CN108268749A - A kind of method for predicting pharmaceuticals toxic effect pattern - Google Patents
A kind of method for predicting pharmaceuticals toxic effect pattern Download PDFInfo
- Publication number
- CN108268749A CN108268749A CN201810047734.3A CN201810047734A CN108268749A CN 108268749 A CN108268749 A CN 108268749A CN 201810047734 A CN201810047734 A CN 201810047734A CN 108268749 A CN108268749 A CN 108268749A
- Authority
- CN
- China
- Prior art keywords
- act
- drug
- concentration data
- pharmaceuticals
- moa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003814 drug Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 19
- 231100000331 toxic Toxicity 0.000 title abstract description 8
- 230000002588 toxic effect Effects 0.000 title abstract description 8
- 229940079593 drug Drugs 0.000 claims abstract description 36
- 150000001875 compounds Chemical class 0.000 claims description 28
- 230000009471 action Effects 0.000 claims description 24
- 238000011156 evaluation Methods 0.000 claims description 9
- 230000003444 anaesthetic effect Effects 0.000 claims description 8
- 231100000403 acute toxicity Toxicity 0.000 claims description 7
- 230000007059 acute toxicity Effects 0.000 claims description 7
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 claims description 6
- 206010070863 Toxicity to various agents Diseases 0.000 claims description 6
- 231100000160 chronic toxicity Toxicity 0.000 claims description 6
- 230000007665 chronic toxicity Effects 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 5
- 229940126680 traditional chinese medicines Drugs 0.000 claims description 4
- 230000002147 killing effect Effects 0.000 claims description 2
- 231100000252 nontoxic Toxicity 0.000 claims description 2
- 230000003000 nontoxic effect Effects 0.000 claims description 2
- -1 compound compound Chemical class 0.000 claims 1
- 230000001988 toxicity Effects 0.000 abstract description 11
- 231100000419 toxicity Toxicity 0.000 abstract description 11
- 230000002110 toxicologic effect Effects 0.000 abstract description 8
- 231100000759 toxicological effect Toxicity 0.000 abstract description 6
- 238000004617 QSAR study Methods 0.000 abstract description 5
- 238000011161 development Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 241001269238 Data Species 0.000 abstract 1
- 238000006467 substitution reaction Methods 0.000 abstract 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 10
- 229960001138 acetylsalicylic acid Drugs 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229960000516 bezafibrate Drugs 0.000 description 8
- IIBYAHWJQTYFKB-UHFFFAOYSA-N bezafibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1CCNC(=O)C1=CC=C(Cl)C=C1 IIBYAHWJQTYFKB-UHFFFAOYSA-N 0.000 description 8
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 7
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 7
- 229960002568 ethinylestradiol Drugs 0.000 description 7
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 241000251468 Actinopterygii Species 0.000 description 5
- 241000195493 Cryptophyta Species 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 241000238571 Cladocera Species 0.000 description 4
- 241000238578 Daphnia Species 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 238000009509 drug development Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 231100000027 toxicology Toxicity 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 101710095342 Apolipoprotein B Proteins 0.000 description 2
- 102100040202 Apolipoprotein B-100 Human genes 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 206010062767 Hypophysitis Diseases 0.000 description 2
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 238000005842 biochemical reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 125000006575 electron-withdrawing group Chemical group 0.000 description 2
- 239000003163 gonadal steroid hormone Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000002547 new drug Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000036407 pain Effects 0.000 description 2
- 210000003635 pituitary gland Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 231100000820 toxicity test Toxicity 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 102000005666 Apolipoprotein A-I Human genes 0.000 description 1
- 108010059886 Apolipoprotein A-I Proteins 0.000 description 1
- 102000009081 Apolipoprotein A-II Human genes 0.000 description 1
- 108010087614 Apolipoprotein A-II Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 108010010234 HDL Lipoproteins Proteins 0.000 description 1
- 102000015779 HDL Lipoproteins Human genes 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 231100000215 acute (single dose) toxicity testing Toxicity 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000011047 acute toxicity test Methods 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000003741 agents affecting lipid metabolism Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000003509 anti-fertility effect Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 231100000132 chronic toxicity testing Toxicity 0.000 description 1
- 229960001214 clofibrate Drugs 0.000 description 1
- KNHUKKLJHYUCFP-UHFFFAOYSA-N clofibrate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 KNHUKKLJHYUCFP-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 229940094892 gonadotropins Drugs 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000048 toxicity data Toxicity 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
技术领域technical field
本发明属于药品毒性和毒理分析领域,具体涉及药品作用模式甄别的预测的处理方法。The invention belongs to the field of drug toxicity and toxicology analysis, and in particular relates to a processing method for predicting drug action mode screening.
背景技术Background technique
随着复合污染发生的日益普遍化,复合污染机制则变得更加复杂。据研究,医药品成分主要以ppt~ppb浓度范围普遍存在于地表水中,而医药品中对周围环境及生物起作用的成分是医药品中的生物活性物质(APIs),作为医药品中的生物活性化合物,由于其使用率高和环境排放量大等因素对环境存在严重的潜在影响,而这种医药品潜在影响与农业化学品对环境的危害是能够相提并论的,这些生物活性物质所产生效应已经引起了公众和科学界的关注。与此同时,鉴于现阶段通过公共渠道可获得的毒理学数据很少,常见医药品毒性评价是新药临床前安全性评价的重要内容,直接关乎人类的健康和药品的命运;对于药品毒性在环境中的评价和研究已成为世界各国药政管理部门及医药品生产商瞩目的焦点。传统的用于医药品毒性评价的常规毒理学实验方法因其实验周期长、耗资多、灵敏度低、需消耗大量实验动物等缺陷而难以满足现代药物开发中进行高通量筛选的需求,亟待发展新的毒性评价方法。研究如何在药物开发早期及时、准确、快速评价药品的毒性,用来缩短药物慢性毒性试验周期、降低开发成本、提高新药研发命中率及保护人类健康都具有至关重要的意义。With the increasingly common occurrence of compound pollution, the mechanism of compound pollution becomes more complicated. According to the research, the ingredients of pharmaceuticals mainly exist in surface water in the concentration range of ppt ~ ppb, and the ingredients in pharmaceuticals that have an effect on the surrounding environment and organisms are biologically active substances (APIs) in pharmaceuticals. Active compounds have serious potential impact on the environment due to factors such as high usage rate and large environmental discharge, and the potential impact of this kind of pharmaceuticals can be compared with the harm of agricultural chemicals to the environment. The effects of these biologically active substances has attracted public and scientific attention. At the same time, given the limited toxicological data available through public channels at this stage, the toxicity evaluation of common drugs is an important part of the preclinical safety evaluation of new drugs, which is directly related to human health and the fate of drugs; The evaluation and research in it have become the focus of attention of drug administration departments and pharmaceutical manufacturers in all countries in the world. Traditional toxicological experimental methods for drug toxicity evaluation are difficult to meet the needs of high-throughput screening in modern drug development due to their shortcomings such as long experimental cycle, high cost, low sensitivity, and the need to consume a large number of experimental animals, and urgently need to be developed. A new toxicity assessment method. It is of vital significance to study how to evaluate the toxicity of drugs in a timely, accurate and rapid manner in the early stage of drug development to shorten the cycle of drug chronic toxicity tests, reduce development costs, improve the hit rate of new drug development, and protect human health.
常见医药品中的毒性物质的毒理学效应机理,比环境行为的机理要复杂得多,环境中污染物质间不仅发生各种交互作用,表现为拮抗、协同、加和和独立等不同作用类型,还与生物组分之间发生交互作用,导致吸收、富集、合成、固定、扩散、回避、解毒等不同作用机制;这是由于毒理学效应受理化性质、环境行为和生物属性(如种属、性别、年龄、个体、细胞、靶器官等)等多方面的影响。因此,认识毒性作用模式MOA(mode ofaction),是建立毒理学效应QSAR(quantitative structure-activity relationship)模型的基础和前提。The toxicological effect mechanism of toxic substances in common pharmaceuticals is much more complicated than the mechanism of environmental behavior. Not only do various interactions occur between pollutants in the environment, but they also manifest as different types of effects such as antagonism, synergy, addition, and independence. It also interacts with biological components, leading to different mechanisms of action such as absorption, enrichment, synthesis, fixation, diffusion, avoidance, detoxification; this is due to toxicological effects, environmental behavior, and biological attributes (such as species , gender, age, individual, cells, target organs, etc.) and many other influences. Therefore, understanding the toxic action mode MOA (mode of action) is the basis and premise of establishing a toxicological effect QSAR (quantitative structure-activity relationship) model.
医药品毒性MOA通常指不良反应发生时引起生物体一系列生理和行为上的作用模式,更关注于医药品中活性物质APIs作用下生物体的表观特征。其具体类型的确定通常要综合多方面的信息,如联合毒性研究、急性毒性综合症、剂量-反应关系、毒理学文献数据等。Drug toxicity MOA usually refers to a series of physiological and behavioral modes of action of organisms caused by adverse reactions, and pays more attention to the apparent characteristics of organisms under the action of active substances APIs in pharmaceuticals. The determination of its specific type usually requires comprehensive information from various aspects, such as joint toxicity studies, acute toxicity syndrome, dose-response relationship, toxicological literature data, etc.
随着计算机与数学在毒理学及药物发现领域的发展,一些学者会通过药品的分子式、结构式、分子结构特征及主要活性成分、性质及药物与有机体之间的作用靶位来判断药物的作用模式,进而建立QSAR模型对药物毒性进行预测,然而通过分子结构特征去判断药物的MOA的过程往往存在诸多不便,且预测结果的准确度仍需要进一步的提升。With the development of computers and mathematics in the fields of toxicology and drug discovery, some scholars will judge the drug's mode of action based on the drug's molecular formula, structural formula, molecular structural features, main active ingredients, properties, and the interaction target between the drug and the organism. , and then establish a QSAR model to predict drug toxicity. However, the process of judging the MOA of a drug through molecular structural features often has many inconveniences, and the accuracy of the prediction results still needs to be further improved.
发明内容Contents of the invention
为弥补现有技术的不足,本发明提供了一种可快速甄别医药品MOA的方法且评估结果准确性高,对于缩短试验周期,降低药物开发成本具有重要意义。In order to make up for the deficiencies of the prior art, the present invention provides a method for quickly identifying the MOA of pharmaceuticals with high accuracy of evaluation results, which is of great significance for shortening the test period and reducing the cost of drug development.
为实现上述目的,本发明采用如下技术方案:一种预测医药品毒性作用模式的方法,包括以下步骤:In order to achieve the above object, the present invention adopts the following technical scheme: a method for predicting the mode of action of drug toxicity, comprising the following steps:
S1.确定医药品急性毒性LC50浓度数据;S1. Determine the LC 50 concentration data of the acute toxicity of the drug;
S2.确定医药品慢性毒性NOCE浓度数据;S2. Determine the NOCE concentration data of chronic toxicity of pharmaceuticals;
S3.将LC50浓度数据和NOCE浓度数据代入式Ⅰ,得到R-ACT值;S3. Substitute the LC 50 concentration data and NOCE concentration data into formula Ⅰ to obtain the R-ACT value;
S4.取R-ACT值以10为底的对数值logR-ACT,将logR-ACT代入评估范围;S4. Take the logarithmic value logR-ACT of the R-ACT value based on 10, and substitute logR-ACT into the evaluation range;
S5.当logR-ACT≤1.5,医药品MOA为麻醉型化合物;当1.5﹤log R-ACT﹤3,医药品MOA为过渡型化合物;当log R-ACT≥3,医药品MOA为反应型化合物。S5. When logR-ACT≤1.5, the drug MOA is an anesthetic compound; when 1.5﹤log R-ACT﹤3, the drug MOA is a transition compound; when log R-ACT≥3, the drug MOA is a reactive compound .
进一步的,所述步骤S1中医药品急性毒性LC50浓度数据通过急性毒性实验或医药品信息库中得到。Further, in the step S1, the acute toxicity LC 50 concentration data of traditional Chinese medicines are obtained through acute toxicity experiments or medicine information database.
更进一步的,所述的LC50浓度数据为能够杀死50%生物的药剂浓度数据。Furthermore, the LC 50 concentration data is the concentration data of the agent capable of killing 50% of organisms.
进一步的,所述步骤S2中医药品慢性毒性NOCE浓度数据通过慢性毒性实验或医药品信息库中得到。Further, in the step S2, the NOCE concentration data of chronic toxicity of traditional Chinese medicines are obtained through chronic toxicity experiments or the medicine information database.
更进一步的,所述NOCE浓度数据为化合物对生物体的最大无毒作用剂量浓度数据。Furthermore, the NOCE concentration data is the maximum non-toxic dose concentration data of the compound on organisms.
本发明将通过药物与细胞膜之间的某种疏水性非共价作用,可逆性的改变了细胞膜的结构和功能,进而对有机体产生毒性作用或者药物与生物大分子间的相互作用可能通过物理变化而不是化学反应但在整个毒性作用过程中没有发生生物化学反应的作用模式定义为麻醉型毒性作用,从理论上讲,医药品都有进入到有机体的能力,所以医药品在一定程度上都至少存在引导麻醉型毒性的能力。The present invention will reversibly change the structure and function of the cell membrane through a certain hydrophobic non-covalent interaction between the drug and the cell membrane, and then produce toxic effects on the organism or the interaction between the drug and the biomacromolecule may be through physical changes Rather than a chemical reaction but no biochemical reaction occurs during the entire toxicity process, the mode of action is defined as narcotic toxicity. In theory, medicines have the ability to enter the organism, so medicines are at least to a certain extent The ability to channel narcotic-type toxicity exists.
将化合物本身或者其代谢产物,能与普遍存在于生物大分子的某些结构发生生物化学反应的作用模式,即吸电子基团(亲电基团)与生物靶位(亲核基团)形成共价键,尤其是生物大分子,例如:多肽、蛋白质和核酸中的亲核基团(氨基(-NH2),羟基(-OH)和巯基(-SH))这种作用模式定义为反应型作用。The mode of action in which the compound itself or its metabolites can biochemically react with certain structures commonly found in biological macromolecules, that is, the formation of electron-withdrawing groups (electrophilic groups) and biological targets (nucleophilic groups) Covalent bonds, especially in biomacromolecules, such as: nucleophilic groups (amino (-NH 2 ), hydroxyl (-OH) and sulfhydryl (-SH)) in polypeptides, proteins and nucleic acids. This mode of action is defined as a reaction type effect.
除以上两种作用模式外,另一种特殊模式即:药品与生物在整个毒性作用过程中由于毒理学效应受理化性质、环境行为和生物属性(如种属、性别、年龄、个体、细胞、靶器官等)等多方面的影响在整个毒性作用过程中发生了生物化学反应,有些药品能够与生物体形成氢键,但其吸电子基团(亲电基团)与生物靶位(亲核基团)却不能形成共价键的作用模式,本发明将这种作用模式称为麻醉-反应型过渡作用(简称过渡型)。In addition to the above two modes of action, another special mode is: during the entire process of toxic interaction between drugs and organisms, due to toxicological effects, they accept chemical properties, environmental behaviors and biological attributes (such as species, gender, age, individual, cell, Target organs, etc.) and many other influences have biochemical reactions in the entire process of toxicity. Some drugs can form hydrogen bonds with organisms, but their electron-withdrawing groups (electrophilic groups) and biological targets (nucleophilic groups) group) but cannot form a covalent bond mode of action, the present invention refers to this mode of action as anesthesia-response transition (abbreviated as transition).
与现有技术相比,本发明提供的方法可以快速预测甄别医药品MOA,评估结果准确性较高,可在一定程度上缩短试验周期,降低药物的开发成本,解除毒性预测模型毒性作用模式影响的局限性,提高联合毒性预测模型的稳健型,对建立毒理学效应QSAR模型具有重要意义。Compared with the prior art, the method provided by the present invention can quickly predict and screen the MOA of pharmaceuticals, and the accuracy of the evaluation result is high, which can shorten the test cycle to a certain extent, reduce the development cost of the drug, and remove the influence of the toxic action mode of the toxicity prediction model Improving the robustness of the joint toxicity prediction model is of great significance for the establishment of a toxicological effect QSAR model.
附图说明Description of drawings
图1为不同医药品MOA及R-ACT的对照关系。Figure 1 shows the comparative relationship between MOA and R-ACT of different pharmaceuticals.
具体实施方式Detailed ways
下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从化学公司购买。The present invention is described in detail below through specific examples, but the protection scope of the present invention is not limited. Unless otherwise specified, the experimental methods used in the present invention are conventional methods, and the experimental equipment, materials, reagents, etc. used can be purchased from chemical companies.
实施例1Example 1
以33种已知医药品为例,根据急性毒性实验或医药品信息库得到其对应的急、慢性数据,根据公式计算得出药品R-ACT及其logR-ACT,根据Log R-ACT数值将医药品的MOA进行分类,当log R-ACT≤1.5时,医药品的MOA为麻醉型化合物,当1.5<log R-ACT<3时,医药品的MOA为过渡型化合物,当log R-ACT≥3时,医药品的MOA为反应型化合物。详见表1和图1。Taking 33 known medicines as an example, the corresponding acute and chronic data are obtained according to the acute toxicity test or the medicine information database, according to the formula Calculate the drug R-ACT and its logR-ACT, and classify the MOA of the drug according to the Log R-ACT value. When log R-ACT≤1.5, the MOA of the drug is an anesthetic compound. When 1.5<log R -When ACT<3, the MOA of the drug is a transition compound, and when log R-ACT≥3, the MOA of the drug is a reactive compound. See Table 1 and Figure 1 for details.
表1医药品R-ACT及其MOATable 1 Pharmaceutical R-ACT and its MOA
实施例2Example 2
采用实施例1的方法针对同种医药品在不同生物中的R-ACT与MOA进行了评估。评估结果如表2所示。The method of Example 1 was used to evaluate the R-ACT and MOA of the same drug in different organisms. The evaluation results are shown in Table 2.
表2同种医药品在不同生物中的R-ACT及MOATable 2 R-ACT and MOA of the same drug in different organisms
注:▲-麻醉型化合物■-反应型化合物●-过渡型化合物Note: ▲-anesthetic compound ■-reactive compound ●-transitional compound
由本实施例可知,同一药品针对不同的生物体均表现出相同的MOA,本发明提供的甄别方法准确率高。It can be seen from this embodiment that the same drug exhibits the same MOA for different organisms, and the screening method provided by the present invention has a high accuracy rate.
应用例1Application example 1
阿司匹林(Aspirin,乙酰水杨酸)该品通过血管扩张短期内可以起到缓解头痛的效果,该药对钝痛的作用优于对锐痛的作用。通过其结构式及药理作用可知其MOA为麻醉型,通过阿司匹林对水蚤、藻类和鱼的毒性试验得到阿司匹林对水蚤的LC50=88mg/L,NOEC=61mg/L将这两个数据代入公式通过计算得出阿司匹林对水蚤的R-ACT=1.4mg/L,log R-ACT=0.146128036其作用模式为麻醉型化合物;与此同时,阿司匹林对藻类LC50=106.7mg/L,NOEC=61mg/L,R-ACT=1.749180328mg/L,log R-ACT=0.242834584其作用模式为麻醉型化合物;阿司匹林对鱼的LC50=150mg/L,NOEC=61mg/L,R-ACT=2.459016393mg/L,log R-ACT=0.390761424作用模式为麻醉型化合物。结合R-ACT对阿司匹林对三种生物的MOA进行判定,得到了一致的结果,表明阿司匹林的MOA为麻醉型。Aspirin (Aspirin, acetylsalicylic acid) can relieve headaches in the short term through vasodilation, and its effect on dull pain is better than that on sharp pain. Through its structural formula and pharmacological effects, it can be known that its MOA is an anesthetic type. Through the toxicity test of aspirin on water fleas, algae and fish, the LC 50 of aspirin on water fleas = 88mg/L, NOEC = 61mg/L, and these two data are substituted into the formula Through calculation, the R-ACT=1.4mg/L of aspirin to Daphnia, log R-ACT=0.146128036, its mode of action is an anesthetic compound; meanwhile, aspirin has LC 50 =106.7mg/L to algae, NOEC=61mg /L, R-ACT=1.749180328mg/L, log R-ACT=0.242834584, its mode of action is an anesthetic compound; LC 50 of aspirin to fish=150mg/L, NOEC=61mg/L, R-ACT=2.459016393mg/L L, log R-ACT=0.390761424 The mode of action is an anesthetic compound. Combined with R-ACT to determine the MOA of aspirin on three organisms, consistent results were obtained, indicating that the MOA of aspirin is anesthetic.
应用例2Application example 2
炔雌醇(Ethinyl estradiol)为3-羟基-19-去甲-17α-孕甾-1,3,5(10)-三烯-20-炔-17-醇。对下丘脑和垂体有正、负反馈作用,小剂量可刺激促性腺激素分泌;大剂量则抑制其分泌,从而抑制性激素性激素卵巢的排卵,达到抗生育作用。炔雌醇能够与生物体形成氢键,但其亲电基团与垂体却不能形成共价键的作用模式,符合过渡型化合物作用模式,据数据收集得知炔雌醇对水蚤的LC50为5.7mg/L,NOEC为0.01mg/L将这两个数据代入公式通过计算得出炔雌醇对水蚤的R-ACT为570mg/L,log R-ACT为2.755874856其作用模式为过渡型化合物;与此同时炔雌醇对藻类的LC50为0.84mg/L,NOEC为0.01mg/L,R-ACT=84mg/L,log R-ACT=1.924279286其作用模式为过渡型化合物;炔雌醇对鱼类LC50=1.60mg/L,NOEC为0.01mg/L;R-ACT=160mg/L,log R-ACT=2.204119983其作用模式为过渡型化合物。结合R-ACT对炔雌醇对三种生物的MOA进行判定,得到了一致的结果,表明其MOA为过渡型。Ethinyl estradiol is 3-hydroxy-19-nor-17α-pregna-1,3,5(10)-trien-20-yn-17-ol. It has positive and negative feedback effects on the hypothalamus and pituitary gland. Small doses can stimulate the secretion of gonadotropins; large doses can inhibit their secretion, thereby inhibiting the ovulation of sex hormones and sex hormones in the ovary, and achieving anti-fertility effects. Ethinyl estradiol can form hydrogen bonds with organisms, but its electrophilic group cannot form covalent bonds with the pituitary gland, which is in line with the transitional compound action mode. According to data collection, it is known that the LC 50 of ethinyl estradiol on Daphnia is is 5.7mg/L, and NOEC is 0.01mg/L. Substitute these two data into the formula Through calculation, the R-ACT of ethinyl estradiol to Daphnia is 570 mg/L, and the log R-ACT is 2.755874856, and its mode of action is a transitional compound; meanwhile, the LC 50 of ethinyl estradiol to algae is 0.84 mg/L, NOEC is 0.01mg/L, R-ACT=84mg/L, log R-ACT=1.924279286, and its mode of action is a transitional compound; LC 50 of ethinyl estradiol to fish is 1.60mg/L, and NOEC is 0.01mg/L; R-ACT=160mg/L, log R-ACT=2.204119983 Its mode of action is a transitional compound. Combined with R-ACT to determine the MOA of ethinyl estradiol on the three organisms, consistent results were obtained, indicating that the MOA was transitional.
应用例3Application example 3
苯扎贝特(Bezafibrate)为氯贝丁酸衍生物类血脂调节药作用机制有两种:①增高脂蛋白酯酶和肝酯酶活性,促进极低密度脂蛋白的分解代谢,使血三酰甘油的水平降低。②使极低密度脂蛋白的分泌减少。通过加强对受体结合的低密度脂蛋白的清除,降低低密度脂蛋白和胆固醇。降低血三酰甘油的作用比降低血胆固醇为强。能明显降低三酰甘油、胆固醇、低密度脂蛋白、极低密度脂蛋白和载脂蛋白B(ApoB),同时使高密度脂蛋白和载脂蛋白AI和AⅡ升高。通过其作用机制及其化学式可以得知苯扎贝特能够与受体形成共价键,进而调节受体酶活性,进而达到治疗效果是一种反应型化合物。通过苯扎贝特对水蚤、藻类和鱼的毒性试验得到苯扎贝特对水蚤的LC50=100mg/L,NOEC=0.0001mg/L将这两个数据代入公式通过计算得出苯扎贝特对水蚤的R-ACT=1000000mg/L,log R-ACT=6其作用模式为反应型化合物;除此之外苯扎贝特对藻类的LC50=100mg/L,NOEC=0.0001mg/L,R-ACT=1000000mg/L,log R-ACT=6其作用模式为反应型化合物;苯扎贝特对鱼的LC50>100mg/L,NOEC=0.0001mg/L,R-ACT=1000000mg/L,log R-ACT=6,其MOA为反应型化合物;结合R-ACT对苯扎贝特对三种生物的MOA进行判定,得到了一致的结果,表明其MOA为反应型。Bezafibrate is a blood lipid regulating drug derived from clofibrate, and has two mechanisms of action: ① Increase the activity of lipoprotein esterase and liver esterase, promote the catabolism of very low-density lipoprotein, and make blood triglycerides The level of glycerol is reduced. ②Reduce the secretion of very low density lipoprotein. Lowers LDL and cholesterol by enhancing clearance of receptor-bound LDL. The effect of lowering blood triacylglycerol is stronger than that of lowering blood cholesterol. Can significantly reduce triacylglycerol, cholesterol, low-density lipoprotein, very low-density lipoprotein and apolipoprotein B (ApoB), while increasing high-density lipoprotein and apolipoprotein AI and AII. From its mechanism of action and its chemical formula, it can be known that bezafibrate is a reactive compound that can form a covalent bond with the receptor, thereby regulating the activity of the receptor enzyme, and then achieving the therapeutic effect. Through the toxicity test of bezafibrate to water fleas, algae and fish, the LC 50 of bezafibrate to water fleas is obtained = 100mg/L, NOEC = 0.0001mg/L and these two data are substituted into the formula Through calculation, the R-ACT of bezafibrate to Daphnia = 1000000mg/L, log R-ACT = 6, and its mode of action is a reactive compound; in addition, the LC 50 of bezafibrate to algae = 100mg/L L, NOEC=0.0001mg/L, R-ACT=1000000mg/L, log R-ACT=6, its mode of action is a reactive compound; LC 50 of bezafibrate to fish >100mg/L, NOEC=0.0001mg/L L, R-ACT=1000000mg/L, log R-ACT=6, its MOA is a reactive compound; combined with R-ACT to determine the MOA of bezafibrate on three organisms, consistent results were obtained, indicating that its MOA is reactive.
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, any person familiar with the technical field within the technical scope of the disclosure of the present invention, according to the present invention Any equivalent replacement or change of the created technical solution and its inventive concept shall be covered within the scope of protection of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810047734.3A CN108268749A (en) | 2018-01-18 | 2018-01-18 | A kind of method for predicting pharmaceuticals toxic effect pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810047734.3A CN108268749A (en) | 2018-01-18 | 2018-01-18 | A kind of method for predicting pharmaceuticals toxic effect pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108268749A true CN108268749A (en) | 2018-07-10 |
Family
ID=62775987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810047734.3A Pending CN108268749A (en) | 2018-01-18 | 2018-01-18 | A kind of method for predicting pharmaceuticals toxic effect pattern |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108268749A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113793651A (en) * | 2021-08-20 | 2021-12-14 | 大连民族大学 | Method for improving accuracy of pollutant QSAR model for predicting toxic effect end point value |
US12009066B2 (en) * | 2019-05-22 | 2024-06-11 | International Business Machines Corporation | Automated transitive read-behind analysis in big data toxicology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5827679A (en) * | 1995-04-07 | 1998-10-27 | Burlington Research, Inc. | Chemical evaluation method |
CN105137055A (en) * | 2015-08-26 | 2015-12-09 | 广东省微生物研究所 | Method for predicting and evaluating toxicity of novel non-steroid anti-inflammatory agent pollutant based on daphnia magna toxicity |
-
2018
- 2018-01-18 CN CN201810047734.3A patent/CN108268749A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5827679A (en) * | 1995-04-07 | 1998-10-27 | Burlington Research, Inc. | Chemical evaluation method |
CN105137055A (en) * | 2015-08-26 | 2015-12-09 | 广东省微生物研究所 | Method for predicting and evaluating toxicity of novel non-steroid anti-inflammatory agent pollutant based on daphnia magna toxicity |
Non-Patent Citations (1)
Title |
---|
AHLERS,JAN等: ""Acute to chronic ratios in aquatic toxicity - Variation across trophic levels and relationship with chemical structure"", 《ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12009066B2 (en) * | 2019-05-22 | 2024-06-11 | International Business Machines Corporation | Automated transitive read-behind analysis in big data toxicology |
CN113793651A (en) * | 2021-08-20 | 2021-12-14 | 大连民族大学 | Method for improving accuracy of pollutant QSAR model for predicting toxic effect end point value |
CN113793651B (en) * | 2021-08-20 | 2023-11-07 | 大连民族大学 | A method to improve the accuracy of pollutant QSAR model in predicting toxic effect endpoint values |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Leikin et al. | Post-mortem toxicology: what the dead can and cannot tell us | |
Daughton | The Matthew Effect and widely prescribed pharmaceuticals lacking environmental monitoring: Case study of an exposure-assessment vulnerability | |
Browning et al. | Inactivation of the paraventricular thalamus abolishes the expression of cocaine conditioned place preference in rats | |
Malone et al. | Escalation and reinstatement of fentanyl self-administration in male and female rats | |
Meador et al. | Determining potential adverse effects in marine fish exposed to pharmaceuticals and personal care products with the fish plasma model and whole-body tissue concentrations | |
Wang et al. | Pharmacokinetics and safety of single oral doses of emtricitabine in human immunodeficiency virus-infected children | |
Schoeler et al. | Novel biological insights into the common heritable liability to substance involvement: a multivariate genome-wide association study | |
Sultan et al. | Drug repositioning suggests a role for the heat shock protein 90 inhibitor geldanamycin in treating COVID-19 infection | |
CN108268749A (en) | A kind of method for predicting pharmaceuticals toxic effect pattern | |
Zucker et al. | Sex differences in pharmacokinetics | |
Audzeyenka et al. | β-Aminoisobutyric acid (L-BAIBA) is a novel regulator of mitochondrial biogenesis and respiratory function in human podocytes | |
Bogojevic et al. | Association of hypothyroidism with outcomes in hospitalized adults with COVID‐19: Results from the International SCCM Discovery Viral Infection and Respiratory Illness Universal Study (VIRUS): COVID‐19 Registry | |
Huang et al. | The interplay of metabolic dysfunction‐associated fatty liver disease and viral hepatitis on liver disease severity: a large community‐based study in a viral endemic area | |
Ghobadi et al. | Single‐dose pharmacokinetic study of clomiphene citrate isomers in anovular patients with polycystic ovary disease | |
Kosloski et al. | No clinically relevant drug-drug interactions between methadone or buprenorphine-naloxone and antiviral combination glecaprevir and pibrentasvir | |
Russo et al. | Integrating concentration-dependent toxicity data and toxicokinetics to inform hepatotoxicity response pathways | |
Alunni-Perret et al. | Determination of heroin after embalmment | |
US20250006331A1 (en) | Quantitative systems pharmacology methods for identifying therapeutics for disease states | |
Wang et al. | Acute, subchronic toxicity and genotoxicity studies of JointAlive, a traditional Chinese medicine formulation for knee osteoarthritis | |
Ejeh et al. | Pharmacoinformatics-based strategy in designing and profiling of some Pyrazole analogues as novel hepatitis C virus inhibitors with pharmacokinetic analysis | |
Fostel | Towards standards for data exchange and integration and their impact on a public database such as CEBS (Chemical Effects in Biological Systems) | |
KR20230043849A (en) | Inhibitors of acid sphingomyelinase to prevent and treat COVID-19 disease | |
Dalton et al. | Differential effects of d-and l-enantiomers of govadine on distinct forms of cognitive flexibility and a comparison with dopaminergic drugs | |
Chen et al. | Anti-inflammatory activity of Radix Angelicae biseratae in the treatment of osteoarthritis determined by systematic pharmacology and in vitro experiments | |
Zhang et al. | Sex and Cross-Sex Testosterone Treatment Alters Gamma-Hydroxybutyrate Acid Toxicokinetics and Toxicodynamics in Rats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180710 |