CN108252878B - 用于风力发电机组的叶片除冰设备和方法 - Google Patents

用于风力发电机组的叶片除冰设备和方法 Download PDF

Info

Publication number
CN108252878B
CN108252878B CN201611233132.4A CN201611233132A CN108252878B CN 108252878 B CN108252878 B CN 108252878B CN 201611233132 A CN201611233132 A CN 201611233132A CN 108252878 B CN108252878 B CN 108252878B
Authority
CN
China
Prior art keywords
deicing
blade
heating
temperature
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611233132.4A
Other languages
English (en)
Other versions
CN108252878A (zh
Inventor
王百方
房海涛
陈秋华
李辉辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Original Assignee
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Goldwind Science and Creation Windpower Equipment Co Ltd filed Critical Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority to CN201611233132.4A priority Critical patent/CN108252878B/zh
Publication of CN108252878A publication Critical patent/CN108252878A/zh
Application granted granted Critical
Publication of CN108252878B publication Critical patent/CN108252878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及一种用于风力发电机组的叶片除冰设备和方法,包括除冰单元,对叶片进行除冰操作;温度检测单元,对叶片的温度进行检测;嵌入式控制单元,根据从外部装置接收的结冰信号来确定是否控制除冰单元进行除冰操作,以及根据由温度检测单元检测到的温度值来确定是否控制除冰单元停止除冰操作。

Description

用于风力发电机组的叶片除冰设备和方法
技术领域
本发明涉及风力发电技术领域,更具体地讲,涉及一种用于风力发电机组的叶片除冰设备和方法。
背景技术
鉴于化石燃料消费对生态环境所造成的负面影响,近些年可再生能源备受关注,新型的清洁能源取代传统能源是大势所趋。由于风电机组建设周期短、发电效率高而得到越来越多地青睐,因此风力发电已成为我国新能源发电的主力军。此外,开发利用风能等可再生的清洁能源资源符合能源发展的轨迹,对建立可持续的能源系统、促进国民经济发展和环境保护发挥着重大作用。
然而,有些地区(例如,山顶、高原、寒冷地区等)虽然具有优质的风资源,但是由于这些地区在冬季时气温低、湿度大,因此很容易结冰。叶片结冰会引起风电机组叶片的气动性能变差、叶片过载和叶片载荷分布不均等问题,进而导致风电机组叶片的捕风能力下降从而影响发电量,并且叶片过载和叶片载荷分布不均也会缩短部件的使用寿命。此外,在叶片旋转过程中,当冰层黏着力下降时极易出现冰块脱落现象,从而容易造成运营事故。
目前风电机组叶片结冰已成为阻碍风能发展的一个重要因素,也是风电场建设的不确定性因素,大大降低了风电机组的利用率,并且严重威胁风电机组的安全运行,同时也是现场作业人员的一个潜在危险源。因此解决风电机组叶片结冰的问题,具有重大的现实意义。
发明内容
为了至少解决现有技术中存在的上述问题,本发明提供了一种用于风力发电机组的叶片除冰设备和方法。
本发明的一方面提供一种用于风力发电机组的叶片除冰设备,包括:除冰单元,对叶片进行除冰操作;温度检测单元,对叶片的温度进行检测;嵌入式控制单元,根据从外部装置接收的结冰信号来判断是否控制所述除冰单元进行除冰操作,以及根据由所述温度检测单元检测到的温度值来判断是否控制所述除冰单元停止除冰操作。
所述除冰单元可包括铺设在风力发电机组中所包括的N个叶片中的每一个叶片上的2M块加热膜,其中,M是大于或等于1的整数,N是大于或等于3的整数。
所述2M块加热膜中的M块加热膜中的每一块加热膜可按照从叶片的前缘开始沿着从前缘向后缘的方向被铺设在叶片的一个侧面上,并且所述M块加热膜可沿着从叶尖到叶根的方向按照第一预定间隔被依次铺设在叶片的所述一个侧面上,所述2M块加热膜中的其余M块加热膜可按照与所述M块加热膜对称的方式被铺设在叶片的另一个侧面上。
温度检测单元可包括用于对叶片的温度进行检测的4M×N个温度传感器,其中,所述4M×N个温度传感器中的每2个温度传感器沿从叶尖到叶根的方向按照第二预定间隔被布置在每块加热膜与叶片之间。
所述嵌入式控制单元可以是ARM嵌入式控制单元,其中,所述ARM嵌入式控制单元可包括:双口随机存取存储器,存储数据;现场可编程门阵列组件,对从ARM处理器接收的数据和指令进行计算和处理;输出锁存器,对从所述双口随机存取存储器接收的输出数据进行锁存,并将所述输出数据输出至所述除冰单元;输入锁存器,对从所述除冰单元接收到的反馈数据进行锁存,并将所述反馈数据传输至所述双口随机存取存储器;模数转换器,对从所述温度检测单元接收到的温度值进行模数转换,并将转换后的温度值传输至所述双口随机存取存储器;所述ARM处理器,对所述双口随机存取存储器、所述现场可编程门阵列组件、所述输出锁存器、所述输入锁存器和所述模数转换器进行控制,并通过过程现场总线与所述外部装置进行实时交互。
所述嵌入式控制单元还可以是数字信号处理(DSP)嵌入式控制单元,其中,所述DSP嵌入式控制单元可包括:隔离变送器,对从所述温度检测单元接收到的温度值进行隔离转换,并将转换后的温度值传输至DSP处理器;驱动器,对所述除冰单元进行驱动控制;光电隔离器,将从所述除冰单元接收的反馈信号进行处理,并将处理后的反馈信号传输至所述DSP处理器;通讯单元,用于实现所述DSP处理器与所述外部装置的通讯;复杂可编程逻辑器件,控制用于指示所述叶片除冰设备的状态的信息的输出;所述DSP处理器,对所述隔离变送器、所述驱动器、所述光电隔离器、所述通讯单元和所述复杂可编程逻辑器件进行控制,并通过所述通讯单元与所述外部装置进行实时交互。
当嵌入式控制单元根据从外部装置接收到的结冰信号确定需要进行除冰操作时,嵌入式控制单元可控制所述N个叶片上的2M×N块加热膜进行通电加热。
在温度检测单元包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测后,嵌入式控制单元可确定所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值的温度值,并且当嵌入式控制单元确定在所述多个温度值中存在大于或等于预定温度值的温度值时,嵌入式控制单元可控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热。
本发明的另一方面提供一种叶片除冰方法,其特征在于,包括:由嵌入式控制单元从外部装置接收结冰信号;由嵌入式控制单元根据接收到的结冰信号确定是否控制除冰单元进行除冰操作;如果根据所述结冰信号确定需要进行除冰操作,则由嵌入式控制单元控制除冰单元进行除冰操作;由嵌入式控制单元根据由温度检测单元检测到的温度值来确定是否控制除冰单元停止除冰操作。
由嵌入式控制单元控制除冰单元进行除冰操作的步骤可包括:如果根据所述结冰信号确定需要进行除冰操作,则由嵌入式控制单元控制N个叶片上的2M×N块加热膜通电加热。
由嵌入式控制单元根据由温度检测单元检测到的温度值来确定是否控制除冰单元停止除冰操作的步骤可包括:由嵌入式控制单元根据温度检测单元检测到的与所述2M×N块加热膜相应的叶片区域的温度值来确定是否控制所述2M×N块加热膜停止通电加热。
确定是否控制所述2M×N块加热膜停止通电加热的步骤可包括:由温度检测单元包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测操作;由嵌入式控制单元判断所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值的温度值;如果确定在所述多个温度值中不存在大于或等于预定温度值的温度值,则执行所述检测操作;如果确定在所述多个温度值中存在大于或等于预定温度值的温度值,则由嵌入式控制单元控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热;由嵌入式控制单元判断在所述2M×N块加热膜中是否还存在正在通电加热的加热膜;如果确定在所述2M×N块加热膜中还存在正在通电加热的加热膜,则执行所述检测操作;如果确定在所述2M×N块加热膜中不存在正在通电加热的加热膜,则所述2M×N块加热膜已全部停止通电加热。
基于上述用于风力发电机组的叶片除冰设备和方法,可通过使用按照以上布置方式被布置在叶片上的加热膜来对叶片进行加热,从而使得加热均匀且除冰效率高。本发明还可在满足加热需求的情况下耗费更低的加热功率,从而具有节能环保的优点。由于加热膜可在生产时被预埋在叶片中,因此不会影响叶片的生产工艺。此外,由于基于嵌入式控制单元的除冰设备具有配置灵活且集成度高的特点,因此不仅可满足不同环境的需要,还可提供高可靠性且维护方便。
附图说明
通过下面结合附图对本发明示例性实施例的详细描述,本领域技术人员将会获得对本发明的全面理解,其中:
图1是根据本发明的示例性实施例的用于风力发电机组的叶片除冰设备10的框图;
图2a和图2b是根据本发明的示例性实施例的加热膜铺设方式的示意图;
图3是根据本发明的示例性实施例的嵌入式控制单元100的系统结构图示意图;
图4是根据本发明的另一示例性实施例的嵌入式控制单元100的系统结构示意图;
图5是根据本发明的示例性实施例的叶片除冰方法的流程图;
图6是根据本发明的示例性实施例的图5的叶片除冰方法的详细流程图。
具体实施方式
以下,参照附图来详细说明本发明的实施例,其中,在附图中,相同的附图标号用于表示相同的组件。
图1是根据本发明的示例性实施例的用于风力发电机组的叶片除冰设备10的框图。如图1中所示,叶片除冰设备10包括除冰单元200、嵌入式控制单元100和温度检测单元300。
除冰单元200用于对叶片进行除冰操作。具体地讲,在风力发电机组包括N个叶片的情况下,除冰单元200包括被铺设在风力发电机组的每一个叶片上的2M块加热膜,即,除冰单元200共包括2M×N块加热膜,其中,M是大于或等于1的整数,N是大于或等于3的整数。例如,当风力发电机组具有3个叶片,并且每个叶片上被铺设有4块加热膜时,除冰单元200可包括12块加热膜。然而本发明的实施例不限于此,除冰单元100可包括6块、18块或24块加热膜等,并且6块、18块或24块加热膜被平均地铺设在3个叶片上。
其中,加热膜既可以采用单相供电,也可以采用三相供电,优选地,由于单相供电的加热膜不仅可满足加热功率要求而且安全性更高,因此本示例性实施例优选使用单相供电的加热膜。
此外,为了实现对每一块加热膜进行单独控制,除冰单元200还可包括用于与每一块加热膜相连接的继电器,即,除冰单元200可包括2M×N个继电器。此外,为了实现对所有加热膜的统一控制,除冰单元200还可包括用于对所述2M×N个继电器进行整体控制的一个总继电器。此外,嵌入式控制单元100和除冰单元200中的继电器可被安装于独立柜体中,温度检测单元300中的温度传感器和除冰单元200中的加热膜可通过航空插头等方式与该独立柜体内的嵌入式控制单元100和除冰单元200中的继电器进行连接。优选地,该独立柜体可被安装在叶片的叶根挡板上。
所述2M块加热膜中的M块加热膜中的每一块加热膜从叶片的前缘开始沿着从前缘向后缘的方向被铺设在叶片的一个侧面上,并且所述M块加热膜沿着从叶尖到叶根的方向按照第一预定间隔被依次铺设在叶片的所述一个侧面上;所述2M块加热膜中的其余M块加热膜按照与所述M块加热膜对称的方式被铺设在叶片的另一个侧面上。
具体地讲,如图2a中所示,在除冰单元200包括12块加热膜,并且在3个叶片中的每个叶片上各铺设有4块加热膜的情况下,这4块加热膜中的2块加热膜中的每一块加热膜从叶片的前缘开始沿着从前缘向后缘的方向被铺设在叶片的一个侧面上(即,如图2b中所示的被铺设在图2b中的A1-A2线左侧的叶片的侧面上),并且这2块加热膜沿着叶片长度方向(即,叶尖到叶根的方向或叶跟到叶尖的方向)按照第一预定间隔(例如,30mm至60mm)被铺设在一个侧面上(即,如图2a中所示的被铺设在所看到的侧面上的加热膜1和2)。而这4块加热膜中的其余2块加热膜块按照与以上描述的2块加热膜的铺设方式类似地方式被对称地铺设在图2b中的A1-A2线右侧的叶片的另一个侧面上。
此外,在加热膜被铺设时,每块加热膜的宽度可从叶片的前缘开始一直延伸到叶片的后缘位置,也可从叶片的前缘开始向后缘方向延伸预定长度而不到达叶片的后缘位置,例如,如图2b中所示,加热膜1从前缘位置铺设到在叶片的位于A1-A2线左侧的侧面上的C1点处,其中,前缘至C1点的叶片左侧外轮廓线长度L1(即,加热膜的宽度)可以是前缘至后缘的叶片左侧的整个外轮廓线长度L2的1/2、2/5、2/3等,优选地,L1小于或等于L2的2/3。
被铺设在叶片上的加热膜在嵌入式控制单元100的控制下对叶片进行通电加热,从而执行除冰操作。
温度检测单元300用于对叶片的温度进行检测。温度检测单元300可包括用于对叶片的温度进行检测的4M×N个温度传感器,其中,对于每一块加热膜而言,存在2个温度传感器沿从叶片的叶尖到叶根的方向按照第二预定间隔被绝缘地布置在每一块加热膜与叶片之间。
具体地讲,以图2a中的加热膜1为例,在加热膜1与叶片之间布置2个温度传感器(例如,PT100温度传感器),并且这2个温度传感器中的1个温度传感器被布置在距离加热膜1的B1端的预定距离处,另1个温度传感器被布置在距离加热膜1的B2端的预定距离处,使得这2个温度传感器之间的距离小于加热膜1的长度(即,B1端到B2端的距离)。其中,所述预定距离根据叶片型号可以是3米、4米等。此外,还可在这2个温度传感器的位置之间布置另一个温度传感器,此温度传感器可以作为备用传感器。传感器的布置方式不限于此,本发明还可按照其它能够有效地检测叶片温度的布置方式来布置温度传感器。
嵌入式控制单元100可用于根据从外部装置(例如,风机主控系统)接收的结冰信号来确定是否控制除冰单元200进行除冰操作,并可根据由温度检测单元300检测到的温度值来确定是否控制除冰单元100停止除冰操作。其中,嵌入式控制单元100可通过过程现场总线(Profibus)连接到风机主控系统,以实现叶片除冰设备10与风机主控系统之间的数据和指令的实时交互。
具体地讲,当嵌入式控制单元100根据从外部装置(例如,风机主控系统)接收到的结冰信号确定需要进行除冰操作时,嵌入式控制单元100可控制除冰单元200中所包括的在N个叶片上的2M×N块加热膜进行通电加热,即,嵌入式控制单元100通过控制除冰单元200中包括的2M×N+1个继电器来实现对除冰单元200中所包括的2M×N块加热膜进行通电加热。当嵌入式控制单元100根据从外部装置接收到的结冰信号确定不需要进行除冰操作时,嵌入式控制单元100可继续从外部装置接收结冰信号并对结冰信号进行判断以确定是否需要控制除冰单元200进行除冰操作。
在嵌入式控制单元100根据从外部装置接收到的结冰信号确定需要进行除冰操作并控制除冰单元200中所包括的所有加热膜进行通电加热之后,嵌入式控制单元100可通过在叶片与加热膜之间布置的温度传感器来检测叶片的温度以确定是否需要控制加热膜停止通电加热。
具体地讲,在温度检测单元300包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测后,嵌入式控制单元100可确定所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值(例如,10℃、20℃、30℃或40℃等)的温度值。当嵌入式控制单元100确定在所述多个温度值中存在大于或等于预定温度值的温度值时,嵌入式控制单元100控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热。优选地,嵌入式控制单元100可控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜在第一预定时间段(例如,3分钟、5分钟或10分钟等)后停止通电加热,即,在使与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜继续通电加热所述第一预定时间段之后停止通电加热。其中,只要是被铺设在正在通电加热的每一块加热膜与叶片之间的2个温度传感器中的任意一个温度传感器检测到的温度值大于或等于所述预定温度值,该加热膜就被停止通电加热。
进一步讲,嵌入式控制单元100可通过控制分别与2M×N块加热膜相连接的2M×N个继电器的接通和断开,来分别控制2M×N块加热膜进行通电加热和停止通电加热,从而可实现灵活且精细地除冰操作。此外,嵌入式控制单元100还可通过控制一个总继电器来控制所述2M×N个继电器,从而可实现对所述2M×N块加热膜的整体控制。2M×N个继电器以及总继电器可以是固态继电器。
此外,当嵌入式控制单元100发现接收到的结冰信号异常、Profibus总线通讯故障或产生结冰信号的外部装置故障时,嵌入式控制单元200也可停止所有加热膜的通电加热操作,并报警以通知工作人员进行维修。
在嵌入式控制单元100控制所有加热膜(即,2M×N块加热膜)停止通电加热后,嵌入式控制单元100可在第二预定时间段(例如,10分钟、20分钟或30分钟等)之后再从外部装置接收结冰信号,并根据接收到的结冰信号来确定是否需要控制除冰单元200进行除冰操作。
嵌入式控制单元100可以是ARM嵌入式控制单元或者DSP嵌入式控制单元,以下将参照图3和图4对嵌入式控制单元100进行详细描述。
此外,图1中所示的叶片除冰设备10还包括防雷电涌保护器(未示出),用于对向除冰单元200中包括的加热膜进行防雷处理。优选地,由于除冰单元200中包括的加热膜优选采用单相供电,因此防雷电涌保护器相应地采用单相防雷设计,即,当有过电流或过电压出现时,防雷电涌保护器将对地导通以实现对地分流,从而达到间接等电位的目的,保证了叶片除冰设备10的安全性。
此外,图1中所示的叶片除冰设备10还可包括状态采集单元,用于通过采集叶片除冰设备10中包括的各个组件(例如,除冰单元200、嵌入式控制单元100、温度检测单元300等)的工作状态以及与叶片除冰设备10进行连接通信的外部设备(例如,风机主控系统、结冰检测设备等)的信号来确定它们的工作状态。当状态采集单元发现某个组件或外部设备不能正常工作时,叶片除冰设备10将通过报警电路进行报警,并通过Profibus总线将警报信号传输至风机主控系统。此外,叶片除冰设备10还可包括用于检测叶片除冰设备10所处环境的温度的环境温度传感器(未示出),当环境温度传感器检测到叶片除冰设备10所处的环境温度较低时,为了防止外部恶劣环境对叶片除冰设备10的影响,叶片除冰设备10可控制柜体进行通电加热,从而保证叶片除冰设备10能够正常运行。
图3是根据本发明的示例性实施例的嵌入式控制单元100的系统结构图示意图,其中,嵌入式控制单元100是ARM嵌入式控制单元100。
如图3中所示,ARM嵌入式控制单元100包括ARM处理器101、双口随机存取存储器(RAM)102、现场可编程门阵列(FPGA)组件103、输出锁存器104、输入锁存器105和模数(AD)转换器106。
ARM处理器101用于对嵌入式控制单元100中的其它组件进行控制,并通过Profibus总线与风机主控系统20实现数据和命令的实时交互。FPGA组件103用于对从ARM处理器101接收到的数据和指令进行计算和处理,此外,FPGA组件103还可调用ARM处理器101的资源来对整个系统进行传输控制。双口RAM 102用于对从输入锁存器105以及AD转换器106接收的数据进行缓存并将该数据传输至ARM处理器101,并且双口RAM 102可对从ARM处理器101接收的输出数据进行缓存并将该输出数据输出至输出锁存器104、输入锁存器105和AD转换器106。输出锁存器104用于从双口RAM 102接收输出数据,并对输出到继电器的输出数据进行锁存,其中,继电器连接至除冰单元200中包括的加热膜。输入锁存器105用于对从继电器输入的反馈信号(即,接通和断开信号)进行锁存,并将反馈信号传输至双口RAM102。AD转换器106用于对从温度检测单元300中所包括的温度传感器接收到的模拟信号(即,温度值)进行模数转换,并将转换后的AD数据传输至双口RAM 102。
具体地讲,ARM处理器101可通过Profibus总线从外部装置(例如,风机主控系统20)接收结冰信号,并根据接收到的结冰信号来确定是否需要控制除冰单元200进行除冰操作。如果ARM处理器101根据接收到的结冰信号确定需要控制除冰单元200进行除冰操作,则ARM处理器101可通过利用直接存储器访问(DMA)控制器访问双口RAM来将继电器控制信号输出到输出锁存器104,输出锁存器104对继电器控制信号进行锁存从而控制除冰单元100中包括的2M×N+1个继电器接通以控制除冰单元100中包括的2M×N块加热膜进行加热除冰。例如,当N个叶片中的每一个叶片被铺设2M块加热膜时,则需要2M×N个继电器来实现对2M×N块加热膜的控制,即,一个继电器控制一块加热膜,从而实现对加热膜的精细控制。此外,ARM处理器101还通过一个总继电器来控制所述2M×N个继电器,从而实现对2M×N块加热膜的整体控制,也就是说,ARM处理器101可通过总共2M×N+1个继电器来实现对2M×N块加热膜的精细控制和整体控制。由于以上已参照图1、图2a和图2b对除冰单元100进行了详细描述,因此,这里不再进行重复描述。
输入锁存器105从2M×N+1个继电器接收反馈信号(即,接通和断开信号),并将接收到的反馈信号发送到双口RAM 102。ARM处理器101可通过DMA控制器从双口RAM接收反馈信号,以确定2M×N+1个继电器的接通和断开状态。
在ARM处理器101根据从风机主控系统20接收到的结冰信号确定需要进行除冰操作并控制除冰单元200中所包括的2M×N块加热膜进行通电加热之后,AD转换器106对从在温度检测单元300中包括的4M×N个温度传感器接收到的模拟信号(即,所述4M×N个温度传感器检测到的叶片的温度值)进行模数转换,并将转换后的AD数据(即,转换后的所述多个温度传感器检测到的叶片的温度值的AD数据)传输到双口RAM 102。ARM处理器101可通过DMA控制器从双口RAM 102接收由AD转换器106转换的AD数据。ARM处理器101可根据接收到的AD数据来确定是否需要控制加热膜停止通电加热。
如果ARM处理器101根据接收到的AD数据确定需要控制加热膜停止通电加热,则ARM处理器101通过DMA控制器、双口RAM 102、输出锁存器104来将控制信号输出至除冰单元200中的继电器来控制加热膜停止通电加热。具体地讲,在温度检测单元300包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测后,ARM处理器101可根据接收到的AD数据来确定所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值(例如,10℃、20℃、30℃或40℃等)的温度值。当ARM处理器101确定在所述多个温度值中存在大于或等于所述预定温度值的温度值时,ARM处理器101控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的至少一个加热膜停止通电加热,即,控制与所述至少一个加热膜相连的至少一个继电器断开,优选地,ARM处理器101可控制所述至少一个继电器在第一预定时间段(例如,3分钟、5分钟或10分钟等)后断开。此外,ARM处理器101还可通过控制一个总继电器来总体控制2M×N个继电器的断开和接通,从而实现对2M×N块加热膜的整体控制。由于以上已参照图1、图2a和图2b对温度检测单元300进行了详细描述,因此,这里不再进行重复描述。
此外,当ARM处理器101发现结冰信号异常、Profibus总线通讯故障或产生结冰信号的外部装置故障时,ARM处理器101也可停止所有加热膜的通电加热操作,并报警以通知工作人员进行维修。
在ARM处理器101控制所有加热膜(即,2M×N块加热膜)停止通电加热后,ARM处理器101可在第二预定时间段(例如,10分钟、20分钟或30分钟等)之后再从风机主控系统20接收结冰信号,并根据接收到的结冰信号来再次确定是否需要控制除冰单元100进行除冰操作,如果需要进行除冰操作,则继续控制所有加热膜进行通电加热,并执行与以上描述的操作类似的操作。
此外,在以上描述中,ARM嵌入式控制单元100是通过Profibus总线从风机主控系统20接收结冰信号来确定是否进行除冰操作,可选地,ARM嵌入式控制单元可通过其它接口(未示出)从结冰检测系统(未示出)接收结冰信号来确定是否进行除冰操作。
图4是根据本发明的另一示例性实施例的嵌入式控制单元100的系统结构示意图,其中,嵌入式控制单元100是DSP嵌入式控制单元。
如图4中所示,DSP嵌入式控制单元100包括DSP处理器201、隔离变送器202、驱动器203、光电隔离器204、通讯单元205以及复杂可编程逻辑器件(CPLD)单元206。
DSP处理器201用于与嵌入式控制单元100中的其它组件进行数据和指令的交互并用于对所述其它组件进行控制,其中,优选地,DSP处理器201可以是型号为TMS320F28335的DSP芯片。隔离变送器202用于将从温度检测单元300中包括的温度传感器接收的信号隔离转换成标准的信号,并将转换后的信号传输至DSP处理器,从而实现温度传感器与DSP处理器201之间的连接通信,优选地,隔离变送器202可包括多个传感器模拟前端LMP90100芯片。驱动器203用于从DSP处理器201接收控制信号,并根据接收到的控制信号对除冰单元300包括中的继电器进行驱动,从而实现对加热膜的控制。光电隔离器204用于从与除冰单元300中包括的继电器接收第一反馈信号(即,接通和断开信号),并将根据第一反馈信号而产生的第二反馈信号传输至DSP处理器201。DSP处理器201通过通讯单元205与风机主控系统20进行Profibus总线通讯,从而实现数据和指令的实时传输,优选地,通讯单元205可以是从站通讯芯片VPC3+C。CPLD单元206用于从DSP处理器201接收控制信号,并根据接收到的控制信号来控制多个LED指示灯(电源指示灯、以太网指示灯、故障指示灯等)的显示,以指示叶片除冰设备的当前状态。此外,DSP嵌入式控制单元100还可包括模数(AD)转换器207,其中,AD转换器207用于从外围设备接收多路模拟信号,将接收的模拟信号转换为数字信号,并将转换后的数字信号传输至DSP处理器201。
具体地讲,DSP处理器201可通过通讯单元205经由Profibus总线从风机主控系统接收结冰信号,并根据接收到的结冰信号来确定是否需要控制除冰单元200进行除冰操作。如果DSP处理器201根据接收到的结冰信号确定需要控制除冰单元100进行除冰操作,则DSP处理器201可通过驱动器203对与除冰单元200中包括的2M×N个继电器进行驱动,从而控制除冰单元200中包括的2M×N块加热膜进行加热除冰。例如,当N个叶片中的每一个叶片被铺设2M块加热膜时,则需要2M×N个继电器来实现对2M×N块加热膜的控制,即,一个继电器控制一块加热膜,从而实现对加热膜的精细控制。此外,DSP处理器201可通过一个总继电器来控制所述2M×N个继电器,从而实现对2M×N块加热膜的整体控制,也就是说,DSP处理器201可通过总共2M×N+1个继电器来实现对2M×N块加热膜的精细控制和整体控制。由于以上已参照图1、图2a和图2b对除冰单元100进行了详细描述,因此,这里不再进行重复描述。
光电隔离器204从2M×N+1个继电器接收第一反馈信号(即,接通和断开信号),将接收到的第一反馈信号转换为第二反馈信号,并将第二反馈信号发送到DSP处理器201。DSP处理器201可根据从光电隔离器204接收到的第二反馈信号来确定2M×N+1个继电器的接通和断开状态,从而确定哪些加热膜正在通电加热,而哪些加热膜已停止通电加热。
在DSP处理器201根据从风机主控系统20接收到的结冰信号确定需要进行除冰操作并控制除冰单元200中所包括的所有加热膜进行通电加热之后,隔离变送器202将从在温度检测单元300中包括的多个温度传感器接收到的温度值(即,所述多个温度传感器检测到的叶片的温度值)隔离转换成标准信号,并将所述标准信号传输到DSP处理器201。DSP处理器201可根据接收到的所述标准信号来确定是否需要控制加热膜停止通电加热。
如果DSP处理器201根据接收到的温度值确定需要控制加热膜停止通电加热,则DSP处理器201通过驱动器203来将控制信号输出至除冰单元200中的继电器来控制除冰单元200中的加热膜停止通电加热。具体地讲,在温度检测单元300包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测后,DSP处理器201可确定所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值(例如,10℃、20℃、30℃或40℃等)的温度值。当DSP处理器201确定在所述多个温度值中存在大于或等于预定温度值的温度值时,DSP处理器201控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的至少一个加热膜停止通电加热,即,控制与所述至少一个加热膜相连的至少一个继电器断开,优选地,DSP处理器201可控制所述至少一个继电器在第一预定时间段(例如,3分钟、5分钟或10分钟等)后断开。此外,DSP嵌入式控制单元100还可通过控制一个总继电器来总体控制2M×N个继电器的断开和接通,从而实现对2M×N块加热膜的整体控制。由于以上已参照图1、图2a和图2b对温度检测单元300进行了详细描述,因此,这里不再进行重复描述。
此外,当DSP处理器201发现结冰信号异常、Profibus总线通讯故障或产生结冰信号的外部装置故障时,DSP处理器201也可停止所有加热膜的通电加热操作,报警并通过CPLD单元206来控制LED指示灯闪烁来通知工作人员进行维修。
在DSP处理器201控制所有加热膜(即,2M×N块加热膜)停止通电加热后,DSP处理器201可在第二预定时间段(例如,10分钟、20分钟或30分钟等)之后再从风机主控系统20接收结冰信号,并根据接收到的结冰信号来再次确定是否需要控制除冰单元200进行除冰操作,如果需要进行除冰操作,则继续控制所有加热膜进行通电加热,并执行与以上描述的操作类似的操作。
此外,在以上描述中,DSP嵌入式控制单元100是通过Profibus总线从风机主控系统20接收结冰信号来确定是否进行除冰操作,可选地,DSP嵌入式控制单元100可通过AD转换器207从结冰检测系统(未示出)接收结冰信号来确定是否进行除冰操作。此外,DSP嵌入式控制单元100可通过CAN总线与外围装置进行通信,并且可将数据和程序等存储在非易失性随机存取存储器(NVRAM)和静态随机存取存储器(SRAM)中。
图5是根据本发明的示例性实施例的由图1的除冰设备执行的叶片除冰方法的流程图。
如图5中所示,在步骤S110,由嵌入式控制单元100从外部装置接收结冰信号。其中,外部装置可以是结冰检测系统或者通过Profibus总线与除冰设备10连接的风机主控系统。
在步骤S120,由嵌入式控制单元100根据接收到的结冰信号确定是否控制除冰单元200进行除冰操作。
如果在步骤S120根据所述结冰信号确定需要进行除冰操作,则进行到步骤S130,如果在步骤S120根据所述结冰信号确定不需要进行除冰操作,则返回步骤S110。
在步骤S130,由嵌入式控制单元100控制除冰单元200开始进行除冰操作。具体地讲,在步骤S130,由嵌入式控制单元控制全部叶片上的所有加热膜进行通电加热。由于以上已参照图1至图4对此进行了详细描述,因此,这里不再进行重复的描述。
在步骤S140,由嵌入式控制单元100根据由温度检测单元300检测到的温度值来确定是否需要控制除冰单元100停止除冰操作,即,由嵌入式控制单元100根据温度检测单元300检测到的与所述2M×N块加热膜相应的叶片区域的温度值来确定是否控制所述2M×N块加热膜停止通电加热。如果在步骤S140确定需要控制除冰单元100停止除冰操作,则进行到步骤S150,其中,在步骤S150,由嵌入式控制单元100控制除冰单元100停止除冰操作,延时预定时间并返回步骤S110。如果在步骤S150确定不需要控制除冰单元100停止通电加热,则返回步骤S140。
以下将参照图6对步骤S140和步骤S150进行详细描述。
图6是根据本发明的示例性实施例的图5的叶片除冰方法的详细流程图。
图6中的步骤S110、S120、S130与图5中的步骤S110、S120和S130的操作相同,因此,在此不再进行重复描述。
在步骤S240,由温度检测单元300包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测,然后进行到步骤S250。
在步骤S250,由嵌入式控制单元100确定在所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值的温度值。
如果在步骤S250确定在所述多个温度值中存在大于或等于预定温度值的温度值,则进行到步骤S260,其中,在步骤S260,由嵌入式控制单元100控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热,并进行到步骤S270。如果在步骤S250确定在所述多个温度值中不存在大于或等于预定温度值的温度值,则返回到步骤S240。
在步骤S270,由嵌入式控制单元100确定在所述2M×N块加热膜中是否还存在正在通电加热的加热膜。如果在步骤S270确定在所述2M×N块加热膜中还存在正在通电加热的加热膜,则返回到步骤S240。如果在步骤S270确定在所述2M×N块加热膜中不存在正在通电加热的加热膜,则进行到步骤280,其中,在步骤S280所述方法延时预定时间(例如,10分钟、20分钟或30分钟等),并在延时完成后返回步骤S110。
由于以上已参照图1至图4对此进行了详细描述,因此,这里不再进行重复描述。
根据以上示出的本发明的示例性实施例,本发明可通过使用按照以上描述的铺设方式被布置在叶片上的加热膜来对叶片进行通电加热,从而使得加热均匀且除冰效率高。本发明还可在满足加热需求的情况下耗费更低的加热功率,从而具有节能环保的优点。由于加热膜可在生产时被预埋在叶片中,因此不会影响叶片的生产工艺。此外,由于基于嵌入式控制单元的除冰设备具有配置灵活且集成度高的特点,因此不仅可满足不同环境的需要,还可提供高可靠性且维护方便。
本发明的以上各个实施例仅是示例性的,而本发明并不受限于此。本领域技术人员应该理解:在不脱离本发明的原理和精神的情况下,可对这些实施例进行改变,其中,本发明的范围在权利要求及其等同物中限定。

Claims (9)

1.一种用于风力发电机组的叶片除冰设备,其特征在于,包括:
除冰单元,对叶片进行除冰操作;
温度检测单元,对叶片的温度进行检测;
嵌入式控制单元,根据从外部装置接收的结冰信号来判断是否控制所述除冰单元进行除冰操作,以及根据由所述温度检测单元检测到的温度值来判断是否控制所述除冰单元停止除冰操作,
其中,所述除冰单元包括预埋在风力发电机组中所包括的N个叶片中的每一个叶片中的2M块加热膜,其中,M是大于或等于1的整数,N是大于或等于3的整数,所述2M块加热膜中的M块加热膜中的每一块加热膜按照从叶片的前缘开始沿着从前缘向后缘的方向被预埋在叶片的一个侧面中,加热膜从叶片的前缘开始向后缘方向延伸预定长度而不到达叶片的后缘位置,并且所述M块加热膜沿着从叶尖到叶根的方向按照第一预定间隔被依次预埋在叶片的所述一个侧面中,所述2M块加热膜中的其余M块加热膜按照与所述M块加热膜对称的方式被预埋在叶片的另一个侧面中,所述加热膜的宽度L1小于或等于叶片前缘至后缘外轮廓线长度L2的2/3;
其中,在温度检测单元包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测后,嵌入式控制单元确定所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值的温度值,并且当嵌入式控制单元确定在所述多个温度值中存在大于或等于预定温度值的温度值时,嵌入式控制单元控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热。
2.如权利要求1所述的叶片除冰设备,其特征在于,所述温度检测单元包括用于对叶片的温度进行检测的4M×N个温度传感器,其中,所述4M×N个温度传感器中的每2个温度传感器沿从叶尖到叶根的方向按照第二预定间隔被布置在每块加热膜与叶片之间。
3.如权利要求2所述的叶片除冰设备,其特征在于,所述嵌入式控制单元是ARM嵌入式控制单元,其中,所述ARM嵌入式控制单元包括:
双口随机存取存储器,存储数据;
现场可编程门阵列组件,对从ARM处理器接收的数据和指令进行计算和处理;
输出锁存器,对从所述双口随机存取存储器接收的输出数据进行锁存,并将所述输出数据输出至所述除冰单元;
输入锁存器,对从所述除冰单元接收到的反馈数据进行锁存,并将所述反馈数据传输至所述双口随机存取存储器;
模数转换器,对从所述温度检测单元接收到的温度值进行模数转换,并将转换后的温度值传输至所述双口随机存取存储器;
所述ARM处理器,对所述双口随机存取存储器、所述现场可编程门阵列组件、所述输出锁存器、所述输入锁存器和所述模数转换器进行控制,并通过过程现场总线与所述外部装置进行实时交互。
4.如权利要求2所述的叶片除冰设备,其特征在于,所述嵌入式控制单元是DSP嵌入式控制单元,其中,所述DSP嵌入式控制单元包括:
隔离变送器,对从所述温度检测单元接收到的温度值进行隔离转换,并将转换后的温度值传输至DSP处理器;
驱动器,对所述除冰单元进行驱动控制;
光电隔离器,将从所述除冰单元接收的反馈信号进行处理,并将处理后的反馈信号传输至所述DSP处理器;
通讯单元,用于实现所述DSP处理器与所述外部装置的通讯;
复杂可编程逻辑器件,控制用于指示所述叶片除冰设备的状态的信息的输出;
所述DSP处理器,对所述隔离变送器、所述驱动器、所述光电隔离器、所述通讯单元和所述复杂可编程逻辑器件进行控制,并通过所述通讯单元与所述外部装置进行实时交互。
5.如权利要求3或4所述的叶片除冰设备,其特征在于,当嵌入式控制单元根据从外部装置接收到的结冰信号确定需要进行除冰操作时,嵌入式控制单元控制所述N个叶片上的2M×N块加热膜进行通电加热。
6.如权利要求5所述的叶片除冰设备,其特征在于,在温度检测单元包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测后,嵌入式控制单元确定所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值的温度值,并且当嵌入式控制单元确定在所述多个温度值中存在大于或等于预定温度值的温度值时,嵌入式控制单元控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热。
7.一种叶片除冰方法,其特征在于,包括:
由嵌入式控制单元从外部装置接收结冰信号;
由嵌入式控制单元根据接收到的结冰信号确定是否控制除冰单元进行除冰操作;
如果根据所述结冰信号确定需要进行除冰操作,则由嵌入式控制单元控制除冰单元进行除冰操作;
由嵌入式控制单元根据由温度检测单元检测到的温度值来确定是否控制除冰单元停止除冰操作,
其中,所述除冰单元包括预埋在风力发电机组中所包括的N个叶片中的每一个叶片中的2M块加热膜,其中,M是大于或等于1的整数,N是大于或等于3的整数,所述2M块加热膜中的M块加热膜中的每一块加热膜按照从叶片的前缘开始沿着从前缘向后缘的方向被预埋在叶片的一个侧面中,加热膜从叶片的前缘开始向后缘方向延伸预定长度而不到达叶片的后缘位置,并且所述M块加热膜沿着从叶尖到叶根的方向按照第一预定间隔被依次预埋在叶片的所述一个侧面中,所述2M块加热膜中的其余M块加热膜按照与所述M块加热膜对称的方式被预埋在叶片的另一个侧面中,所述加热膜的宽度L1小于或等于叶片前缘至后缘外轮廓线长度L2的2/3;
其中,由嵌入式控制单元根据由温度检测单元检测到的温度值来确定是否控制除冰单元停止除冰操作的步骤包括:由温度检测单元包括的与正在通电加热的全部加热膜相应的多个温度传感器对与所述全部加热膜相应的叶片区域的温度值进行检测操作;由嵌入式控制单元判断所述多个温度传感器检测到的多个温度值中是否存在大于或等于预定温度值的温度值;如果确定在所述多个温度值中不存在大于或等于预定温度值的温度值,则执行所述检测操作;如果确定在所述多个温度值中存在大于或等于预定温度值的温度值,则由嵌入式控制单元控制与检测到大于或等于所述预定温度值的温度值的温度传感器相应的加热膜停止通电加热。
8.如权利要求7所述的叶片除冰方法,其特征在于,由嵌入式控制单元控制除冰单元进行除冰操作的步骤包括:如果根据所述结冰信号确定需要进行除冰操作,则由嵌入式控制单元控制所述2M×N块加热膜通电加热。
9.如权利要求8所述的叶片除冰方法,其特征在于,确定是否控制所述2M×N块加热膜停止通电加热的步骤还包括:
由嵌入式控制单元判断在所述2M×N块加热膜中是否还存在正在通电加热的加热膜;
如果确定在所述2M×N块加热膜中还存在正在通电加热的加热膜,则执行所述检测操作;
如果确定在所述2M×N块加热膜中不存在正在通电加热的加热膜,则所述2M×N块加热膜已全部停止通电加热。
CN201611233132.4A 2016-12-28 2016-12-28 用于风力发电机组的叶片除冰设备和方法 Active CN108252878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611233132.4A CN108252878B (zh) 2016-12-28 2016-12-28 用于风力发电机组的叶片除冰设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611233132.4A CN108252878B (zh) 2016-12-28 2016-12-28 用于风力发电机组的叶片除冰设备和方法

Publications (2)

Publication Number Publication Date
CN108252878A CN108252878A (zh) 2018-07-06
CN108252878B true CN108252878B (zh) 2020-06-26

Family

ID=62719286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611233132.4A Active CN108252878B (zh) 2016-12-28 2016-12-28 用于风力发电机组的叶片除冰设备和方法

Country Status (1)

Country Link
CN (1) CN108252878B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953076A (zh) * 2018-07-27 2018-12-07 陈伟伟 一种基于石墨烯加热膜的风电叶片加热融冰装置
CN113266540A (zh) * 2021-06-21 2021-08-17 中能电力科技开发有限公司 一种风机叶片复合涂层防除冰方法
CN114152365B (zh) * 2022-02-07 2022-04-12 中国空气动力研究与发展中心低速空气动力研究所 一种临界防冰保护的光纤结冰传感器、系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0914276T3 (da) * 1996-07-03 2003-12-08 Lm Glasfiber As Fremgangsmåde og anlæg til afisning af vinger af kompositmateriale
DE10200799A1 (de) * 2002-01-11 2003-07-24 Christina Musekamp Rotorblattheizung für Windkraftanlagen
CN202451373U (zh) * 2011-12-27 2012-09-26 东南大学 热辅助超声波联合除冰装置
DE102013217774A1 (de) * 2012-09-11 2014-03-13 Infineon Technologies Austria Ag Schaltungen, systeme und verfahren zum integrieren von erkennungs- und beheizungsfunktionen
CN103291560A (zh) * 2013-04-26 2013-09-11 湘电新能源有限公司 一种碳晶防冰的方法和采用该方法的风力发电机防冰系统
CN103410680B (zh) * 2013-06-19 2016-01-20 中国科学院电工研究所 用于风力发电机叶片的等离子体控制装置和方法
CN103437949B (zh) * 2013-09-06 2016-05-11 北京金风科创风电设备有限公司 风力发电机叶片、风力发电机以及叶片除冰系统

Also Published As

Publication number Publication date
CN108252878A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
US7868621B2 (en) Power line communication based aircraft power distribution system with real time wiring integrity monitoring capability
CN108252878B (zh) 用于风力发电机组的叶片除冰设备和方法
CN105449865A (zh) 一种用于配电网络故障定位隔离的智能馈线终端ftu
CN104836236A (zh) 用于独立型微电网的配电板
CN103869781A (zh) 一种非相似三余度机载电气负载管理中心
CN110994540A (zh) 一种机载直流控制保护器双余度控制系统
CN203719782U (zh) 一种大规模母线槽温度监测装置
CN103166313A (zh) 一种直流固态功率控制器
CN103852690A (zh) 一种电力输电线路在线监测系统
TWI628890B (zh) Synchronous control system architecture to improve energy efficiency
CN110797965B (zh) 一种转电结构及方法
CN203722329U (zh) 用于供电系统的电力控制系统
CN103944181A (zh) 一种发配电智能监控系统
CN204243780U (zh) 微电网的并网控制装置
CN103762917B (zh) 轴带发电机控制装置
CN204203711U (zh) 一种桥面融雪化冰用发热电缆智能控制系统
CN103872771B (zh) 城市配电网自愈控制方法
CN202159959U (zh) 一种安全节电保护装置
CN203103932U (zh) 一种可配置的母差保护装置
CN213637184U (zh) 一种工业备用电源系统
CN103268108A (zh) 变压器负荷智能管理系统
CN103269128A (zh) 变压器负荷智能监控方法
CN204947954U (zh) 独立太阳能或风能发电电容缓冲汇流系统
CN204304617U (zh) 电力线路监控保护装置
CN109167438A (zh) 一种适用于牵引供电系统的新型保护测控装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant