CN108277684A - 一种纳米纸、其制备方法及柔性电子器件 - Google Patents

一种纳米纸、其制备方法及柔性电子器件 Download PDF

Info

Publication number
CN108277684A
CN108277684A CN201810063040.9A CN201810063040A CN108277684A CN 108277684 A CN108277684 A CN 108277684A CN 201810063040 A CN201810063040 A CN 201810063040A CN 108277684 A CN108277684 A CN 108277684A
Authority
CN
China
Prior art keywords
cellulose
nano
nanometer paper
preparation
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810063040.9A
Other languages
English (en)
Inventor
李红变
刘恺然
季春燕
李新国
李文波
郭川
郭一川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
National Center for Nanosccience and Technology China
Original Assignee
BOE Technology Group Co Ltd
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, National Center for Nanosccience and Technology China filed Critical BOE Technology Group Co Ltd
Priority to CN201810063040.9A priority Critical patent/CN108277684A/zh
Publication of CN108277684A publication Critical patent/CN108277684A/zh
Priority to PCT/CN2018/110641 priority patent/WO2019144654A1/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/02Synthetic cellulose fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose

Abstract

本发明涉及纳米材料领域,特别涉及一种纳米纸、其制备方法及柔性电子器件。所述纳米纸,由表面吸附有多糖分子的纳米纤维素制成,所述纳米纤维素的直径小于100nm。其制备方法为:将纳米纤维素浸泡在含有多糖分子的溶液中,得到经过处理的纳米纤维素;利用所述经过处理的纳米纤维素制备形成纳米纸。所述纳米纸可应用在柔性电子器件中。本发明所述的纳米纸由表面吸附有多糖分子的纳米纤维素制成。多糖分子可以与纳米纤维素相互作用,在纳米纤维素表面物理吸附,使得纳米纤维素与水分子之间相互作用减弱,从而避免吸湿溶胀,因此形成良好的耐水性。

Description

一种纳米纸、其制备方法及柔性电子器件
技术领域
本发明涉及纳米材料领域,特别涉及一种纳米纸、其制备方法及柔性电子器件。
背景技术
随着社会的进步和发展,人类对健康的要求越来越高。人类健康指数的实时在体监测要求开发柔性、可折叠、可穿戴或可植入的电子传感器件。
目前,用于柔性电子器件的基底材料主要包括聚酰亚胺、聚醚酮或透明导电的聚酯等高分子薄膜。而高分子材料主要来源于化工行业,生产过程不环保,而且,大部分高分子不能有效降解,不能随意丢弃。此外,高分子的耐热性较差,在200℃时就会发生溶胀,使得器件的加工条件受到限制。
纤维素是地球上储量最丰富的天然高分子,据报道,每年由生物生产的纤维素高达1.5万亿吨。因此,由纤维素组成的纸张是一种成本更低、生物兼容性更好、且更为环保的柔性电子器件基底材料。自上世纪60年代美国西屋电子(Westhouse Electronic)发现纸上蒸镀无机场效应晶体管可以制备柔性电子器件以来,纸张已经作为一种重要的基底材料用于开发低成本、可折叠及可丢弃的柔性电子器件,并在生物传感、射频识别码等领域被广泛应用。此外,近年来,基于纸张的智能驱动、发光器件、能源存储器件也开始被广泛关注。然而,组成纸张的纤维素直径为几十微米,因此,纸张表面为粗糙多孔结构,造成电路加工困难。而且,纸张具有吸湿溶胀性,在生物环境中使用受到限制。因此,如何开发出一种具有更低表面粗糙度、耐水性更强的纸基结构,是纸基柔性电子器件制备及其在生物检测领域应用的关键问题。
发明内容
本发明要解决的技术问题是提供一种纳米纸及其制备方法,所述纳米纸耐水性能良好,在水中长时间浸泡性能不发生变化,为纳米纸基电子器件制备及其在生物检测中的应用提供了保障。
本发明公开了一种纳米纸,由表面吸附有多糖分子的纳米纤维素制成,所述纳米纤维素的直径小于100nm。
优选地,所述纳米纤维素的直径为10~50nm。
优选地,所述纳米纤维素中,至少含有部分羧基。
优选地,所述多糖分子为淀粉、纤维素或者甲壳素。
优选地,所述纳米纸的厚度为30~100μm,所述纳米纸的粗糙度小于10nm。
本发明公开了一种纳米纸的制备方法,包括以下步骤:
步骤(A):将纳米纤维素浸泡在含有多糖分子的溶液中,得到经过处理的纳米纤维素;
步骤(B):利用所述经过处理的纳米纤维素制备形成纳米纸。
优选地,所述步骤(A)中,所述纳米纤维素的制备方法为:
对纤维素进行氧化,然后经过均质处理,得到纳米纤维素。
优选地,所述氧化的方法为:
将纤维素加入氧化体系中进行氧化,所述氧化体系包括催化剂、和氧化剂;
所述催化剂包括2,2,6,6-四甲基哌啶-氮-氧化物,所述氧化剂包括次氯酸钠。
优选地,所述氧化体系还包括辅助催化剂,所述辅助催化剂为金属溴化物和金属碘化物中的一种或多种。
优选地,所述均质处理为利用均质机进行处理,均质压力为10000~30000psi。
优选地,所述步骤(A)中,所述含有多糖分子的溶液中,多糖分子的浓度为0.01~0.05wt%。
优选地,所述步骤(A)中,浸泡的温度为20~50℃,浸泡的时间为15~30小时。
优选地,所述步骤(A)中,经过浸泡,纳米纤维素溶解在含有多糖分子的溶液中,所述纳米纤维素的浓度为0.1~0.5wt%。
优选地,所述步骤(B)具体为:
将所述经过处理的纳米纤维素过滤,压干,得到纳米纸;或者
将所述经过处理的纳米纤维素平铺至支撑物上,经过干燥,剥离,得到纳米纸。
本发明还公开了一种柔性电子器件,包括上述技术方案所述的纳米纸;或者包括上述技术方案所述制备方法制备的纳米纸。
与现有技术相比,本发明所述的纳米纸由表面吸附有多糖分子的纳米纤维素制成,所述纳米纤维素的直径小于100nm。多糖分子不易溶于水,可以与纳米纤维素相互作用,在纳米纤维素表面物理吸附,使得纳米纤维素与水分子之间相互作用减弱,从而避免吸湿溶胀,因此形成良好的耐水性。
附图说明
图1是实施例1提供的纳米纸的光学图片;
图2是实施例1提供的纳米纸的原子力扫描电镜图片;
图3是实施例1提供的纳米纸的透过率曲线;
图4是实施例1提供的纳米纸在水中浸泡24小时的光学图片;
图5是比较例1中提供的纳米纸的光学图片;
图6是比较例1中提供的纳米纸在水中浸泡20分钟后的光学图片。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明的限制。
本发明的实施例提供了一种纳米纸,由表面吸附有多糖分子的纳米纤维素制成,所述纳米纤维素的直径小于100nm。
纳米纤维素是指直径为小于100nm的纤维素,因为经过氧化处理,纤维素表面含有大量羟基、羧基等官能团,可以与多糖分子发生相互作用,从而吸附多糖分子。
按照本发明,由于多糖分子可以与纳米纤维素相互作用,在纳米纤维素表面物理吸附,使得纳米纤维素与水分子之间相互作用减弱,从而避免吸湿溶胀,因此,由表面吸附有多糖分子的纳米纤维素制成的纳米纸具备良好的耐水性。
本发明所述纳米纤维素的直径优选为10~50nm,更优选为20~30nm。
所述多糖分子为不易溶于水的多糖分子,考虑到易得性,以及在水中的分散性,优选为淀粉、纤维素或者甲壳素,更优选为淀粉或者甲壳素。
所述纳米纸的厚度优选为30~100μm,所述耐水纳米纸的粗糙度优选小于10nm。纳米纸的粗糙度是根据原子力扫描电镜根据区域内的峰谷差值,自动计算出来的结果,用于表征材料的表面平整度。
经过试验测试,本发明的纳米纸的光透过率为85~97%。
经过在水中浸泡24小时,本发明的纳米纸性质不发生变化。
本发明还公开了一种纳米纸的制备方法,包括以下步骤:
步骤(A):将纳米纤维素浸泡在含有多糖分子的溶液中,得到经过处理的纳米纤维素;
步骤(B):利用所述经过处理的纳米纤维素制备形成纳米纸。
按照本发明,以下具体说明制备方法:
步骤(A):将纳米纤维素浸泡在含有多糖分子的溶液中,得到经过处理的纳米纤维素;
所述纳米纤维素的纤维长度短并且表面具有羟基、羧基等活性基团,容易吸附多糖分子。所述纳米纤维素的直径优选为10~50nm,更优选为20~30nm。
所述纳米纤维素的制备方法可以为酶解、酸解或者氧化(比如硝酸盐氧化,NO2氧化、NaClO体系氧化)处理后,经过均质处理,得到纳米纤维素。
所述纳米纤维素的制备方法更优选为:
对纤维素进行氧化,然后经过均质处理,得到纳米纤维素。
将纤维素进行氧化是降低纤维素之间的氢键相互作用,使得在均质过程中节约能耗。
所述氧化的方法优选为:
将纤维素加入氧化体系中进行氧化,所述氧化体系包括催化剂、和氧化剂;所述催化剂包括2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO),所述氧化剂包括次氯酸钠。
优选地,所述氧化体系还包括辅助催化剂,所述辅助催化剂为金属溴化物和金属碘化物中的一种或多种。
所述2,2,6,6-四甲基哌啶-氮-氧化物的添加量优选为纤维素质量的0.5%~5%;所述辅助催化剂添加量优选为纤维素质量的2%~20%;所述氧化剂的添加量优选为纤维素质量的2%~20%;
所述均质处理可以利用均质机或者超声波等进行均质处理。
优选地,所述均质处理为利用均质机进行处理,均质压力为10000~30000psi。
经过上述方法制备的纳米纤维素表面含有大量羟基、羧基等官能团,可以与多糖分子发生相互作用。
所述多糖分子优选为淀粉、纤维素或者甲壳素。所述含有多糖分子的溶液中,所述多糖分子的浓度优选为0.01~0.05wt%。
多糖分子可以与纳米纤维素相互作用,在纳米纤维素表面物理吸附,使得纳米纤维素与水分子之间相互作用减弱。浸泡是最简单也是最有效的方式,提高温度可以提高多糖分子在纳米纤维素表面的吸附速度。
优选地,浸泡的温度为20~50℃,浸泡的时间为15~30小时。
经过浸泡,纳米纤维素溶解在含有多糖分子的溶液中,所述纳米纤维素的浓度优选为0.1~0.5wt%。
步骤(B):利用所述经过处理的纳米纤维素制备形成纳米纸。
优选地,所述步骤(B)具体为:
将所述经过处理的纳米纤维素过滤,压干,得到纳米纸;优选地,所述经过处理的纳米纤维素在40~80℃条件下压干;
或者
将所述经过处理的纳米纤维素平铺至支撑物上,经过干燥,剥离,得到纳米纸。
支撑物可以是表面平整的培养皿。
本发明的纳米纸在水中具有良好的稳定性,为纳米纸基电子器件在生物检测方面的应用提供了保障。同时本发明用于纳米纤维素耐水处理的方法简便、所使用多糖分子安全易得,成本低,方便大规模制备纳米纸。限制纳米纸基电子器件用于生物检测的关键就是纳米纸的耐水性,这也是目前纳米纸电子器件尚没有用于生物检测的主要原因。目前增强纳米纸耐水性的方法包括利用高价金属离子交联及化学试剂(戊二醛等),但是这些会在纳米纸中引入金属离子,或者化学试剂毒性较大。本申请使用的多糖分子与纤维素成分相似,安全环保,比其他方法更具有优势。
本发明还公开了一种柔性电子器件,包括上述技术方案所述的纳米纸;或者包括采用上述技术方案所述制备方法制备的纳米纸。
为了进一步理解本发明,下面结合实施例对本发明提供的纳米纸及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
(1)参照文献Zhu et al,Nanoscale,2013,5,3787对纤维素进行化学氧化。取将5g漂白纸浆分散于250mL Na2CO3/NaHCO3缓冲溶液(pH=10)中,加入2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)78.1mg和NaBr 514.4mg,缓慢加入12%NaClO溶液3.1mL(浓度20mM)并机械搅拌4h,反应过程中用pH计测量pH值并用1M NaOH调控pH值保持10。
(2)利用均质机在10000psi压力下将氧化后的纤维素进行均质,制备纳米纤维素分散液。
(3)将纳米纤维素分散液稀释至0.2wt%,并加入甲壳素,使甲壳素浓度为0.05wt%,继续于50℃搅拌20h。
(4)将15mL甲壳素处理过的纳米纤维素分散液过滤,在60℃压干得到30μm厚度的纳米纸。
本实施例得到的纳米纸如图1所示。经原子力扫描电镜(Veeco,multimode)表征,结果如图2所示,该纳米纸由20-30nm的纳米纤维素制成,经计算,该纳米纸表面粗糙度为5.5nm。经紫外-可见/近红外吸收光谱仪(PerkinElmer,Lambda 950)表征,结果如图3所示,该纳米纸的光透过率为96%。将本实施例得到的纳米纸在水中浸泡24h,如图4所示,纳米纸在水中可以稳定存在,尺寸和形貌均无明显变化。
实施例2
(1)参照文献Zhu et al,Nanoscale,2013,5,3787对纤维素进行化学氧化。取将5g漂白牛皮纸浆分散于250mL Na2CO3/NaHCO3缓冲溶液(pH=10)中,加入2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)78.1mg和NaBr 514.4mg,缓慢加入12%NaClO溶液1.5mL(浓度10mM)并机械搅拌4h,反应过程中用pH计测量pH值并用1M NaOH调控pH值保持10。
(2)利用均质机在30000psi压力下将氧化后的纤维素进行均质,制备纳米纤维素分散液。
(3)将纳米纤维素分散液稀释至0.2wt%,并加入淀粉,使淀粉浓度为0.05wt%,继续于30℃搅拌20h,降低纳米纤维素亲水性。
(4)将30mL淀粉处理过的纳米纤维素分散液浇筑在表面平整的培养皿内,于室温干燥,得到50μm厚度的纳米纸。
经原子力扫描电镜(Veeco,multimode)表征,该纳米纸由10-20nm的纳米纤维素制成,经计算,该纳米纸表面粗糙度为2.0nm。经紫外-可见/近红外吸收光谱仪(PerkinElmer,Lambda 950)表征,该纳米纸的光透过率为92%。将本实施例得到的纳米纸在水中浸泡24h,纳米纸尺寸和形貌均无明显变化。
实施例3
(1)参照文献Zhu et al,Nanoscale,2013,5,3787对纤维素进行化学氧化。取将5g漂白牛皮纸浆分散于250mL Na2CO3/NaHCO3缓冲溶液(pH=10)中,加入2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)39mg和NaBr 260mg,缓慢加入12%NaClO溶液3.1mL(浓度20mM)并机械搅拌4h,反应过程中用pH计测量pH值并用1M NaOH调控pH值保持10。
(2)利用均质机在30000psi压力下将氧化后的纤维素进行均质,制备纳米纤维素分散液。
(3)将纳米纤维素分散液稀释至0.2wt%,并加入纤维素,使纤维素浓度为0.01wt%,继续室温搅拌20h,降低纳米纤维素亲水性。
(4)将60mL淀粉处理过的纳米纤维素分散液过滤,于80℃压干,得到100μm厚度的纳米纸。
经原子力扫描电镜(Veeco,multimode)表征,该纳米纸由30-50nm的纳米纤维素制成,经计算,该纳米纸表面粗糙度为6nm。经紫外-可见/近红外吸收光谱仪(Perkin Elmer,Lambda 950)表征,该纳米纸的光透过率为85%。将本实施例得到的纳米纸在水中浸泡24h,纳米纸尺寸和形貌均无明显变化。
比较例1
(1)参照文献Zhu et al,Nanoscale,2013,5,3787对纤维素进行化学氧化。取将5g漂白牛皮纸浆分散于250mL Na2CO3/NaHCO3缓冲溶液(pH=10)中,加入2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)78.1mg和NaBr 514.4mg,缓慢加入12%NaClO溶液3.1mL(浓度20mM)并机械搅拌4h,反应过程中用pH计测量pH值并用1M NaOH调控pH值保持10。
(2)利用均质机在10000psi压力下将氧化后的纤维素进行均质,制备纳米纤维素分散液。
(3)将15mL纳米纤维素分散液过滤,在60℃压干得到30μm厚度的纳米纸。
本实施例得到的纳米纸如图5所示,将该纳米纸置于水中20分钟,如图6所示,纳米纸由30μm膨胀为2mm,而且力学性能变得极差,难以操作。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

1.一种纳米纸,其特征在于,由表面吸附有多糖分子的纳米纤维素制成,所述纳米纤维素的直径小于100nm。
2.根据权利要求1所述的纳米纸,其特征在于,所述纳米纤维素的直径为10~50nm。
3.根据权利要求1所述的纳米纸,其特征在于,所述纳米纤维素中,至少含有部分羧基。
4.根据权利要求1所述的纳米纸,其特征在于,所述多糖分子为淀粉、纤维素或者甲壳素。
5.根据权利要求1所述的纳米纸,其特征在于,所述纳米纸的厚度为30~100μm,所述纳米纸的粗糙度小于10nm。
6.一种纳米纸的制备方法,其特征在于,包括以下步骤:
步骤(A):将纳米纤维素浸泡在含有多糖分子的溶液中,得到经过处理的纳米纤维素;
步骤(B):利用所述经过处理的纳米纤维素制备形成纳米纸。
7.根据权利要求6所述的制备方法,其特征在于,所述步骤(A)中,所述纳米纤维素的制备方法为:
对纤维素进行氧化,然后经过均质处理,得到纳米纤维素。
8.根据权利要求7所述的制备方法,其特征在于,所述氧化的方法为:
将纤维素加入氧化体系中进行氧化,所述氧化体系包括催化剂、和氧化剂;
所述催化剂包括2,2,6,6-四甲基哌啶-氮-氧化物,所述氧化剂包括次氯酸钠。
9.根据权利要求8所述的制备方法,其特征在于,所述氧化体系还包括辅助催化剂,所述辅助催化剂为金属溴化物和金属碘化物中的一种或多种。
10.根据权利要求7所述的制备方法,其特征在于,所述均质处理为利用均质机进行处理,均质压力为10000~30000psi。
11.根据权利要求6所述的制备方法,其特征在于,所述步骤(A)中,所述含有多糖分子的溶液中,多糖分子的浓度为0.01~0.05wt%。
12.根据权利要求6所述的制备方法,其特征在于,所述步骤(A)中,浸泡的温度为20~50℃,浸泡的时间为15~30小时。
13.根据权利要求6所述的制备方法,其特征在于,所述步骤(A)中,经过浸泡,纳米纤维素溶解在含有多糖分子的溶液中,所述纳米纤维素的浓度为0.1~0.5wt%。
14.根据权利要求6所述的制备方法,其特征在于,所述步骤(B)具体为:
将所述经过处理的纳米纤维素过滤,压干,得到纳米纸;或者
将所述经过处理的纳米纤维素平铺至支撑物上,经过干燥,剥离,得到纳米纸。
15.一种柔性电子器件,其特征在于,包括如权利要求1~6任意一项所述的纳米纸;或者包括采用权利要求7~14任意一项所述制备方法制备的纳米纸。
CN201810063040.9A 2018-01-23 2018-01-23 一种纳米纸、其制备方法及柔性电子器件 Pending CN108277684A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810063040.9A CN108277684A (zh) 2018-01-23 2018-01-23 一种纳米纸、其制备方法及柔性电子器件
PCT/CN2018/110641 WO2019144654A1 (zh) 2018-01-23 2018-10-17 纳米纸、纳米纸的制备方法及柔性电子器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810063040.9A CN108277684A (zh) 2018-01-23 2018-01-23 一种纳米纸、其制备方法及柔性电子器件

Publications (1)

Publication Number Publication Date
CN108277684A true CN108277684A (zh) 2018-07-13

Family

ID=62804536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810063040.9A Pending CN108277684A (zh) 2018-01-23 2018-01-23 一种纳米纸、其制备方法及柔性电子器件

Country Status (2)

Country Link
CN (1) CN108277684A (zh)
WO (1) WO2019144654A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144654A1 (zh) * 2018-01-23 2019-08-01 京东方科技集团股份有限公司 纳米纸、纳米纸的制备方法及柔性电子器件
CN110273322A (zh) * 2019-06-20 2019-09-24 京东方科技集团股份有限公司 纳米纸及制备方法、进行图形处理的方法以及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317542A (zh) * 2009-02-13 2012-01-11 芬欧汇川集团 制造改性纤维素的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267222B1 (en) * 2008-03-31 2018-05-16 Nippon Paper Industries Co., Ltd. Additive for papermaking and paper containing the same
CN108277684A (zh) * 2018-01-23 2018-07-13 京东方科技集团股份有限公司 一种纳米纸、其制备方法及柔性电子器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317542A (zh) * 2009-02-13 2012-01-11 芬欧汇川集团 制造改性纤维素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李媛媛: "纳米纤维素及其功能材料的制备与应用", 《中国博士学位论文全文数据库 工程科技I辑》 *
李秀雯等: "TEMPO氧化法制备五节芒纤维素纳米纤丝及其悬浮液稳定性和流变行为表征", 《浙江农林大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144654A1 (zh) * 2018-01-23 2019-08-01 京东方科技集团股份有限公司 纳米纸、纳米纸的制备方法及柔性电子器件
CN110273322A (zh) * 2019-06-20 2019-09-24 京东方科技集团股份有限公司 纳米纸及制备方法、进行图形处理的方法以及电子设备
CN110273322B (zh) * 2019-06-20 2022-04-26 京东方科技集团股份有限公司 纳米纸及制备方法、进行图形处理的方法以及电子设备
US11630531B2 (en) 2019-06-20 2023-04-18 Beijing Boe Technology Development Co., Ltd. Nano paper and preparation method, method for image processing and electronic device

Also Published As

Publication number Publication date
WO2019144654A1 (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
Cho et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors
Abou-Zeid et al. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution
Fan et al. Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments
Lokanathan et al. Cellulose nanocrystal-mediated synthesis of silver nanoparticles: Role of sulfate groups in nucleation phenomena
Yang et al. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers
Isogai et al. TEMPO-oxidized cellulose nanofibers
Ding et al. Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation
Hakalahti et al. Direct interfacial modification of nanocellulose films for thermoresponsive membrane templates
Fall et al. Cellulosic nanofibrils from eucalyptus, acacia and pine fibers
CN106345426B (zh) 一种从天然落叶制备高效吸附重金属离子的纳米纤维素的方法
Rodionova et al. TEMPO-mediated oxidation of Norway spruce and eucalyptus pulps: preparation and characterization of nanofibers and nanofiber dispersions
CN105646923B (zh) 一种负载纳米银粒子的纳米纤维素抗菌薄膜的制备方法
Zhang et al. High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood
Mendoza et al. Effects of fibre dimension and charge density on nanocellulose gels
CN110551301A (zh) 一种耐水纳米纤维素薄膜及其制备方法
CN108277684A (zh) 一种纳米纸、其制备方法及柔性电子器件
Gabrielli et al. Cellulose-based functional materials for sensing
Guo et al. Contribution of residual proteins to the thermomechanical performance of cellulosic nanofibrils isolated from green macroalgae
Sheikhi et al. Colloidal starch and cellulose nanocrystals unite to improve the mechanical properties of paper: from enhanced coatings to reinforced nanocomposites
Futalan et al. Modification strategies of kapok fiber composites and its application in the adsorption of heavy metal ions and dyes from aqueous solutions: A systematic review
Mautner et al. Better together: synergy in nanocellulose blends
Si et al. Nanocellulose-based adsorbents for heavy metal ion
Meng et al. Controllable synthesis uniform spherical bacterial cellulose and their potential applications
Ehman et al. From pine sawdust to cellulose nanofibers
Wójciak Washing, spraying and brushing. A comparison of paper deacidification by magnesium hydroxide nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180713