CN108257607A - 一种多通道语音信号处理方法 - Google Patents

一种多通道语音信号处理方法 Download PDF

Info

Publication number
CN108257607A
CN108257607A CN201810069729.2A CN201810069729A CN108257607A CN 108257607 A CN108257607 A CN 108257607A CN 201810069729 A CN201810069729 A CN 201810069729A CN 108257607 A CN108257607 A CN 108257607A
Authority
CN
China
Prior art keywords
signal
voice signal
moment
voice
frames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810069729.2A
Other languages
English (en)
Other versions
CN108257607B (zh
Inventor
杨晓莹
吴伟杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Xinte Electronic Technology Co Ltd
Original Assignee
Chengdu Xinte Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Xinte Electronic Technology Co Ltd filed Critical Chengdu Xinte Electronic Technology Co Ltd
Priority to CN201810069729.2A priority Critical patent/CN108257607B/zh
Publication of CN108257607A publication Critical patent/CN108257607A/zh
Application granted granted Critical
Publication of CN108257607B publication Critical patent/CN108257607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • G10L19/0216Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation using wavelet decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0264Noise filtering characterised by the type of parameter measurement, e.g. correlation techniques, zero crossing techniques or predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明提供了一种多通道语音信号处理方法,包括如下步骤:接收语音信号,所述语音信号具有静默信号,即只有噪声的信号;在多个不同的时间段进行信号谱分析;根据所述谱分析得到的增益函数对语音信号降噪。本方法适用于语音中语句之间间隔时间段较多的语音降噪处理,实现了对语音信号噪音的稳定降噪处理,特别是对连续语句中词语之间或词语内各个单词的发音存在空白的语音的稳定的、高信噪比的降噪处理。

Description

一种多通道语音信号处理方法
技术领域
本发明属于语音信号处理领域,具体涉及一种多通道语音信号处理方法。
背景技术
语音信号处理被广泛的应用在波达方向估计、声源定位、语音降噪、声源分离、混响抑制、远场拾音、3维音频等问题。相关处理方法与技术在包括声学监控、智能手机、智能电视、平板电脑、助听器、机器人等领域。如何抑制麦克风传输的语音信号中的噪声是当前语音信号处理领域的热点。
相关技术中提出基于正则参数的超指向性波束形成方法对语音信号中的噪声进行抑制。基于正则参数的超指向性波束形成方法是通过引入和调节正则参数(RegularizationParameter)可以在指向性和白噪声增益之间获得一个折中,或者通过假设每个传感器的误差(传感器的增益、相位和位置误差)服从某种概率分布,从而推导出一种鲁棒性较好的波束形成器,从而对语音信号中的噪声进行抑制。
随着移动通信技术的发展和人们生活水平的不断提高,人们往往需要通过录音装置在不同的场合进行录音,如在采访场合、开会场合、培训场合等,将现场声音录制下来,生成音视频文件。但是,由于录音的场景复杂多变,录音的质量和内容由于周围环境的变化而受影响;比如,在开会期间录音,使用者打开录音装置进行录音,一直到会议结束后停止录音,但是,这段录音包含了会议休息期间的录音,因此,需要对录音装置录制的音视频文件进行去噪,以去除掉无关紧要的声音。例如,申请号为CN201210196983.1的中国发明专利申请公开了一种语音信号的基音周期估计算法,涉及语音信号处理领域,包括如下步骤:S1.将带噪音的语音信号经自适应滤波器进行降噪处理;S2.求出降噪后语音信号的自相关函数和循环的平均幅度差函数;S3.通过公式得出加权平方特征,其中,α、β、γ为大于1的常数,R(k)为所述自相关函数,D(k)为所述平均幅度差函数。
然而,经申请人试验,现有技术的诸多方案关注的多在语句之间存在空白(或称为静默段,即此时没有语音)的情况,而对于词语之间存在空白或者词语内存在语音空白的情况却无法有效地降低语音中的噪声。
发明内容
鉴于以上分析,本发明的主要目的在于提供一种多通道语音信号处理方法,包括如下步骤:
接收第一通道语音信号,所述语音信号具有静默信号,即只有噪声的信号;
在多个不同的时间段进行第一信号谱分析;
接收第二通道语音信号,所述语音信号具有静默信号,即只有噪声的信号;
在多个不同的时间段进行第二信号谱分析;
根据所述第一信号谱分析和第二信号谱分析得到的增益函数对语音信号降噪。
进一步地,接收第一通道或第二通道语音信号均为:从t1时刻到t4时刻接收语音信号,该语音信号至少包括连续的第一语句语音信号、静默信号、第二语句语音信号,所述第一语句语音信号和第二语句语音信号是包括噪声以及有用语音信号的信号,该有用语音信号不必然是完整的语句,静默信号是相对于第一语句语音信号和第二语句语音信号而言只有噪声的信号。
进一步地,所述在多个不同的时间段进行第一信号谱分析包括:
在t1时刻和t1+T1时刻分别采集语音信号的两个帧,t1+T1在所述静默信号之前;
对两个语音信号帧进行小波变换,得到两个帧信号小波F1和F2;
根据下式取F1和F2的公共门槛能量Q1和Q2:
p为采集语音信号时的捕获窗口长度;
计算Q1和Q2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值A和特征向量A’,A’阶数为i;
在t2时刻,以及在t2+T2时刻分别采集语音信号的两个帧,所述t2时刻在t1至t1+T1时刻之间,从t1至t2+T2小于第一语句语音信号的时间;
对两个语音信号帧进行小波变换,得到两个帧信号小波G1和G2;
根据下式取G1和G2的公共门槛能量R1和R2:
p为采集语音信号时的捕获窗口长度;
计算R1和R2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值B和特征向量B’,B’阶数为j;
Ma和Mb分别为i×i阶的矩阵和i×j阶的矩阵;
在t3时刻,以及在t3+T3时刻分别采集语音信号的两个帧,所述t3时刻在t2+T2时刻之后、t3+T3在t4之前,即从t3到t3+T3这段时间包括一部分所述静默信号和一部分所述第二语句语音信号;
对两个语音信号帧进行希尔伯特变换,得到两个帧信号谱函数为H1和H2,能量谱比率K;
设C=[A”,B”],A”为A’转置矩阵,B”为B’转置矩阵,则对于所述语音信号的增益函数为:
进一步地,所述在多个不同的时间段进行第二信号谱分析包括:对于第二通道接收的语音信号,
在t1时刻和t1+T1时刻分别采集语音信号的两个帧,t1+T1在所述静默信号之前;
对两个语音信号帧进行小波变换,得到两个帧信号小波F1和F2;
根据下式取F1和F2的公共门槛能量Q1和Q2:
p为采集语音信号时的捕获窗口长度;
计算Q1和Q2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值A和特征向量A’,A’阶数为i;
在t2时刻,以及在t2+T2时刻分别采集语音信号的两个帧,所述t2时刻在t1至t1+T1时刻之间,从t1至t2+T2小于第一语句语音信号的时间;
对两个语音信号帧进行小波变换,得到两个帧信号小波G1和G2;
根据下式取G1和G2的公共门槛能量R1和R2:
p为采集语音信号时的捕获窗口长度;
计算R1和R2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值B和特征向量B’,B’阶数为j;
Ma和Mb分别为i×i阶的矩阵和i×j阶的矩阵;
在t3时刻,以及在t3+T3时刻分别采集语音信号的两个帧,所述t3时刻在t2+T2时刻之后、t3+T3在t4之前,即从t3到t3+T3这段时间包括一部分所述静默信号和一部分所述第二语句语音信号;
对两个语音信号帧进行希尔伯特变换,得到两个帧信号谱函数为H1和H2,能量谱比率K;
设C=[A”,B”],A”为A’转置矩阵,B”为B’转置矩阵,则对于所述语音信号的增益函数为:
进一步地,根据所述谱分析得到的第一和第二增益函数对语音信号降噪包括:
将语音信号的谱函数与所述增益函数的谱函数相乘,得到降噪后的语音信号的谱函数。
本发明的技术方案具有以下优点:
提供一种语音信号加密方法,适用于语音中语句之间间隔时间段较多的语音降噪处理,实现了对语音信号噪音的稳定降噪处理,特别是对连续语句中词语之间或词语内各个单词的发音存在空白(即本申请提及的“静默”)的语音的稳定的、高信噪比的降噪处理。经试验,信噪比相比同类现有技术高出65%以上。
附图说明
图1示出了根据本发明的方法流程图。
具体实施方式
如图1所示,一种多通道语音信号处理方法,包括如下步骤:
接收第一通道语音信号,所述语音信号具有静默信号,即只有噪声的信号;
在多个不同的时间段进行第一信号谱分析;
接收第二通道语音信号,所述语音信号具有静默信号,即只有噪声的信号;
在多个不同的时间段进行第二信号谱分析;
根据所述第一信号谱分析和第二信号谱分析得到的增益函数对语音信号降噪。
接收第一通道或第二通道语音信号均为:从t1时刻到t4时刻接收语音信号,该语音信号至少包括连续的第一语句语音信号、静默信号、第二语句语音信号,所述第一语句语音信号和第二语句语音信号是包括噪声以及有用语音信号的信号,该有用语音信号不必然是完整的语句,静默信号是相对于第一语句语音信号和第二语句语音信号而言只有噪声的信号。
所述在多个不同的时间段进行第一信号谱分析包括:
在t1时刻和t1+T1时刻分别采集语音信号的两个帧,t1+T1在所述静默信号之前;
对两个语音信号帧进行小波变换,得到两个帧信号小波F1和F2;
根据下式取F1和F2的公共门槛能量Q1和Q2:
p为采集语音信号时的捕获窗口长度;
计算Q1和Q2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值A和特征向量A’,A’阶数为i;
在t2时刻,以及在t2+T2时刻分别采集语音信号的两个帧,所述t2时刻在t1至t1+T1时刻之间,从t1至t2+T2小于第一语句语音信号的时间;
对两个语音信号帧进行小波变换,得到两个帧信号小波G1和G2;
根据下式取G1和G2的公共门槛能量R1和R2:
p为采集语音信号时的捕获窗口长度;
计算R1和R2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值B和特征向量B’,B’阶数为j;
Ma和Mb分别为i×i阶的矩阵和i×j阶的矩阵;
在t3时刻,以及在t3+T3时刻分别采集语音信号的两个帧,所述t3时刻在t2+T2时刻之后、t3+T3在t4之前,即从t3到t3+T3这段时间包括一部分所述静默信号和一部分所述第二语句语音信号;
对两个语音信号帧进行希尔伯特变换,得到两个帧信号谱函数为H1和H2,能量谱比率K;
设C=[A”,B”],A”为A’转置矩阵,B”为B’转置矩阵,则对于所述语音信号的增益函数为:
所述在多个不同的时间段进行第二信号谱分析包括:对于第二通道接收的语音信号,
在t1时刻和t1+T1时刻分别采集语音信号的两个帧,t1+T1在所述静默信号之前;
对两个语音信号帧进行小波变换,得到两个帧信号小波F1和F2;
根据下式取F1和F2的公共门槛能量Q1和Q2:
p为采集语音信号时的捕获窗口长度;
计算Q1和Q2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值A和特征向量A’,A’阶数为i;
在t2时刻,以及在t2+T2时刻分别采集语音信号的两个帧,所述t2时刻在t1至t1+T1时刻之间,从t1至t2+T2小于第一语句语音信号的时间;
对两个语音信号帧进行小波变换,得到两个帧信号小波G1和G2;
根据下式取G1和G2的公共门槛能量R1和R2:
p为采集语音信号时的捕获窗口长度;
计算R1和R2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值B和特征向量B’,B’阶数为j;
Ma和Mb分别为i×i阶的矩阵和i×j阶的矩阵;
在t3时刻,以及在t3+T3时刻分别采集语音信号的两个帧,所述t3时刻在t2+T2时刻之后、t3+T3在t4之前,即从t3到t3+T3这段时间包括一部分所述静默信号和一部分所述第二语句语音信号;
对两个语音信号帧进行希尔伯特变换,得到两个帧信号谱函数为H1和H2,能量谱比率K;
设C=[A”,B”],A”为A’转置矩阵,B”为B’转置矩阵,则对于所述语音信号的增益函数为:
根据所述谱分析得到的第一和第二增益函数对语音信号降噪包括:
将语音信号的谱函数与所述增益函数的谱函数相乘,得到降噪后的语音信号的谱函数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种多通道语音信号处理方法,包括如下步骤:
接收第一通道语音信号,所述语音信号具有静默信号,即只有噪声的信号;
在多个不同的时间段进行第一信号谱分析;
接收第二通道语音信号,所述语音信号具有静默信号,即只有噪声的信号;
在多个不同的时间段进行第二信号谱分析;
根据所述第一信号谱分析和第二信号谱分析得到的增益函数对语音信号降噪。
2.根据权利要求1所述的多通道语音信号处理方法,其特征在于,接收第一通道或第二通道语音信号均为:从t1时刻到t4时刻接收语音信号,该语音信号至少包括连续的第一语句语音信号、静默信号、第二语句语音信号,所述第一语句语音信号和第二语句语音信号是包括噪声以及有用语音信号的信号,该有用语音信号不必然是完整的语句,静默信号是相对于第一语句语音信号和第二语句语音信号而言只有噪声的信号。
3.根据权利要求2所述的多通道语音信号处理方法,其特征在于,所述在多个不同的时间段进行第一信号谱分析包括:
在t1时刻和t1+T1时刻分别采集语音信号的两个帧,t1+T1在所述静默信号之前;
对两个语音信号帧进行小波变换,得到两个帧信号小波F1和F2;
根据下式取F1和F2的公共门槛能量Q1和Q2:
p为采集语音信号时的捕获窗口长度;
计算Q1和Q2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值A和特征向量A’,A’阶数为i;
在t2时刻,以及在t2+T2时刻分别采集语音信号的两个帧,所述t2时刻在t1至t1+T1时刻之间,从t1至t2+T2小于第一语句语音信号的时间;
对两个语音信号帧进行小波变换,得到两个帧信号小波G1和G2;
根据下式取G1和G2的公共门槛能量R1和R2:
p为采集语音信号时的捕获窗口长度;
计算R1和R2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值B和特征向量B’,B’阶数为j;
Ma和Mb分别为i×i阶的矩阵和i×j阶的矩阵;
在t3时刻,以及在t3+T3时刻分别采集语音信号的两个帧,所述t3时刻在t2+T2时刻之后、t3+T3在t4之前,即从t3到t3+T3这段时间包括一部分所述静默信号和一部分所述第二语句语音信号;
对两个语音信号帧进行希尔伯特变换,得到两个帧信号谱函数为H1和H2,能量谱比率K;
设C=[A”,B”],A”为A’转置矩阵,B”为B’转置矩阵,则对于所述语音信号的增益函数为:
4.根据权利要求2所述的多通道语音信号处理方法,其特征在于,所述在多个不同的时间段进行第二信号谱分析包括:对于第二通道接收的语音信号,
在t1时刻和t1+T1时刻分别采集语音信号的两个帧,t1+T1在所述静默信号之前;
对两个语音信号帧进行小波变换,得到两个帧信号小波F1和F2;
根据下式取F1和F2的公共门槛能量Q1和Q2:
p为采集语音信号时的捕获窗口长度;
计算Q1和Q2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值A和特征向量A’,A’阶数为i;
在t2时刻,以及在t2+T2时刻分别采集语音信号的两个帧,所述t2时刻在t1至t1+T1时刻之间,从t1至t2+T2小于第一语句语音信号的时间;
对两个语音信号帧进行小波变换,得到两个帧信号小波G1和G2;
根据下式取G1和G2的公共门槛能量R1和R2:
p为采集语音信号时的捕获窗口长度;
计算R1和R2的协方差矩阵,并对协方差矩阵进行能量谱分解,得到特征值B和特征向量B’,B’阶数为j;
Ma和Mb分别为i×i阶的矩阵和i×j阶的矩阵;
在t3时刻,以及在t3+T3时刻分别采集语音信号的两个帧,所述t3时刻在t2+T2时刻之后、t3+T3在t4之前,即从t3到t3+T3这段时间包括一部分所述静默信号和一部分所述第二语句语音信号;
对两个语音信号帧进行希尔伯特变换,得到两个帧信号谱函数为H1和H2,能量谱比率K;
设C=[A”,B”],A”为A’转置矩阵,B”为B’转置矩阵,则对于所述语音信号的增益函数为:
5.根据权利要求4所述的多通道语音信号处理方法,其特征在于,根据所述谱分析得到的第一和第二增益函数对语音信号降噪包括:
将语音信号的谱函数与所述增益函数的谱函数相乘,得到降噪后的语音信号的谱函数。
CN201810069729.2A 2018-01-24 2018-01-24 一种多通道语音信号处理方法 Active CN108257607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810069729.2A CN108257607B (zh) 2018-01-24 2018-01-24 一种多通道语音信号处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810069729.2A CN108257607B (zh) 2018-01-24 2018-01-24 一种多通道语音信号处理方法

Publications (2)

Publication Number Publication Date
CN108257607A true CN108257607A (zh) 2018-07-06
CN108257607B CN108257607B (zh) 2021-05-18

Family

ID=62742359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810069729.2A Active CN108257607B (zh) 2018-01-24 2018-01-24 一种多通道语音信号处理方法

Country Status (1)

Country Link
CN (1) CN108257607B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112464830A (zh) * 2020-12-01 2021-03-09 恒大新能源汽车投资控股集团有限公司 驾驶员分心检测方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263734B (zh) * 2005-09-02 2012-01-25 丰田自动车株式会社 麦克风阵列用后置滤波器
CN103489454A (zh) * 2013-09-22 2014-01-01 浙江大学 基于波形形态特征聚类的语音端点检测方法
US20150317983A1 (en) * 2014-04-30 2015-11-05 Accusonus S.A. Methods and systems for processing and mixing signals using signal decomposition
CN106328155A (zh) * 2016-09-13 2017-01-11 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种修正先验信噪比过估计的语音增强方法
CN107316648A (zh) * 2017-07-24 2017-11-03 厦门理工学院 一种基于有色噪声的语音增强方法
CN108831493A (zh) * 2018-05-21 2018-11-16 北京捷通华声科技股份有限公司 一种音频处理方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263734B (zh) * 2005-09-02 2012-01-25 丰田自动车株式会社 麦克风阵列用后置滤波器
CN103489454A (zh) * 2013-09-22 2014-01-01 浙江大学 基于波形形态特征聚类的语音端点检测方法
US20150317983A1 (en) * 2014-04-30 2015-11-05 Accusonus S.A. Methods and systems for processing and mixing signals using signal decomposition
CN106328155A (zh) * 2016-09-13 2017-01-11 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种修正先验信噪比过估计的语音增强方法
CN107316648A (zh) * 2017-07-24 2017-11-03 厦门理工学院 一种基于有色噪声的语音增强方法
CN108831493A (zh) * 2018-05-21 2018-11-16 北京捷通华声科技股份有限公司 一种音频处理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李洋等: "基于改进小波阈值和EMD的语音去噪方法", 《计算机工程与设计》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112464830A (zh) * 2020-12-01 2021-03-09 恒大新能源汽车投资控股集团有限公司 驾驶员分心检测方法和装置

Also Published As

Publication number Publication date
CN108257607B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN107452389B (zh) 一种通用的单声道实时降噪方法
US9100734B2 (en) Systems, methods, apparatus, and computer-readable media for far-field multi-source tracking and separation
CN103827966B (zh) 处理音频信号
CN110223708B (zh) 基于语音处理的语音增强方法及相关设备
CN108597505B (zh) 语音识别方法、装置及终端设备
CN110517701B (zh) 一种麦克风阵列语音增强方法及实现装置
CN103632675A (zh) 个人通信中降噪和回波消除时的噪声估计
US10623854B2 (en) Sub-band mixing of multiple microphones
CN110660406A (zh) 近距离交谈场景下双麦克风移动电话的实时语音降噪方法
CN107124647A (zh) 一种全景视频录制时自动生成字幕文件的方法及装置
CN114245266B (zh) 小型麦克风阵列设备的区域拾音方法及系统
CN116030823A (zh) 一种语音信号处理方法、装置、计算机设备及存储介质
Ganguly et al. Real-time smartphone application for improving spatial awareness of hearing assistive devices
Kumar et al. Murmured speech recognition using hidden markov model
Goehring et al. Speech enhancement for hearing-impaired listeners using deep neural networks with auditory-model based features
CN113823301A (zh) 语音增强模型的训练方法和装置及语音增强方法和装置
CN108257607A (zh) 一种多通道语音信号处理方法
JP4891805B2 (ja) 残響除去装置、残響除去方法、残響除去プログラム、記録媒体
CN116959468A (zh) 一种基于dcctn网络模型的语音增强方法、系统及设备
CN115359804B (zh) 一种基于麦克风阵列的定向音频拾取方法和系统
Zhou et al. Speech Enhancement via Residual Dense Generative Adversarial Network.
CN108281154A (zh) 一种语音信号的降噪方法
CN107393553B (zh) 用于语音活动检测的听觉特征提取方法
CN108133711A (zh) 具有降噪模块的数字信号监测设备
Kumar et al. Conversion of non-audible murmur to normal speech through Wi-Fi transceiver for speech recognition based on GMM model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant