CN108256517A - Laser radar-based insulator string identification method - Google Patents
Laser radar-based insulator string identification method Download PDFInfo
- Publication number
- CN108256517A CN108256517A CN201611234430.5A CN201611234430A CN108256517A CN 108256517 A CN108256517 A CN 108256517A CN 201611234430 A CN201611234430 A CN 201611234430A CN 108256517 A CN108256517 A CN 108256517A
- Authority
- CN
- China
- Prior art keywords
- depth
- insulator chain
- insulator
- insulator string
- laser radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- 239000013598 vector Substances 0.000 claims abstract description 23
- 239000000284 extract Substances 0.000 claims abstract description 21
- 230000000737 periodic effect Effects 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 230000010339 dilation Effects 0.000 claims description 3
- 230000003628 erosive effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 abstract description 12
- 238000007689 inspection Methods 0.000 abstract description 4
- 238000011010 flushing procedure Methods 0.000 abstract 1
- 238000004140 cleaning Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及基于激光雷达的绝缘子串识别方法,包括以下步骤:深度图像的获取:通过机器人上安装的激光雷达设备获得深度图像;深度图像的预处理:对带有绝缘子串的深度图像进行预处理,获得感兴趣的区域;深度图像的特征提取:在感兴趣的区域中,建立深度特征曲线模型,构建深度周期性特征矩阵和宽度向量,提取绝缘子串段数特征和盘径变化特征;绝缘子串类型识别:根据提取出的特征对绝缘子串类型进行识别。本发明根据绝缘子串本身的特性,利用灰度周期性特征和灰度阈值特征,对绝缘子串进行识别。识别结果准确性高,提高了工作效率,对之后的变电站巡检机器人完成冲洗任务提供依据。
The invention relates to a laser radar-based insulator string recognition method, comprising the following steps: acquisition of a depth image: obtaining a depth image through a laser radar device installed on a robot; preprocessing of a depth image: preprocessing a depth image with an insulator string , to obtain the region of interest; feature extraction of the depth image: in the region of interest, establish a depth characteristic curve model, construct a depth periodic characteristic matrix and a width vector, and extract the characteristics of the number of insulator string segments and the change characteristics of the disk diameter; the type of insulator string Identification: Identify the type of insulator string based on the extracted features. According to the characteristics of the insulator string itself, the invention uses the gray-scale periodicity feature and the gray-scale threshold value feature to identify the insulator string. The accuracy of the recognition results is high, which improves the work efficiency and provides a basis for the subsequent substation inspection robot to complete the flushing task.
Description
技术领域technical field
本发明涉及一种应用于变电站绝缘子串基于激光雷达的自主识别方法,具体地说是一种基于机器视觉的绝缘子串自动识别方法。The invention relates to a laser radar-based autonomous identification method applied to substation insulator strings, in particular to an automatic identification method for insulator strings based on machine vision.
背景技术Background technique
在线运行的绝缘子,在自然环境中,受到SO2、氮氧化物以及颗粒性尘埃等大气环境的影响,在其表面逐渐沉积了一层污秽物。在天气干燥的情况下,这些绝缘子可以保持较高的绝缘水平,其放电电压和洁净、干燥状态时接近;当遇有雾、露、雨等潮湿天气,以及融冰、融雪时,绝缘子因表面污秽物吸收水分致使污秽层中的电解质溶解,造成绝缘子绝缘水平降低,泄漏电流增大,严重时发生闪络事故。因此,绝缘子串需要定期进行清洗。Insulators operating online are affected by atmospheric environments such as SO 2 , nitrogen oxides, and granular dust in a natural environment, and a layer of dirt is gradually deposited on the surface. In the case of dry weather, these insulators can maintain a high insulation level, and their discharge voltage is close to that in a clean and dry state; Dirt absorbs water to dissolve the electrolyte in the polluted layer, resulting in a decrease in the insulation level of the insulator, an increase in the leakage current, and a flashover accident in severe cases. Therefore, insulator strings need to be cleaned regularly.
现阶段,绝缘子串清洗的主要手段是通过变电站的专业人员进行清洗。在进行清洗时,存在劳动强度大,危险性高等问题。At this stage, the main means of cleaning insulator strings is to clean them by professionals in substations. When cleaning, there are problems such as high labor intensity and high risk.
作为一种先进的技术手段,变电站巡检机器人可以代替人工进行绝缘子串冲洗任务。为完成此任务机器人需对绝缘子串进行自动识别。因此需要提出一种自动化程度较高的绝缘子串自动识别方法。As an advanced technical means, substation inspection robots can replace manual cleaning of insulator strings. To accomplish this task, the robot needs to automatically identify the insulator strings. Therefore, it is necessary to propose an automatic identification method for insulator strings with a high degree of automation.
由于绝缘子串处于室外环境中,其光照变化复杂,且变电站内架设结构复杂。通过激光雷达检测,可以避免光照对传感器的影响,同时可以克服复杂背景的影响,能够很好的适应室外环境。而且目前基于激光雷达的绝缘子串自动识别方法尚未见报道。Since the insulator string is in an outdoor environment, its illumination changes are complex, and the erection structure in the substation is complex. Through lidar detection, the influence of light on the sensor can be avoided, and at the same time, the influence of complex background can be overcome, and it can be well adapted to the outdoor environment. Moreover, the automatic identification method of insulator strings based on lidar has not been reported yet.
发明内容Contents of the invention
针对上述问题,本发明要解决的技术问题是提供一种识别精度高的基于激光雷达的绝缘子串自动识别方法。In view of the above problems, the technical problem to be solved by the present invention is to provide a laser radar-based automatic recognition method for insulator strings with high recognition accuracy.
本发明解决其技术问题所采用的技术方案是:基于激光雷达的绝缘子串识别方法,包括以下步骤:The technical solution adopted by the present invention to solve the technical problems is: a laser radar-based insulator string identification method, comprising the following steps:
深度图像的获取:通过机器人上安装的激光雷达设备获得深度图像;Depth image acquisition: Obtain depth images through the laser radar device installed on the robot;
深度图像的预处理:对带有绝缘子串的深度图像进行预处理,获得感兴趣的区域;Preprocessing of depth images: Preprocessing depth images with insulator strings to obtain regions of interest;
深度图像的特征提取:在感兴趣的区域中,建立深度特征曲线模型,构建深度周期性特征矩阵和宽度向量,提取绝缘子串段数特征和盘径变化特征;Feature extraction of depth image: In the area of interest, establish a depth characteristic curve model, construct a depth periodic characteristic matrix and a width vector, and extract the characteristics of the number of insulator strings and the variation of disk diameter;
绝缘子串类型识别:根据提取出的特征对绝缘子串类型进行识别。Insulator string type identification: identify the type of insulator string based on the extracted features.
所述深度图像的预处理包括以下步骤:The preprocessing of the depth image comprises the following steps:
(2.1)对深度图像二值化处理,分离出深度图像中的前景、背景,并消除背景干扰;(2.1) binarize the depth image, separate the foreground and background in the depth image, and eliminate background interference;
(2.2)对处理后的二值图像采用膨胀运算,再采用腐蚀运算,消除二值图像上的干扰像素点;(2.2) adopt expansion operation to the binary image after processing, then adopt corrosion operation, eliminate the interfering pixel point on the binary image;
(2.3)然后选取最大连通域,提取出感兴趣区域,完成预处理。(2.3) Then select the largest connected domain, extract the region of interest, and complete the preprocessing.
所述建立深度特征曲线模型如下:Described establishment depth characteristic curve model is as follows:
提取目标区域左边缘:Extract the left edge of the target area:
lik=k,li k =k,
提取目标区域右边缘:Extract the right edge of the target area:
rik=k,ri k =k,
式中D(x,y)为二值图像,k代表图像的行数,t代表图像的列数,lk,rk为边缘上的像素点位置;In the formula, D(x, y) is a binary image, k represents the number of rows of the image, t represents the number of columns of the image, l k and r k are the pixel positions on the edge;
通过左边缘和右边缘确定目标区域中线上的位置:Position the center line of the target region by the left and right edges:
mik=k,mi k =k,
式中mk为深度特征曲线像素点的坐标,mik为深度特征曲线像素点行坐标,mjk为深度特征曲线像素点列坐标;nI为图像行数;In the formula, m k is the coordinates of the pixel points of the depth characteristic curve, mi k is the row coordinate of the pixel point of the depth characteristic curve, mj k is the column coordinate of the pixel point of the depth characteristic curve; n I is the number of image rows;
建立深度特征曲线模型:Build the depth characteristic curve model:
f(xk,yk)=0f(x k ,y k )=0
其中:in:
xk=mik x k = mi k
xk为特征曲线的横坐标,即图像行数,yk为特征曲线的纵坐标,即深度值;L(mk)表示深度图像。x k is the abscissa of the characteristic curve, that is, the number of image lines, y k is the ordinate of the characteristic curve, that is, the depth value; L(m k ) represents the depth image.
所述构建深度周期性特征矩阵:The construction of the depth periodic feature matrix:
先求出深度特征曲线f(xk,yk)=0上的极大值和极小值;建立矩阵First find the maximum value and minimum value on the depth characteristic curve f(x k ,y k )=0; establish a matrix
式中:In the formula:
v2k为深度特征曲线f(xk,yk)=0上极值点的横坐标,v3k为深度特征曲线f(xk,yk)=0上极值点的纵坐标,即深度值;k=1,2…nI;v 2k is the abscissa of the extreme point on the depth characteristic curve f(x k ,y k )=0, v 3k is the ordinate of the extreme point on the depth characteristic curve f(x k ,y k )=0, namely the depth Value; k=1,2...n I ;
设定阈值λc1,λc2且λc1﹤λc2;再对进行按列遍历,将V3,k+1-V3,k>λc1并且V3,k+1-V3,k<λc2时的V1,k与V2,k进行记录;当遍历结束时,将满足条件的值按记录顺序组成矩阵将v1,k记录在矩阵的第一行,v2,k记录在矩阵的第二行,得到:Set thresholds λ c1 , λ c2 and λ c1 < λ c2 ; Perform column traversal, record V 1,k and V 2 ,k when V 3, k+1 -V 3, k >λ c1 and V 3,k +1 -V 3 ,k <λ c2 ; when At the end of the traversal, the values that meet the conditions are formed into a matrix in the order of records Record v 1,k in the matrix The first row of , v 2,k is recorded in the second row of the matrix, resulting in:
n3为矩阵列数;n 3 is the number of matrix columns;
再对按列进行遍历,令again To traverse by column, let
c1,k=abs(v11,k+1-v11,k)c 1,k =abs(v1 1,k+1 -v1 1,k )
c2,k=v12,k+1-v12,k c 2,k =v1 2,k+1 -v1 2,k
c3,k=v12,k c 3,k = v1 2,k
得到深度周期性特征矩阵 Get the depth periodic feature matrix
构建宽度向量:Build the width vector:
式中:In the formula:
i=1,2…nI i=1,2...n I
(xi1,yi1,zi1)为左边缘点的空间坐标,(xi2,yi2,zi2)为右边缘点的空间坐标;nI表示图像行数。(x i1 , y i1 , z i1 ) are the space coordinates of the left edge point, (x i2 , y i2 , z i2 ) are the space coordinates of the right edge point; n I represents the number of image lines.
所述提取出绝缘子串段数特征和盘径变化特征包括以下步骤:The extraction of the feature of the number of insulator strings and the feature of disc diameter variation includes the following steps:
(1)由提取绝缘子串段数特征(1) by Extracting features of insulator strings
首先设定阈值αc,初始化标志位δc为0,段数信息Num(C)为0;Firstly, the threshold α c is set, the initialization flag δ c is 0, and the segment information Num(C) is 0;
再对按列进行遍历:again Iterate by column:
当C1,k=1,C2,k<αc并且δc=0时,置标志位δc为1,并将C3,k存入向量T中作为绝缘子串上边缘;When C 1,k =1, C 2,k <α c and δ c =0, set the flag δ c to 1, and store C 3,k into the vector T as the upper edge of the insulator string;
当δc=1并且C1,k=0或C2,k>αc时,置标志位δc为0,将C3,k存入向量T中作为绝缘子串下边缘,并将段数信息Num(C)加1;When δ c =1 and C 1,k =0 or C 2,k >α c , set the flag δ c to 0, store C 3,k in the vector T as the lower edge of the insulator string, and store the segment number information Num(C) plus 1;
向量T为绝缘子串的上、下边缘,其中奇数项元素t2n-1为绝缘子串的上边缘,偶数项元素t2n为绝缘子串的下边缘;n=1,2…k1;k1为向量T的长度。The vector T is the upper and lower edges of the insulator string, where the odd-numbered element t 2n-1 is the upper edge of the insulator string, and the even-numbered element t 2n is the lower edge of the insulator string; n=1,2...k 1 ; k 1 is The length of the vector T.
(2)由W提取绝缘子串的盘径变化特征(2) Extract the disc diameter change characteristics of the insulator string from W
根据向量T计算绝缘子串宽度方差:Calculate the variance of the insulator string width according to the vector T:
当d2<阈值αw时,该绝缘子为等盘径,否则,为变盘径。When d 2 <threshold α w , the insulator has a constant disk diameter, otherwise, it has a variable disk diameter.
所述根据提取出的特征对绝缘子串类型进行识别包括以下步骤:The identification of the insulator string type according to the extracted features includes the following steps:
若Num(C)=1,且d2<阈值αw,则绝缘子串为单段等盘径绝缘子串;若Num(C)=2,且d2<阈值αw,则绝缘子串为双段等盘径绝缘子串,若Num(C)=1,且d2>阈值αw,则绝缘子串为单段变盘经绝缘子串。If Num(C)=1, and d 2 <threshold value α w , the insulator string is a single-stage insulator string with equal disk diameter; if Num(C)=2, and d 2 <threshold value α w , then the insulator string is a double-stage insulator string For insulator strings with equal disk diameters, if Num(C)=1, and d 2 >threshold value α w , the insulator strings are single-stage variable disk insulator strings.
本发明具有以下有益效果及优点:The present invention has the following beneficial effects and advantages:
1.本发明利用激光深度周期性特征,绝缘子串间距特征及盘径特征进行识别,对绝缘子的识别准确性高,提高了工作效率,对之后的变电站巡检机器人完成任务提供依据。1. The present invention utilizes laser depth periodic features, insulator string spacing features, and disk diameter features to identify insulators, which has high accuracy in identifying insulators, improves work efficiency, and provides a basis for subsequent substation inspection robots to complete tasks.
2.本发明采用激光雷达作为传感器,在逆光条件下,同样可以准确地识别出绝缘子串。在深度图像中,也可以准确地分离前景和背景,克服复杂背景对识别精度的影响。2. The present invention uses laser radar as a sensor, and can also accurately identify insulator strings under backlight conditions. In depth images, foreground and background can also be separated accurately, overcoming the influence of complex background on recognition accuracy.
附图说明Description of drawings
图1是本发明的流程示意图;Fig. 1 is a schematic flow sheet of the present invention;
图2是激光深度图;Figure 2 is a laser depth map;
图3是预处理后的深度二值图;Figure 3 is a preprocessed depth binary image;
图4是深度特征曲线图;Fig. 4 is a depth characteristic curve;
图5是识别效果图。Figure 5 is a diagram of the recognition effect.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the examples.
一种基于激光雷达的绝缘子串自动识别方法,包括以下步骤:A method for automatic identification of insulator strings based on laser radar, comprising the following steps:
(1)深度图像的获取:在变电站巡检机器人上安装激光雷达设备,固定于云台上,激光雷达旋转固定角度,获得深度图像;(1) Acquisition of depth image: Install laser radar equipment on the substation inspection robot, fix it on the platform, and rotate the laser radar at a fixed angle to obtain depth images;
(2)深度图像的预处理:对带有绝缘子串的深度图像进行预处理,获得感兴趣的区域。(2) Preprocessing of the depth image: Preprocessing the depth image with insulator strings to obtain the region of interest.
(3)深度图像的特征提取:在感兴趣的区域中,建立深度特征曲线模型,构建深度周期性特征矩阵和宽度向量,提取绝缘子串段数特征和盘径变化特征。(3) Feature extraction of the depth image: In the region of interest, the depth characteristic curve model is established, the depth periodic characteristic matrix and width vector are constructed, and the characteristics of the number of insulator strings and the variation characteristics of the disk diameter are extracted.
(4)绝缘子串类型识别:根据提取出的特征对绝缘子串类型进行识别。(4) Type identification of insulator strings: identify the type of insulator strings according to the extracted features.
所述深度图像的预处理包括以下步骤:The preprocessing of the depth image comprises the following steps:
(2.1)通过深度二值化处理,分离出深度图像中的前景背景,并消除深度图像中背景干扰。(2.1) Through depth binarization processing, the foreground background in the depth image is separated, and the background interference in the depth image is eliminated.
(2.2)采用图像形态学处理深度二值图像,首先采用膨胀运算,再采用腐蚀运算,消除深度二值图像上的干扰像素点。(2.2) Using image morphology to process the depth binary image, first use the dilation operation, and then use the erosion operation to eliminate the interference pixels on the depth binary image.
(2.3)在深度二值图中选取最大连通域,提取出感兴趣的区域,完成预处理。(2.3) Select the largest connected domain in the depth binary image, extract the region of interest, and complete the preprocessing.
所述深度图像的特征提取方法如下:The feature extraction method of the depth image is as follows:
(3.1)建立深度特征曲线模型,定义的深度特征曲线能够反映绝缘子串特征,方法如下:(3.1) Establish a depth characteristic curve model, the defined depth characteristic curve can reflect the characteristics of the insulator string, the method is as follows:
提取目标区域左边缘:Extract the left edge of the target area:
lik=k,li k =k,
提取目标区域右边缘:Extract the right edge of the target area:
rik=k,ri k =k,
式中D(x,y)为深度二值图像,k代表图像的行数,t代表图像的列数,lk,rk为边缘上的像素点位置。nI代表为图像的最大行数。通过这两个集合可以确定出目标区域中线上的位置集合。In the formula, D(x, y) is the depth binary image, k represents the number of rows of the image, t represents the number of columns of the image, l k , r k are the pixel positions on the edge. n I represents the maximum number of lines of the image. The position set on the center line of the target area can be determined through these two sets.
mik=k,mi k =k,
式中mk为深度特征曲线像素点的坐标,mik为深度特征曲线像素点行坐标,mjk为深度特征曲线像素点列坐标。In the formula, m k is the coordinate of the pixel point of the depth characteristic curve, mi k is the row coordinate of the pixel point of the depth characteristic curve, and mj k is the column coordinate of the pixel point of the depth characteristic curve.
建立深度特征曲线模型:Build the depth characteristic curve model:
f(xk,yk)=0f(x k ,y k )=0
其中:in:
xk=mik x k = mi k
xk为特征曲线的横坐标,即图像行数,yk为特征曲线的纵坐标,即深度值;L(mk)表示深度图像。x k is the abscissa of the characteristic curve, that is, the number of image lines, y k is the ordinate of the characteristic curve, that is, the depth value; L(m k ) represents the depth image.
(3.2)通过一定规则构建深度周期性特征矩阵和宽度向量,并提取出绝缘子串段数特征和盘径变化特征。(3.2) Construct the depth periodic characteristic matrix and width vector through certain rules, and extract the characteristics of the number of insulator strings and the variation characteristics of the disc diameter.
所述在深度图像中提取出的绝缘子串段数特征和宽度特征进行分析,完成对绝缘子串识别。The insulator string segment number feature and width feature extracted from the depth image are analyzed to complete the identification of the insulator string.
基于激光雷达的绝缘子串自动识别方法流程图如1所示。具体流程如下:The flow chart of the automatic identification method for insulator strings based on lidar is shown in Figure 1. The specific process is as follows:
1.激光雷达采集数据1. LiDAR data collection
激光雷达扫描绝缘子串区域,得到激光深度图像L(x,y),如图2所示。The laser radar scans the insulator string area to obtain the laser depth image L(x,y), as shown in Figure 2.
2.图像预处理2. Image preprocessing
将深度图像按公式(1)进行二值化:Binarize the depth image according to formula (1):
D(x,y)表示二值化,M为阈值。再进行膨胀腐蚀运算,标记最大连通域。经预处理后,可分离出前景背景,得到绝缘子串及其架设。如图3所示。D(x,y) means binarization, and M is the threshold. Then carry out the dilation and corrosion operation, and mark the largest connected domain. After preprocessing, the foreground and background can be separated to obtain the insulator string and its erection. As shown in Figure 3.
3.建立深度特征曲线模型3. Establish depth characteristic curve model
根据深度图像中绝缘子串所处区域的深度周期性变化,建立深度特征曲线模型,方法如下:According to the periodic change of depth in the area where the insulator strings are located in the depth image, a depth characteristic curve model is established, the method is as follows:
提取目标区域左边缘:Extract the left edge of the target area:
lik=k,li k =k,
提取目标区域右边缘:Extract the right edge of the target area:
rik=k,ri k =k,
式中D(x,y)为二值图像,k代表图像的行数,t代表图像的列数,lk,rk为边缘上的像素点位置。左、右边缘分别为绝缘子串的左、右边缘。通过这两个集合可以确定出目标区域中线的位置集合。In the formula, D(x, y) is a binary image, k represents the number of rows of the image, t represents the number of columns of the image, l k and r k are the pixel positions on the edge. The left and right edges are respectively the left and right edges of the insulator string. Through these two sets, the position set of the center line of the target area can be determined.
mik=k,mi k =k,
式中mk为深度特征曲线像素点的坐标,mik为深度特征曲线像素点行坐标,mjk为深度特征曲线像素点列坐标。In the formula, m k is the coordinate of the pixel point of the depth characteristic curve, mi k is the row coordinate of the pixel point of the depth characteristic curve, and mj k is the column coordinate of the pixel point of the depth characteristic curve.
建立深度特征曲线模型:Build the depth characteristic curve model:
f(xk,yk)=0f(x k ,y k )=0
其中:in:
xk=mik x k = mi k
如图4所示,横坐标表示图像行数,纵坐标表示深度值。As shown in Figure 4, the abscissa represents the number of image lines, and the ordinate represents the depth value.
4.构建深度周期性特征及宽度特征向量4. Construct depth periodic features and width feature vectors
(1)构建深度周期性特征矩阵:(1) Construct a deep periodic feature matrix:
先求出深度特征曲线f(xk,yk)=0上的极大值和极小值。建立矩阵First find the maximum value and minimum value on the depth characteristic curve f(x k , y k )=0. build matrix
式中:In the formula:
v2k为深度特征曲线f(xk,yk)=0上极值点的横坐标,v3k为深度特征曲线f(xk,yk)=0上极值点的纵坐标,即深度值。n1表示矩阵的列数,n2表示矩阵的列数。v 2k is the abscissa of the extreme point on the depth characteristic curve f(x k ,y k )=0, v 3k is the ordinate of the extreme point on the depth characteristic curve f(x k ,y k )=0, namely the depth value. n 1 means matrix The number of columns, n 2 means matrix the number of columns.
设定阈值λc1,λc2,λc1﹤λc2,本实施例分别取3、10。再对进行按列遍历,将v3,k+1-v3,k>λc1并且v3,k+1-v3,k<λc2时的v1,k与v2,k进行记录。当遍历结束时,将满足条件的值按记录顺序组成矩阵将v1,k记录在矩阵的第一行,v2,k记录在矩阵的第二行,得到:Set the thresholds λ c1 , λ c2 , and λ c1 <λ c2 , which are 3 and 10 in this embodiment, respectively. again Perform column-wise traversal, and record v 1,k and v 2, k when v 3,k+1 -v 3, k >λ c1 and v 3 ,k +1 -v 3 ,k <λ c2 . When the traversal ends, the values that meet the conditions are formed into a matrix in the order of records Record v 1,k in the matrix The first row of , v 2,k is recorded in the second row of the matrix, resulting in:
n3为矩阵列数。n 3 is the number of matrix columns.
再对V1按列进行遍历,令Then traverse V1 by column, so that
c1,k=abs(v11,k+1-v11,k)c 1,k =abs(v1 1,k+1 -v1 1,k )
c2,k=v12,k+1-v12,k c 2,k =v1 2,k+1 -v1 2,k
c3,k=v12,k c 3,k = v1 2,k
得到深度周期性特征矩阵。Get the depth periodic feature matrix.
(2)构建宽度特征向量如下:(2) Build the width feature vector as follows:
式中:In the formula:
i=1,2...nI i=1,2...n I
(xi1,yi1,zi1)为左边缘点的空间坐标,(xi2,yi2,zi2)为右边缘点的空间坐标。nI表示图像的最大行数。这里(x i1 , y i1 , z i1 ) are the space coordinates of the left edge point, and (x i2 , y i2 , z i2 ) are the space coordinates of the right edge point. n I represents the maximum number of lines of the image. here
5.提取绝缘子串段数特征及盘径特征5. Extract the characteristics of the number of insulator strings and the characteristics of the disc diameter
(1)由提取绝缘子串段数特征(1) by Extracting features of insulator strings
首先设定阈值αc,本实施例取15。初始化标志位δc为0,段数信息Num(C)为0。First, set the threshold α c , which is 15 in this embodiment. The initialization flag δ c is 0, and the segment number information Num(C) is 0.
再对按列进行遍历。当C1,k=1,C2,k<αc并且δc=0时,置标志位δc为1,并将C3,k存入向量T中作为绝缘子串上边缘。当δc=1并且C1,k=0或C2,k>αc时,置标志位δc为0,将C3,k存入向量T中作为绝缘子串下边缘,并将段数信息Num(C)加1。遍历至矩阵末端,完成对绝缘子串的识别。向量T为绝缘子串的上下边缘,其中奇数项元素t2n-1为绝缘子串的上边缘,偶数项元素t2n为绝缘子串的下边缘。n=1,2…k1;k1为向量T的长度。again Iterates by column. When C 1,k =1, C 2,k <α c and δ c =0, set flag δ c to 1, and store C 3,k into vector T as the upper edge of the insulator string. When δ c =1 and C 1,k =0 or C 2,k >α c , set the flag δ c to 0, store C 3,k in the vector T as the lower edge of the insulator string, and store the segment number information Num(C) is incremented by 1. Traverse to the end of the matrix to complete the identification of insulator strings. The vector T is the upper and lower edges of the insulator string, where the odd-numbered element t 2n-1 is the upper edge of the insulator string, and the even-numbered element t 2n is the lower edge of the insulator string. n=1,2...k 1 ; k 1 is the length of the vector T.
(2)由W提取绝缘子串的盘径变化特征(2) Extract the disc diameter change characteristics of the insulator string from W
根据向量T计算绝缘子串宽度方差:Calculate the variance of the insulator string width according to the vector T:
当d2<αw时,αw为阈值,本实施例取0.01。;提取盘径特征为等盘径,否则,提取盘径特征为变盘径。When d 2 <α w , α w is the threshold, which is 0.01 in this embodiment. ; Extract the disc diameter feature as equal disc diameter, otherwise, extract the disc diameter feature as variable disc diameter.
6.绝缘子串类型识别6. Identification of insulator string type
根据段数信息和盘径变化信息对变电站内三种支柱绝缘子串进行识别。根据得到的段数特征和盘径特征进行组合,若Num(C)=1,且d2<阈值αw,则绝缘子串为单段等盘径绝缘子串,若Num(C)=2,且d2<阈值αw,则绝缘子串为双段等盘径绝缘子串,若Num(C)=1,且d2>阈值αw,则绝缘子串为单段变盘经绝缘子串。完成对变电站常用三种绝缘子串的识别。如图5所示,为双段等盘径绝缘子串。The three kinds of post insulator strings in the substation are identified according to the segment number information and disc diameter change information. Combining according to the obtained segment number features and disc diameter features, if Num(C)=1, and d 2 <threshold α w , then the insulator string is a single-segment equal-diameter insulator string, if Num(C)=2, and d 2 <threshold α w , then the insulator string is a double-segment insulator string with equal disk diameter, and if Num(C)=1, and d 2 >threshold α w , then the insulator string is a single-segment variable-disc insulator string. Complete the identification of three commonly used insulator strings in substations. As shown in Figure 5, it is a string of double-section insulators with equal disk diameters.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611234430.5A CN108256517B (en) | 2016-12-28 | 2016-12-28 | Insulator string identification method based on lidar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611234430.5A CN108256517B (en) | 2016-12-28 | 2016-12-28 | Insulator string identification method based on lidar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108256517A true CN108256517A (en) | 2018-07-06 |
CN108256517B CN108256517B (en) | 2021-05-28 |
Family
ID=62719369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611234430.5A Active CN108256517B (en) | 2016-12-28 | 2016-12-28 | Insulator string identification method based on lidar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108256517B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112037137A (en) * | 2020-07-21 | 2020-12-04 | 国网湖北省电力有限公司电力科学研究院 | Method and device for eliminating fuzzy region of insulator disc surface edge in infrared image |
CN112444522A (en) * | 2020-11-16 | 2021-03-05 | 中国科学院沈阳自动化研究所 | Method for detecting defects of insulator string of power system |
CN113538454A (en) * | 2021-06-03 | 2021-10-22 | 北京道亨软件股份有限公司 | A method for automatically dividing the insulation area of multi-connected insulator strings |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090019535A (en) * | 2007-08-21 | 2009-02-25 | 금오테크(주) | Insulation deterioration and disconnection measurement system for non-contact transmission |
CN103714342A (en) * | 2013-12-20 | 2014-04-09 | 华北电力大学(保定) | An aerial-photo insulator chain automatic positioning method based on binary image shape features |
-
2016
- 2016-12-28 CN CN201611234430.5A patent/CN108256517B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090019535A (en) * | 2007-08-21 | 2009-02-25 | 금오테크(주) | Insulation deterioration and disconnection measurement system for non-contact transmission |
CN103714342A (en) * | 2013-12-20 | 2014-04-09 | 华北电力大学(保定) | An aerial-photo insulator chain automatic positioning method based on binary image shape features |
Non-Patent Citations (1)
Title |
---|
严凯 等: "航拍绝缘子图像的检测与识别方法研究", 《贵州电力技术》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112037137A (en) * | 2020-07-21 | 2020-12-04 | 国网湖北省电力有限公司电力科学研究院 | Method and device for eliminating fuzzy region of insulator disc surface edge in infrared image |
CN112444522A (en) * | 2020-11-16 | 2021-03-05 | 中国科学院沈阳自动化研究所 | Method for detecting defects of insulator string of power system |
CN113538454A (en) * | 2021-06-03 | 2021-10-22 | 北京道亨软件股份有限公司 | A method for automatically dividing the insulation area of multi-connected insulator strings |
Also Published As
Publication number | Publication date |
---|---|
CN108256517B (en) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106980816B (en) | Automatic insulator string identification method based on optical image | |
CN106127204B (en) | A multi-directional water meter reading area detection algorithm based on fully convolutional neural network | |
CN108009591B (en) | A method for identifying key components of catenary based on deep learning | |
CN111652857B (en) | A kind of infrared detection method of insulator defect | |
CN102013015B (en) | Object-oriented remote sensing image coastline extraction method | |
CN109685788B (en) | Automatic detection method for floor defect image based on morphological characteristics | |
CN114241364A (en) | A rapid calibration method for foreign object targets in overhead transmission lines | |
CN103488988A (en) | Method for extracting insulators in electrical equipment based on unmanned aerial vehicle line patrol visible light image | |
CN111652227A (en) | Fault detection method for broken floor at the bottom of railway freight cars | |
CN108921076B (en) | Pavement crack disease self-adaptive constant false alarm detection method based on image | |
CN104700395A (en) | Method and system for detecting appearance crack of structure | |
CN108256517A (en) | Laser radar-based insulator string identification method | |
CN103076338A (en) | Rapid fuzzy matching method for testing bad conditions of high-speed rail catenary rod type insulators | |
CN114187505A (en) | Detection method and device for falling-off of damper of power transmission line, medium and terminal equipment | |
Han et al. | SSGD: A smartphone screen glass dataset for defect detection | |
CN109118453A (en) | A kind of image processing method that background inhibits | |
CN109523543A (en) | A kind of wire strand breakage detection method based on Edge Distance | |
CN103714342B (en) | Insulator chain automatic positioning method of taking photo by plane based on bianry image shape facility | |
CN116071299A (en) | A method and system for detecting insulator RTV spraying defects | |
CN114120094A (en) | Water pollution identification method and system based on artificial intelligence | |
CN111027946A (en) | Bridge detection report generation method and system | |
CN110807766A (en) | Double-anti-vibration hammer displacement identification method based on visible light image | |
CN114418968A (en) | Power transmission line small target defect detection method based on deep learning | |
CN110503029A (en) | A method for detecting the state of glass insulators in transmission lines | |
CN107527331B (en) | Remote sensing identification method of polar iceberg based on double-bubble method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |