-07-26 | 2019-01-18 | 合肥工业大学 | 基于光照生成对抗网络的课堂听课异常检测方法 |
CN109325448A (zh) * | 2018-09-21 | 2019-02-12 | 广州广电卓识智能科技有限公司 | 人脸识别方法、装置和计算机设备 |
CN110070037A (zh) * | 2019-04-22 | 2019-07-30 | 深圳力维智联技术有限公司 | 人脸识别模型的平滑升级方法、装置和可读存储介质 |
WO2020052170A1 (zh) * | 2018-09-11 | 2020-03-19 | 深圳云天励飞技术有限公司 | 一种目标对象识别方法、装置及存储介质 |
CN111274855A (zh) * | 2018-12-05 | 2020-06-12 | 北京猎户星空科技有限公司 | 图像处理方法、装置、机器学习模型训练方法及装置 |
CN111401283A (zh) * | 2020-03-23 | 2020-07-10 | 北京达佳互联信息技术有限公司 | 面部识别方法及装置、电子设备及存储介质 |
CN111488810A (zh) * | 2020-03-31 | 2020-08-04 | 长沙千视通智能科技有限公司 | 人脸识别方法、装置、终端设备及计算机可读介质 |
CN111985281A (zh) * | 2019-05-24 | 2020-11-24 | 内蒙古工业大学 | 图像生成模型的生成方法、装置及图像生成方法、装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170163953A1 (en) * | 2015-12-08 | 2017-06-08 | Le Holdings (Beijing) Co., Ltd. | Method and electronic device for processing image containing human face |
CN107220600A (zh) * | 2017-05-17 | 2017-09-29 | 清华大学深圳研究生院 | 一种基于深度学习的图片生成方法及生成对抗网络 |
CN107423700A (zh) * | 2017-07-17 | 2017-12-01 | 广州广电卓识智能科技有限公司 | 人证核实的方法及装置 |
CN107423707A (zh) * | 2017-07-25 | 2017-12-01 | 深圳帕罗人工智能科技有限公司 | 一种基于复杂环境下的人脸情绪识别方法 |
CN107491771A (zh) * | 2017-09-21 | 2017-12-19 | 百度在线网络技术(北京)有限公司 | 人脸检测方法和装置 |
CN108133201B (zh) * | 2018-01-17 | 2019-10-25 | 百度在线网络技术(北京)有限公司 | 人脸属性识别方法和装置 |
-
2018
- 2018-01-17 CN CN201810044630.7A patent/CN108280413B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170163953A1 (en) * | 2015-12-08 | 2017-06-08 | Le Holdings (Beijing) Co., Ltd. | Method and electronic device for processing image containing human face |
CN107220600A (zh) * | 2017-05-17 | 2017-09-29 | 清华大学深圳研究生院 | 一种基于深度学习的图片生成方法及生成对抗网络 |
CN107423700A (zh) * | 2017-07-17 | 2017-12-01 | 广州广电卓识智能科技有限公司 | 人证核实的方法及装置 |
CN107423707A (zh) * | 2017-07-25 | 2017-12-01 | 深圳帕罗人工智能科技有限公司 | 一种基于复杂环境下的人脸情绪识别方法 |
CN107491771A (zh) * | 2017-09-21 | 2017-12-19 | 百度在线网络技术(北京)有限公司 | 人脸检测方法和装置 |
CN108133201B (zh) * | 2018-01-17 | 2019-10-25 | 百度在线网络技术(北京)有限公司 | 人脸属性识别方法和装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108364029A (zh) * | 2018-03-19 | 2018-08-03 | 百度在线网络技术(北京)有限公司 | 用于生成模型的方法和装置 |
CN109241830B (zh) * | 2018-07-26 | 2021-09-17 | 合肥工业大学 | 基于光照生成对抗网络的课堂听课异常检测方法 |
CN109241830A (zh) * | 2018-07-26 | 2019-01-18 | 合肥工业大学 | 基于光照生成对抗网络的课堂听课异常检测方法 |
WO2020052170A1 (zh) * | 2018-09-11 | 2020-03-19 | 深圳云天励飞技术有限公司 | 一种目标对象识别方法、装置及存储介质 |
CN109325448A (zh) * | 2018-09-21 | 2019-02-12 | 广州广电卓识智能科技有限公司 | 人脸识别方法、装置和计算机设备 |
CN111274855A (zh) * | 2018-12-05 | 2020-06-12 | 北京猎户星空科技有限公司 | 图像处理方法、装置、机器学习模型训练方法及装置 |
CN111274855B (zh) * | 2018-12-05 | 2024-03-26 | 北京猎户星空科技有限公司 | 图像处理方法、装置、机器学习模型训练方法及装置 |
CN110070037A (zh) * | 2019-04-22 | 2019-07-30 | 深圳力维智联技术有限公司 | 人脸识别模型的平滑升级方法、装置和可读存储介质 |
CN110070037B (zh) * | 2019-04-22 | 2022-11-01 | 深圳力维智联技术有限公司 | 人脸识别模型的平滑升级方法、装置和可读存储介质 |
CN111985281A (zh) * | 2019-05-24 | 2020-11-24 | 内蒙古工业大学 | 图像生成模型的生成方法、装置及图像生成方法、装置 |
CN111985281B (zh) * | 2019-05-24 | 2022-12-09 | 内蒙古工业大学 | 图像生成模型的生成方法、装置及图像生成方法、装置 |
CN111401283A (zh) * | 2020-03-23 | 2020-07-10 | 北京达佳互联信息技术有限公司 | 面部识别方法及装置、电子设备及存储介质 |
CN111488810A (zh) * | 2020-03-31 | 2020-08-04 | 长沙千视通智能科技有限公司 | 人脸识别方法、装置、终端设备及计算机可读介质 |
Also Published As
Publication number | Publication date |
---|---|
CN108280413B (zh) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108133201B (zh) | 人脸属性识别方法和装置 | |
CN108280413A (zh) | 人脸识别方法和装置 | |
CN108154547B (zh) | 图像生成方法和装置 | |
CN108171206B (zh) | 信息生成方法和装置 | |
CN107491771A (zh) | 人脸检测方法和装置 | |
CN108898185A (zh) | 用于生成图像识别模型的方法和装置 | |
CN108171204B (zh) | 检测方法和装置 | |
CN108491809A (zh) | 用于生成近红外图像生成模型的方法和装置 | |
CN108416323A (zh) | 用于识别人脸的方法和装置 | |
CN107644209A (zh) | 人脸检测方法和装置 | |
CN110503703A (zh) | 用于生成图像的方法和装置 | |
CN108363995A (zh) | 用于生成数据的方法和装置 | |
CN108171212A (zh) | 用于检测目标的方法和装置 | |
CN108509892A (zh) | 用于生成近红外图像的方法和装置 | |
CN108830235A (zh) | 用于生成信息的方法和装置 | |
CN108492364A (zh) | 用于生成图像生成模型的方法和装置 | |
CN109344752A (zh) | 用于处理嘴部图像的方法和装置 | |
CN108388878A (zh) | 用于识别人脸的方法和装置 | |
CN108491823A (zh) | 用于生成人眼识别模型的方法和装置 | |
CN108197618A (zh) | 用于生成人脸检测模型的方法和装置 | |
CN108510454A (zh) | 用于生成深度图像的方法和装置 | |
CN108460366A (zh) | 身份认证方法和装置 | |
CN108960110A (zh) | 用于生成信息的方法和装置 | |
CN108364029A (zh) | 用于生成模型的方法和装置 | |
CN110033423A (zh) | 用于处理图像的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |