CN108230419B - 一种遥感图像光谱层析剥离方法及系统 - Google Patents

一种遥感图像光谱层析剥离方法及系统 Download PDF

Info

Publication number
CN108230419B
CN108230419B CN201810113461.8A CN201810113461A CN108230419B CN 108230419 B CN108230419 B CN 108230419B CN 201810113461 A CN201810113461 A CN 201810113461A CN 108230419 B CN108230419 B CN 108230419B
Authority
CN
China
Prior art keywords
spectrum
data
vector
spectral
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810113461.8A
Other languages
English (en)
Other versions
CN108230419A (zh
Inventor
姚佛军
刘成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mineral Resources of Chinese Academy of Geological Sciences
Original Assignee
Institute of Mineral Resources of Chinese Academy of Geological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mineral Resources of Chinese Academy of Geological Sciences filed Critical Institute of Mineral Resources of Chinese Academy of Geological Sciences
Priority to CN201810113461.8A priority Critical patent/CN108230419B/zh
Publication of CN108230419A publication Critical patent/CN108230419A/zh
Application granted granted Critical
Publication of CN108230419B publication Critical patent/CN108230419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10036Multispectral image; Hyperspectral image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种遥感图像光谱层析剥离方法及系统。该方法包括:对初始遥感图像数据进行预处理,进行最小噪声分离变换,去除所述最小噪声分离变换矩阵数据的干扰信息,获得多维空间数据云集;获取所述多维空间数据云集的每个尖端的光谱向量;获取特征值和模拟光谱,根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率;初始图像对应的光谱和透过率;根据反射率数据、光谱和透过率获得剥离后剩余的光谱向量数据;根据所述剥离后剩余的光谱向量数据合成彩色图像,所述彩色图像为光谱层析剥离后的图像。采用本发明的方法及系统,可以有效剥离一定深度的覆盖层图像,为工程勘查,考古,地下暗河等多种隐伏目标的勘查提供有力的技术支持。

Description

一种遥感图像光谱层析剥离方法及系统
技术领域
本发明涉及遥感图像处理领域,特别是涉及一种遥感图像光谱层析剥离方法及系统。
背景技术
遥感图像一般应用于地表,通过遥感图像获得地表的反射率或者辐射率,对于覆盖区,特别是黄土或者沙漠的覆盖,一般无法通过遥感图像进行研究。通过获取遥感图像中的信息(常见的如植被指数,蚀变异常提取),将遥感图像应用到实际工作中,获得经济利益和社会效益。
但是在应用过程中,发现在对于地下一定深度的信息不能有效发现和识别,在全世界范围内,还未有用光学遥感识别地下一定深度信息的先例。由于地表的覆盖,地下深部信息能够通过毛细作用把元素带到地表,这个信息肉眼看不到,遥感图像也不能够观测的到,需要一种方法将覆盖区下的不能看到的信息给显示出来,就像把覆盖层给剥离掉一样,从而实现覆盖层下信息的显示。如果具有更多的规则,可以逐步剥离图像层,从而一层层获得地下浅表一定深度的信息,为地下浅表一定深部不可见信息提供可视化的技术参考。例如在第四系覆盖,沙漠覆盖的地表下常常隐没某种有用信息,通过这种技术用来寻找浅表下一定深度的信息从而获得有效的信息,可以用来寻找沙漠、戈壁下的矿产资源、植被覆盖下的地物等,用于沙漠中寻找地下水、地下矿产、钾盐,也能够用来寻找植被覆盖中的隐伏目标,因此,在国民经济、社会、军事中都具有非常好的应用前景,实践证明也具有非常好的有效性。
发明内容
本发明的目的是提供一种遥感图像光谱层析剥离方法及系统,通过将遥感图像的覆盖层剥离,获得覆盖层下一定深度的隐含层图像,准确快速经济有效的寻找覆盖信息,对矿产勘查、隐蔽目标检测、工程等各个方面提供有力的技术支持,具有较好的应用前景,从而起到节省时间、节约人力物力,事半功倍的效果。
为实现上述目的,本发明提供了如下方案:
一种遥感图像光谱层析剥离方法,所述方法包括:
获取初始遥感图像数据;
对所述初始遥感图像数据进行预处理,得到选定数据;所述选定数据为所述遥感图像数据对应的反射率数据或比发射率数据;
对所述选定数据进行最小噪声分离变换,得到噪声调整后的最小噪声分离变换矩阵数据;
去除所述最小噪声分离变换矩阵数据的干扰信息,得到基础数据;
根据所述基础数据获得多维空间数据云集;
获取所述多维空间数据云集的每个尖端的光谱向量;
获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,所述模拟光谱为所述光谱向量对应于光谱库中的辅助光谱;
根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率;
根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率;
根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据;
根据所述剥离后剩余的光谱向量数据获得剥离后的图像分层信息;
将所述剥离后的图像分层信息进行增强过滤,得到过滤后的图像分层信息;
根据所述过滤后的图像分层信息合成彩色图像,所述彩色图像为光谱层析剥离后的图像。
可选的,所述获取初始遥感图像数据之后,还包括:
获得所述初始遥感图像中每一个波段像元对应窗口的直方图;
判断所述直方图是否满足第一条件,所述第一条件为所述直方图的偏度系数g∈[-ε11],其中
Figure GDA0003029136270000031
判断所述直方图是否满足第二条件,所述第二条件为所述直方图的峰度系数f∈[-ε22],其中
Figure GDA0003029136270000032
其中m×n为初始遥感图像的大小,xj,k为所述初始遥感图像的任一波段的像元值,1≤j≤m,1≤k≤n;
Figure GDA0003029136270000034
为所述初始遥感图像的像元均值,σ为标准差,ε1为设定的正数,ε2为设定的正数;
将同时满足所述第一条件和所述第二条件的直方图对应的初始遥感图像确定为符合要求的初始遥感图像。
可选的,所述根据所述基础数据获得多维空间数据云集,具体包括:
对于y个维度空间的任一维度,利用
Figure GDA0003029136270000033
获取第k级灰度值的概率pr(rk),其中0≤rk≤255,k=0,1,2,...,L-1,rk为灰阶度,L为灰度级数,yk是在图像中出现第k级灰度的次数,N是所述初始遥感图像中的像素数;
根据每个维度的DN值分布特征,确定每个维度的值域分布
Figure GDA0003029136270000041
∈为[0,255]之间的任一值;
根据每个维度的值域分布确定所述多维空间数据云集为
Figure GDA0003029136270000042
可选的,所述获取所述多维空间数据云集的每个尖端的光谱向量,具体包括:
利用
Figure GDA0003029136270000043
获取所述多维空间数据云集的尖端的位置H(c,z);其中z是像元索引,e和d代表从1到最大扩展值D的尖端索引,R为数据集,c代表光谱通道索引;A为贡献值;
根据所述尖端的位置,确定所述尖端的光谱表达式为
Figure GDA0003029136270000044
其中c1表示波段c1,ρc1为波段c1的反射率;c2表示波段c2,ρc2为波段c2的反射率,cn表示波段cn,ρcn为波段cn的反射率;
确定每个尖端的光谱向量为Hf={ρc1f...ρcnf},f为每个尖端的光谱向量的索引,ρc1f为波段c1的索引,ρcnf为波段cn的索引。
可选的,所述获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,具体包括:
获取光谱库S,
Figure GDA0003029136270000045
其中
Figure GDA0003029136270000046
Bh为所述光谱库中第h条光谱曲线,1≤h≤m,
Figure GDA0003029136270000047
为第h条光谱曲线中波段c1的反射率,
Figure GDA0003029136270000048
为第h条光谱曲线中波段c2的反射率,
Figure GDA0003029136270000049
为第h条光谱曲线中波段cn的反射率,
Figure GDA0003029136270000051
为第1条光谱曲线中波段c1的反射率,
Figure GDA0003029136270000052
为第1条光谱曲线中波段c2的反射率,
Figure GDA0003029136270000053
为第1条光谱曲线中波段cn的反射率,
Figure GDA0003029136270000054
为第2条光谱曲线中波段c1的反射率,
Figure GDA0003029136270000055
为第2条光谱曲线中波段c2的反射率,
Figure GDA0003029136270000056
为第2条光谱曲线中波段cn的反射率,
Figure GDA0003029136270000057
为第m条光谱曲线中波段c1的反射率,
Figure GDA0003029136270000058
为第m条光谱曲线中波段c2的反射率,
Figure GDA0003029136270000059
为第m条光谱曲线中波段cn的反射率;
利用公式S=FTHfF确定所述光谱向量Hf对应的模拟光谱Bf;其中F为辅助矩阵,T为转置符号;
利用公式CHf=λHf确定所述光谱向量Hf的特征值λ,其中C为协方差矩阵。
可选的,所述根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率,具体包括:
利用公式X=SA+W确定所有尖端对应的模拟透过率矩阵A,其中其中X为所有模拟光谱对应的向量矩阵,W为噪声向量矩阵,A=[a1...ab],a1为第1个尖端对应的模拟透过率,ab为第b个尖端对应的模拟透过率;X=[x1...xb],x1为第1个模拟光谱B1对应的向量,xb为第b个模拟光谱Bb对应的向量;W=[w1...wb],w1为第1个噪声向量,wb为第b个噪声向量;b为一个尖端包括的波段数。
可选的,所述根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率,具体包括:
利用
Figure GDA00030291362700000510
获得转化后的光谱Qh,其中Tmnf为最小噪声分离变换矩阵;
利用
Figure GDA00030291362700000511
获得转化后的透过率矩阵AT,其中AT=[a1T...abT],a1T为第1个尖端对应的转化后的透过率,abT为第b个尖端对应的转化后的透过率。
可选的,所述根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据,具体包括:
利用arTQh+(1-arT)p=ρ,0≤arT≤1,r∈[0,m]获得剥离后剩余的光谱向量p,其中,arT为第r个尖端对应的转化后的透过率,ρ为所述遥感图像数据对应的反射率。
可选的,所述根据所述过滤后的光谱信息合成彩色图像,具体包括:
利用
Figure GDA0003029136270000061
获得任意第u个波段和第v个波段之间的OIF值;其中Su为第u个波段的标准差,Ru,v为第u个波段和第v个波段的相关系数;
对所有的OIF值按照降序规则排序;
获取排序后的OIF值队列中前两个OIF值对应的三个波段;
将所述三个波段组合合成的图像作为底图;
将所述合成的图像利用RGB合成彩色图像。
一种遥感图像光谱层析剥离系统,所述系统包括:
初始遥感图像数据获取模块,用于获取初始遥感图像数据;
预处理模块,用于对所述初始遥感图像数据进行预处理,得到选定数据;所述选定数据为所述遥感图像数据对应的反射率数据或比发射率数据;
最小噪声分离变换模块,用于对所述选定数据进行最小噪声分离变换,得到噪声调整后的最小噪声分离变换矩阵数据;
干扰信息去除模块,用于去除所述最小噪声分离变换矩阵数据的干扰信息,得到基础数据;
多维空间数据云集获取模块,用于根据所述基础数据获得多维空间数据云集;
光谱向量获取模块,用于获取所述多维空间数据云集的每个尖端的光谱向量;
特征值和模拟光谱获取模块,用于获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,所述模拟光谱为所述光谱向量对应于光谱库中的辅助光谱;
模拟透过率确定模块,用于根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率;
转化后光谱和透过率获取模块,用于根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率;
剥离后剩余的光谱向量数据获取模块,用于根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据;
剥离后的图像分层信息获取模块,用于根据所述剥离后剩余的光谱向量数据获得剥离后的图像分层信息;
增强过滤模块,用于将所述剥离后的图像分层信息进行增强过滤,得到过滤后的图像分层信息;
彩色图像合成模块,用于根据所述过滤后的图像分层信息合成彩色图像,所述彩色图像为光谱层析剥离后的图像。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
现有技术寻找隐伏目标主要是利用地球物理的方法,利用EH4,二维地震等。遥感的方面目前来看,光学遥感没有,雷达遥感根据雷达本身具有的穿透性进行识别的,这种识别对于基于光谱特征的矿产勘查不能够表述。本技术主要是利用遥感光谱的手段,通过一定的剥离技术识别隐伏在覆盖层下的目标,能够改变地球物理点线形式的识别方法,是以区域为目标的识别,能够优化雷达遥感基于物质后向散射特征的识别,能够反映地下一定深度的物质的光谱特征,通过实验证明是有效的。本发明应用在地质矿产勘查中证明是非常有效的方法,例如在新疆沙漠中利用光谱层析剥离技术成功提取了沙漠下的盐层,化验分析本区域含钾。另外本技术在中国南方植被覆盖区进行的矿产勘查,找到了许多矿、矿点等。因此,采用本发明技术可以剥离一定深度的覆盖层图像,为工程勘查,考古,地下暗河等多种隐伏目标的勘查提供有力的技术支持。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明遥感图像光谱层析剥离方法的流程示意图;
图2为本发明遥感图像光谱层析剥离方法中获得的多维空间数据云集的示意图;
图3为本发明遥感图像光谱层析剥离方法中多维空间数据云集的尖端的示意图;
图4为本发明遥感图像光谱层析剥离方法中模拟透过率的示意图;
图5a-5c为本发明遥感图像光谱层析剥离方法的变化示意图,其中图5a为原始遥感图像,图5b为层析剥离过程分层示意图,图5c为剥离后的图像;
图6为本发明遥感图像光谱层析剥离系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明遥感图像光谱层析剥离方法的流程示意图。如图1所示,所述方法包括:
步骤101:获取初始遥感图像数据,并进行预处理,得到选定数据。
具体的包括三个步骤:
(1)获取初始遥感图像。根据实际需求,通常遥感数据需要选择无云少云的秋冬季,尽量避免植被的影响,同时要求不是雨后的数据,因为水对电磁波的吸收使得信息反射极微弱;冬季数据要避免选择冰雪覆盖数据,因为冰雪对电磁波的强反射,使得信息透射极微弱。另外在波段选择上根据获取隐伏目标的不同,选择不同的波段组合,如岩石需要选择TM数据的第五和第七波段加上第一和第四波段的组合。虽然波段组合不同,但一般须有红外数据的参与。
(2)筛选符合要求的初始遥感图像。
首先获得所述初始遥感图像中每一个波段像元对应窗口的直方图;
然后利用偏度系数和峰度系数进行判断直方图是否近似正态分布,当直方图近似正态分布时说明图像符合要求。
因此,判断直方图是否满足第一条件,所述第一条件为所述直方图的偏度系数g∈[-ε11],其中
Figure GDA0003029136270000091
判断所述直方图是否满足第二条件,所述第二条件为所述直方图的峰度系数f∈[-ε22],其中
Figure GDA0003029136270000101
其中m×n为初始遥感图像的大小,xj,k为所述初始遥感图像的任一波段的像元值,1≤j≤m,1≤k≤n;
Figure GDA0003029136270000102
为所述初始遥感图像的像元均值,σ为标准差,ε1为设定的正数,ε2为设定的正数;
当偏度系数和峰度系数均满足要求时,此时的遥感图像数据较好,因此将同时满足所述第一条件和所述第二条件的直方图对应的初始遥感图像确定为符合要求的初始遥感图像。之后步骤的研究对象均是基于符合要求的初始遥感图像。
(3)对符合要求的初始遥感图像进行预处理。由于直接获取遥感图像存在几何变形,因此通过遥感器增益和偏移参数等对遥感图像进行预处理,经过预处理得到带有坐标信息的行星反射率图像,定义为选定数据;所述选定数据为所述遥感图像数据对应的反射率数据或比发射率数据。具体预处理包括:
对于可见光至短波数据,确定遥感图像数据对应的反射率。具体公式如下:
Figure GDA0003029136270000103
其中:Re为行星反射率;pi=3.14,d1表示影像当天的日地距离;α是太阳高度角;Esun值为大气层外相应波长的太阳光谱辐照度;L1是辐亮度,可通过下式求出:
L1=gain×DN+bias
其中:gain为增益,bias为偏移。
对于热红外数据,确定遥感图像数据对应的比发射率。具体公式如下:
Figure GDA0003029136270000111
其中:ε为比发射率,T1为温度,
Figure GDA0003029136270000112
λ1为波长,β1,β2为常数,β1=3.74818×10-4Wμm2,β2=1.43878×104Kμm。R1为光谱辐射亮度,可以通过下面公式计算出:
Figure GDA0003029136270000113
QCAL是数据的实际辐射,LMINλ是QCAL=0时的光谱辐射值,LMAXλ是在QCAL=QCALMAX的光谱辐射值,QCALMAX是数据的图像辐射值。R1的单位是W/(m2×sr×μm)。
步骤102:对所述选定数据进行最小噪声分离变换,并去除最小噪声分离变换矩阵数据的干扰信息,得到基础数据。
(1)最小噪声分离变换。最小噪声分离变换本质上是两次层叠的主成分分析变换,第一次变换用于分离和调节数据的噪声,第二次变换是对噪声白化数据的标准主成分变换。
首先通过对选定数据协方差Kn×n进行分解:Kn×n=DkEkDk
Dk=diag{σ1,…,σn}为一个对角矩阵,n为波段数,Kn×n的对角元素
Figure GDA0003029136270000114
为第i波段样本变量的方差,且
Figure GDA0003029136270000115
上式中,ρkl为Kn×n在(k,l)处的相关系数(k≠l)。
Figure GDA0003029136270000116
也可以分解成
Figure GDA0003029136270000117
其中
Figure GDA00030291362700001111
为一个对角矩阵,
Figure GDA0003029136270000118
Figure GDA0003029136270000119
的对角元素,并且,
Figure GDA00030291362700001110
式中,ξkl
Figure GDA0003029136270000121
在(k,l)处的相关系数(k≠l),ξi和σi存在如下关系:
Figure GDA0003029136270000122
其中
Figure GDA0003029136270000123
为第l波段与除第l波段外剩余n-1个波段之间的多元相关系数,可以通过多元回归理论获得,
Figure GDA0003029136270000124
是第i波段噪声方差估计的倒数。因此,噪声协方差矩阵Cn可以通过对角阵
Figure GDA0003029136270000125
来估计。
获得Cn的对角化矩阵Dn:Dn=UTCnU;式中,Dn为Cn的特征值按照降序排列的对角矩阵,U为由特征向量组成的正交矩阵。
在此基础上,构建矩阵
Figure GDA0003029136270000126
那么
Figure GDA0003029136270000127
其中I为单位矩阵。
对选定数据X可以通过Y=PX变换到新空间。
利用矩阵P对遥感数据总协方差矩阵Cz进行变换,得到噪声调整后的总协方差矩阵Cz-a,Cz-a=PTCzP。
计算协方差矩阵Cz-a的特征向量矩阵V,使得VTCz-aV=Dz-a,Dz-a为特征向量矩阵V所对应的特征值按降序排列得对角矩阵,且VTV=I,I为单位矩阵。
由此,获得最小噪声分离变换(Minimum Noise Fraction Rotation,MNF)矩阵Tmnf=PV。
(2)去除最小噪声分离变换矩阵数据的干扰信息,得到基础数据。基础数据是噪声变换后通过去除干扰信息形成的数据,避免干扰信息影响结果,例如高亮、极暗地物,所谓高亮地物指的是诸如冰雪、云等集中高反射的地物,所谓极暗地物指的是水体、阴影等地物,这会或多或少影响处理得精度。常见的去除干扰模式有比值法、高端或低端切割法、Q值法、光谱角法等。高端或低端切割法,主要是利用干扰地物在遥感图像上某个波段有特征的高反射或强吸收,即某波段干扰地物有高值或低值,比如水体在TM/ETM的第7波段有低值,采用低端切割方法处理,而云在TM/ETM的第1波段有高值,采用高端切割方法处理,白泥地在TM/ETM的第3波段有高值,采用高端切割方法处理等。比值法常用于去除阴影、水体、冰雪、白泥地等多种干扰。首先判断干扰地物的各个波段的波谱特征,比如TM/ETM图像的阴影区第1波段明显大于第7波段,因此采用第7波段比第1波段的方法,设定一个阈值进行去除,植被采用第5波段比第4波段或者第3波段比第4波段的方法等。Q值法主要解决了雪边或湖边湿地、干河道、冲积区、薄云等干扰。
步骤103:根据所述基础数据获得多维空间数据云集。采用统计方法,确立空间数据云集多维空间分布特征,先计算每一个维度的DN值统计特征。
假设每一个维度的DN值域分布在0≤rk≤∈范围内。对[0,∈]区间内的任一个rk值进行如下变换:
Figure GDA0003029136270000131
式中,L是灰度级数;pr(rk)是取第k级灰度值的概率;yk是在图像中出现第k级灰度的次数;N是初始遥感图像中的像素数。
根据每个维度DN值分布特征,确定多维空间DN值分布特征。
假设共有y个维度,每个维度的DN值域分布为
Figure GDA0003029136270000132
那么多维空间数据云集可以表示为
Figure GDA0003029136270000133
如图2所示,图2为本发明遥感图像光谱层析剥离方法中获得的多维空间数据云集的示意图。
步骤104:获取所述多维空间数据云集的每个尖端的光谱向量。形成的数据云集用来提取尖端辅助光谱和其特征值。所谓尖端辅助光谱是从多维空间数据云集中确立的各个数据的光谱特征,如图3所示,图3为本发明遥感图像光谱层析剥离方法中多维空间数据云集的尖端的示意图。
获取所述多维空间数据云集的每个尖端的光谱向量,具体过程为:
利用
Figure GDA0003029136270000141
获取所述多维空间数据云集的尖端的位置H(c,z);其中z是像元索引,e和d代表从1到最大扩展值D的尖端索引,R为数据集,c代表光谱通道索引;A为贡献值;
根据寻找到的尖端的位置,采用辅助光谱获得尖端的光谱,尖端光谱H是一个有c个波段的光谱确定所述尖端的光谱表达式为
Figure GDA0003029136270000142
其中c1表示波段c1,ρc1为波段c1的反射率;c2表示波段c2,ρc2为波段c2的反射率,cn表示波段cn,ρcn为波段cn的反射率;
确定每个尖端的光谱向量为Hf={ρc1f...ρcnf},f为每个尖端的光谱向量的索引,ρc1f为波段c1的索引,ρcnf为波段cn的索引。
步骤105:获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱。所述模拟光谱为所述光谱向量对应于光谱库中的辅助光谱。以矿物岩石为例:
首先获取光谱库S,光谱库由若干条光谱曲线构造,比如绿泥石光谱曲线,花岗岩光谱曲线等,假设光谱库S由m条光谱曲线构造,每条光谱曲线可以表示为
Figure GDA0003029136270000143
Bh为所述光谱库中第h条光谱曲线,因此,光谱库
Figure GDA0003029136270000144
其中c1表示波段c1,
Figure GDA0003029136270000145
为第h条光谱曲线中波段cn的反射率;
利用公式S=FTHfF确定所述光谱向量Hf对应的模拟光谱Bf;其中F为辅助矩阵,T为转置符号;
利用公式CHf=λHf确定所述光谱向量Hf的特征值λ,其中C为协方差矩阵。
步骤106:根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率。通过尖端对应的模拟光谱,来进行分层,并对每一个分层确定模拟透过率。对b个尖端对应的模拟光谱来说,满足公式X=SA+W,因此利用公式X=SA+W确定所有尖端对应的模拟透过率矩阵A,其中其中X为所有模拟光谱对应的向量矩阵,W为噪声向量矩阵,A=[a1...ab],a1为第1个尖端对应的模拟透过率,ab为第b个尖端对应的模拟透过率;X=[x1...xb],x1为第1个模拟光谱B1对应的向量,xb为第b个模拟光谱Bb对应的向量;W=[w1...wb],w1为第1个噪声向量,wb为第b个噪声向量;b为一个尖端包括的波段数。
根据以上处理后,我们获得了分层模拟透过率矩阵A。如图4所示,图4为本发明遥感图像光谱层析剥离方法中模拟透过率的示意图,包括五层。
步骤107:根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率。此前获得的模拟光谱和模拟透过率,主要是最小噪声变换后的数据,对于每个分层和模拟光谱还需要反转换回去,对应于初始遥感图像对应的每个分层的光谱和透过率。因此,利用
Figure GDA0003029136270000151
获得转化后的光谱Qh,其中Bh为模拟光谱,Tmnf为最小噪声分离变换矩阵;利用
Figure GDA0003029136270000152
获得转化后的透过率矩阵AT,其中AT=[a1T...abT],a1T为第1个尖端对应的转化后的透过率,abT为第b个尖端对应的转化后的透过率。转化后的光谱和透过率为初始遥感图像每层对应的光谱和透过率。
步骤108:获得剥离后剩余的光谱向量数据。经过上面的计算,已经获得每个尖端(每层)对应的光谱和透过率,那么可以利用最小二乘法反演有用信息的反射率,根据光程模型,虚拟剥离层Ai是按一定透过率混合在遥感图像上,图像上每一点都能表示成如下公式:arTBrT+(1-arT)p=ρ,0≤arT≤1,i∈[0,m],其中arT为第r个尖端对应的转化后的透过率,BrT为剥离层对应的转化后的光谱,ρ为所述遥感图像数据对应的反射率,初始遥感图像的大小为m×n,p为实际需要的光谱,即为剥离覆盖层后剩余的光谱向量,因此,根据上式可获得剥离后剩余的光谱向量p。
步骤109:根据所述剥离后剩余的光谱向量数据获得剥离后的图像分层信息。根据光谱向量p可以得到剥离后的图像分层信息。
步骤110:将剥离后的图像分层信息进行增强过滤,得到过滤后的图像分层信息。由于经过处理后的图像信息有所弱化,因此,需要弱信息增强过滤器对图像信息进行滤波,分割细微差别的不同图像,从而获得细节上更加精细的图像。
增强后的图像fi,其最大灰度值(DN值)为g,其频域直方图可以表示为
Figure GDA0003029136270000161
其中ρ是图像DN值等于k出现的频次。
根据频域直方图,如果给定的ε,∈值,则:dk=k2-k1<ε,dhf(k2)-hf(k1)<∈
划分n区域Ci,一个区域内的最大差异采用区内差表示:
Figure GDA0003029136270000162
两个区域的区间差异可以表示为:
Figure GDA0003029136270000163
区间差异和区内差异比较:
Figure GDA0003029136270000164
其中
Figure GDA0003029136270000165
κ为给定的一个参数,P(Ci)为区域Ci内像素总数,根据区间差异与区内差异的大小关系确定合并或者分离区域Ci,Cj
步骤111:根据过滤后的图像分层信息合成彩色图像。所述彩色图像为光谱层析剥离后的图像。经过以上基本处理后,将得出的遥感图像层进行重新组合,选择三个波段最优层,进行重新组合。
利用
Figure GDA0003029136270000171
获得任意第u个波段和第v个波段之间的OIF值;其中Su为第u个波段的标准差,Ru,v为第u个波段和第v个波段的相关系数;
对所有的OIF值按照降序规则排序;
获取排序后的OIF值队列中前两个OIF值对应的三个波段;
将所述三个波段组合合成的图像作为底图;OIF越大,表明包含的信息量越大,因此,最大的OIF波段组合为最佳波段组合,采用最佳波段组合合成的图像作为底图。例如,OIF值最大对应的是第i个波段和第j个波段,OIF值次最大对应的是第i个波段和第k个波段,则最终确定的是第i个波段、第j个波段和第k个波段最为最佳波段组合。
将所述合成的图像利用RGB合成彩色图像。组合后的图像利用RGB(红色、绿色、蓝色)合成一幅假彩色图像,这样做出来的图像会反映更多的去除背景噪声后的精细信息,更加适合人的视觉习惯,简单、易用。
最终输出一幅适合人眼观察的叠加图像。通过软件输出成为JPG或者TIF格式的最终图像,便于工作人员进行进一步的研究。
图5a-5c为本发明遥感图像光谱层析剥离方法的变化示意图,其中图5a为原始遥感图像,图5b为层析剥离过程分层示意图,图5c为剥离后的图像。如图所示,初始获得遥感图像无法获得一定深度的隐含信息,通过将遥感图像进行分层分析,进而剥离覆盖层的信息,使一定深度被覆盖的信息显示,并重新合成新的图像,便于工作人员的进一步研究。
本发明受中央级公益性科研院所基本科研业务费专项资金资助项目(编号:K1501,K1617)的资助。本发明的目的是提供新的技术,为浅表地下一定深度的覆盖进行遥感信息提取提供了一种新的技术方法,适用于沙漠覆盖区、第四系覆盖区、植被覆盖区的找浅表矿、寻找隐伏目标等。本利用图像空间数据集中的多维分布,通过辅助法提取分层信息绝对特征,然后把分层信息含量计算出来,最后通过一定的迭代处理获得浅表地下一定深度的信息,将其结果应用到寻找隐伏目标的信息提取技术。能够解决浅表隐伏区获得地下信息难度大,遥感无法寻找地下信息等问题。采用遥感图像光谱层析剥离技术能够反映一定地物下浅表的信息,能够获得有效的地下深处的光谱信息,从而减小覆盖层对地物的影响,对于遥感图像光谱层析剥离技术主要理解为“主要针对遥感数据,采用光谱的方法,对遥感数据进行分层进行分析,然后剥离分层的信息,从而获得层下的信息。”如果分层为遥感图像的分层为沙漠覆盖层,那么获得的分层信息为沙漠覆盖层和沙漠覆盖下地物的信息。这个能够准确快速经济有效的寻找覆盖信息,从而起到覆盖下信息的准确信息,对直到矿产勘查,隐蔽目标检测,工程等各个方面都具有较好的应用前景,从而起到节省时间、节约人力物力,事半功倍的作用,是科学技术进步促进生产发展的新技术。在2017年期间,采用本技术在新疆沙漠中发现覆盖层下的盐层,已经取得显著的效果。
图6为本发明遥感图像光谱层析剥离系统的结构示意图。如图6所示,所述系统包括:
初始遥感图像数据获取模块601,用于获取初始遥感图像数据;
预处理模块602,用于对所述初始遥感图像数据进行预处理,得到选定数据;所述选定数据为所述遥感图像数据对应的反射率数据或比发射率数据;
最小噪声分离变换模块603,用于对所述选定数据进行最小噪声分离变换,得到噪声调整后的最小噪声分离变换矩阵数据;
干扰信息去除模块604,用于去除所述最小噪声分离变换矩阵数据的干扰信息,得到基础数据;
多维空间数据云集获取模块605,用于根据所述基础数据获得多维空间数据云集;
光谱向量获取模块606,用于获取所述多维空间数据云集的每个尖端的光谱向量;
特征值和模拟光谱获取模块607,用于获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,所述模拟光谱为所述光谱向量对应于光谱库中的辅助光谱;
模拟透过率确定模块608,用于根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率;
转化后光谱和透过率获取模块609,用于根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率;
剥离后剩余的光谱向量数据获取模块610,用于根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据;
剥离后的图像分层信息获取模块611,用于根据所述剥离后剩余的光谱向量数据获得剥离后的图像分层信息;
增强过滤模块612,用于将所述剥离后的图像分层信息进行增强过滤,得到过滤后的图像分层信息;
彩色图像合成模块613,用于根据所述过滤后的图像分层信息合成彩色图像,所述彩色图像为光谱层析剥离后的图像。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

1.一种遥感图像光谱层析剥离方法,其特征在于,所述方法包括:
获取初始遥感图像数据;
对所述初始遥感图像数据进行预处理,得到选定数据;所述选定数据为所述遥感图像数据对应的反射率数据或比发射率数据;
对所述选定数据进行最小噪声分离变换,得到噪声调整后的最小噪声分离变换矩阵数据;
去除所述最小噪声分离变换矩阵数据的干扰信息,得到基础数据;
根据所述基础数据获得多维空间数据云集;
获取所述多维空间数据云集的每个尖端的光谱向量;
获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,所述模拟光谱为所述光谱向量对应于光谱库中的辅助光谱;
根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率;
根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率;
根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据;
根据所述剥离后剩余的光谱向量数据获得剥离后的图像分层信息;
将所述剥离后的图像分层信息进行增强过滤,得到过滤后的图像分层信息;
根据所述过滤后的图像分层信息合成彩色图像,所述彩色图像为光谱层析剥离后的图像;
所述获取所述多维空间数据云集的每个尖端的光谱向量,具体包括:
利用
Figure FDA0003029136260000021
获取所述多维空间数据云集的尖端的位置H(c,z);其中c为光谱通道索引,z为像元索引,e和d为从1到最大扩展值D的尖端索引,R为数据集,A为贡献值;
根据所述尖端的位置,确定所述尖端的光谱表达式为
Figure FDA0003029136260000022
其中c1表示波段c1,ρc1为波段c1的反射率;c2表示波段c2,ρc2为波段c2的反射率,cn表示波段cn,ρcn为波段cn的反射率;
确定每个尖端的光谱向量为Hf={ρc1f ... ρcnf},f为每个尖端的光谱向量的索引,ρc1f为波段c1的索引,ρcnf为波段cn的索引;
所述获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,具体包括:
获取光谱库S,
Figure FDA0003029136260000023
其中
Figure FDA0003029136260000024
Bh为所述光谱库中第h条模拟光谱,1≤h≤m,
Figure FDA0003029136260000025
为第h条光谱曲线中波段c1的反射率,
Figure FDA0003029136260000026
为第h条光谱曲线中波段c2的反射率,
Figure FDA0003029136260000027
为第h条光谱曲线中波段cn的反射率,
Figure FDA0003029136260000028
为第1条光谱曲线中波段c1的反射率,
Figure FDA0003029136260000029
为第1条光谱曲线中波段c2的反射率,
Figure FDA00030291362600000210
为第1条光谱曲线中波段cn的反射率,
Figure FDA00030291362600000211
为第2条光谱曲线中波段c1的反射率,
Figure FDA00030291362600000212
为第2条光谱曲线中波段c2的反射率,
Figure FDA00030291362600000213
为第2条光谱曲线中波段cn的反射率,
Figure FDA00030291362600000214
为第m条光谱曲线中波段c1的反射率,
Figure FDA00030291362600000215
为第m条光谱曲线中波段c2的反射率,
Figure FDA00030291362600000216
为第m条光谱曲线中波段cn的反射率,m×n为初始遥感图像的大小;
利用公式S=FTHfF确定所述光谱向量Hf对应的模拟光谱Bf;其中F为辅助矩阵,T为转置符号;
利用公式CHf=λHf确定所述光谱向量Hf的特征值λ,其中C为协方差矩阵;
所述根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率,具体包括:
利用公式X=SA+W确定所有尖端对应的模拟透过率矩阵A,其中X为所有模拟光谱对应的向量矩阵,W为噪声向量矩阵,A=[a1 ... ab],a1为第1个尖端对应的模拟透过率,ab为第b个尖端对应的模拟透过率;X=[x1 ... xb],x1为第1个模拟光谱B1对应的向量,xb为第b个模拟光谱Bb对应的向量;W=[w1 ... wb],w1为第1个噪声向量,wb为第b个噪声向量;b为一个尖端包括的波段数;
所述根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率,具体包括:
利用
Figure FDA0003029136260000031
获得转化后的光谱Qh,其中Tmnf为最小噪声分离变换矩阵;
利用
Figure FDA0003029136260000032
获得转化后的透过率矩阵AT,其中AT=[a1T ... abT],a1T为第1个尖端对应的转化后的透过率,abT为第b个尖端对应的转化后的透过率。
2.根据权利要求1所述的方法,其特征在于,所述获取初始遥感图像数据之后,还包括:
获得所述初始遥感图像中每一个波段像元对应窗口的直方图;
判断所述直方图是否满足第一条件,所述第一条件为所述直方图的偏度系数g∈[-ε1,ε1],其中
Figure FDA0003029136260000033
判断所述直方图是否满足第二条件,所述第二条件为所述直方图的峰度系数f∈[-ε22],其中
Figure FDA0003029136260000041
其中,xj,k为所述初始遥感图像的任一波段的像元值,1≤j≤m,1≤k≤n;
Figure FDA0003029136260000042
为所述初始遥感图像的像元均值,σ为标准差,ε1为设定的正数,ε2为设定的正数;
将同时满足所述第一条件和所述第二条件的直方图对应的初始遥感图像确定为符合要求的初始遥感图像。
3.根据权利要求1所述的方法,其特征在于,所述根据所述基础数据获得多维空间数据云集,具体包括:
对于y个维度空间的任一维度,利用
Figure FDA0003029136260000043
获取第k级灰度值的概率pr(rk),其中0≤rk≤255,k=0,1,2,...,L-1,rk为灰阶度,L为灰度级数,yk是在图像中出现第k级灰度的次数,N是所述初始遥感图像中的像素数;
根据每个维度的DN值分布特征,确定每个维度的值域分布
Figure FDA0003029136260000044
∈为[0,255]之间的任一值,i为所述多维空间数据云集中概率的索引;
根据每个维度的值域分布确定所述多维空间数据云集为
Figure FDA0003029136260000045
4.根据权利要求1所述的方法,其特征在于,所述根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据,具体包括:
利用arTQh+(1-arT)p=ρ,0≤arT≤1,r∈[0,m]获得剥离后剩余的光谱向量p,其中,arT为第r个尖端对应的转化后的透过率,ρ为所述遥感图像数据对应的反射率。
5.根据权利要求1所述的方法,其特征在于,所述根据所述过滤后的光谱信息合成彩色图像,具体包括:
利用
Figure FDA0003029136260000051
获得任意第u个波段和第v个波段之间的OIF值;其中Su为第u个波段的标准差,Ru,v为第u个波段和第v个波段的相关系数;
对所有的OIF值按照降序规则排序;
获取排序后的OIF值队列中前两个OIF值对应的三个波段;
将所述三个波段组合合成的图像作为底图;
将所述合成的图像利用RGB合成彩色图像。
6.一种遥感图像光谱层析剥离系统,其特征在于,所述系统包括:
初始遥感图像数据获取模块,用于获取初始遥感图像数据;
预处理模块,用于对所述初始遥感图像数据进行预处理,得到选定数据;所述选定数据为所述遥感图像数据对应的反射率数据或比发射率数据;
最小噪声分离变换模块,用于对所述选定数据进行最小噪声分离变换,得到噪声调整后的最小噪声分离变换矩阵数据;
干扰信息去除模块,用于去除所述最小噪声分离变换矩阵数据的干扰信息,得到基础数据;
多维空间数据云集获取模块,用于根据所述基础数据获得多维空间数据云集;
光谱向量获取模块,用于获取所述多维空间数据云集的每个尖端的光谱向量;
特征值和模拟光谱获取模块,用于获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,所述模拟光谱为所述光谱向量对应于光谱库中的辅助光谱;
模拟透过率确定模块,用于根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率;
转化后光谱和透过率获取模块,用于根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率;
剥离后剩余的光谱向量数据获取模块,用于根据所述遥感图像数据对应的反射率数据、所述转化后的光谱和所述转化后的透过率获得剥离后剩余的光谱向量数据;
剥离后的图像分层信息获取模块,用于根据所述剥离后剩余的光谱向量数据获得剥离后的图像分层信息;
增强过滤模块,用于将所述剥离后的图像分层信息进行增强过滤,得到过滤后的图像分层信息;
彩色图像合成模块,用于根据所述过滤后的图像分层信息合成彩色图像,所述彩色图像为光谱层析剥离后的图像;
所述获取所述多维空间数据云集的每个尖端的光谱向量,具体包括:
利用
Figure FDA0003029136260000061
获取所述多维空间数据云集的尖端的位置H(c,z);其中c为光谱通道索引,z为像元索引,e和d为从1到最大扩展值D的尖端索引,R为数据集,A为贡献值;
根据所述尖端的位置,确定所述尖端的光谱表达式为
Figure FDA0003029136260000062
其中c1表示波段c1,ρc1为波段c1的反射率;c2表示波段c2,ρc2为波段c2的反射率,cn表示波段cn,ρcn为波段cn的反射率;
确定每个尖端的光谱向量为Hf={ρc1f ... ρcnf},f为每个尖端的光谱向量的索引,ρc1f为波段c1的索引,ρcnf为波段cn的索引;
所述获取所述光谱向量的特征值和所述光谱向量对应的模拟光谱,具体包括:
获取光谱库S,
Figure FDA0003029136260000071
其中
Figure FDA0003029136260000072
Bh为所述光谱库中第h条模拟光谱,1≤h≤m,
Figure FDA0003029136260000073
为第h条光谱曲线中波段c1的反射率,
Figure FDA0003029136260000074
为第h条光谱曲线中波段c2的反射率,
Figure FDA0003029136260000075
为第h条光谱曲线中波段cn的反射率,
Figure FDA0003029136260000076
为第1条光谱曲线中波段c1的反射率,
Figure FDA0003029136260000077
为第1条光谱曲线中波段c2的反射率,
Figure FDA0003029136260000078
为第1条光谱曲线中波段cn的反射率,
Figure FDA0003029136260000079
为第2条光谱曲线中波段c1的反射率,
Figure FDA00030291362600000710
为第2条光谱曲线中波段c2的反射率,
Figure FDA00030291362600000711
为第2条光谱曲线中波段cn的反射率,
Figure FDA00030291362600000712
为第m条光谱曲线中波段c1的反射率,
Figure FDA00030291362600000713
为第m条光谱曲线中波段c2的反射率,
Figure FDA00030291362600000714
为第m条光谱曲线中波段cn的反射率,m×n为初始遥感图像的大小;
利用公式S=FTHfF确定所述光谱向量Hf对应的模拟光谱Bf;其中F为辅助矩阵,T为转置符号;
利用公式CHf=λHf确定所述光谱向量Hf的特征值λ,其中C为协方差矩阵;
所述根据所述光谱向量和所述模拟光谱确定每个尖端对应的模拟透过率,具体包括:
利用公式X=SA+W确定所有尖端对应的模拟透过率矩阵A,其中X为所有模拟光谱对应的向量矩阵,W为噪声向量矩阵,A=[a1 ... ab],a1为第1个尖端对应的模拟透过率,ab为第b个尖端对应的模拟透过率;X=[x1 ... xb],x1为第1个模拟光谱B1对应的向量,xb为第b个模拟光谱Bb对应的向量;W=[w1 ... wb],w1为第1个噪声向量,wb为第b个噪声向量;b为一个尖端包括的波段数;
所述根据所述最小噪声分离变换矩阵数据对所述模拟光谱和所述模拟透过率进行转化,获得转化后的光谱和转化后的透过率,具体包括:
利用
Figure FDA0003029136260000081
获得转化后的光谱Qh,其中Tmnf为最小噪声分离变换矩阵;
利用
Figure FDA0003029136260000082
获得转化后的透过率矩阵AT,其中AT=[a1T ... abT],a1T为第1个尖端对应的转化后的透过率,abT为第b个尖端对应的转化后的透过率。
CN201810113461.8A 2018-02-05 2018-02-05 一种遥感图像光谱层析剥离方法及系统 Active CN108230419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810113461.8A CN108230419B (zh) 2018-02-05 2018-02-05 一种遥感图像光谱层析剥离方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810113461.8A CN108230419B (zh) 2018-02-05 2018-02-05 一种遥感图像光谱层析剥离方法及系统

Publications (2)

Publication Number Publication Date
CN108230419A CN108230419A (zh) 2018-06-29
CN108230419B true CN108230419B (zh) 2021-06-15

Family

ID=62670539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810113461.8A Active CN108230419B (zh) 2018-02-05 2018-02-05 一种遥感图像光谱层析剥离方法及系统

Country Status (1)

Country Link
CN (1) CN108230419B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757421B1 (en) * 2000-09-27 2004-06-29 Cognex Corporation Method and apparatus for detecting defects
CN101339613A (zh) * 2008-08-12 2009-01-07 中国地质科学院矿产资源研究所 一种遥感图像背景噪声减弱方法
CN102564590A (zh) * 2011-12-29 2012-07-11 中国科学院长春光学精密机械与物理研究所 地物模拟光谱辐射定标源装置
CN102721650A (zh) * 2012-06-13 2012-10-10 中国地质科学院矿产资源研究所 基于特征指标的矿物成分遥感信息提取方法及装置
CN103454693A (zh) * 2013-09-12 2013-12-18 核工业北京地质研究院 一种白岗岩型铀矿勘查成矿要素遥感图谱特征识别方法
CN105512619A (zh) * 2015-11-27 2016-04-20 中国石油大学(华东) 一种基于分层知识的不透水面信息提取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351031B2 (en) * 2009-06-05 2013-01-08 Spectral Sciences, Inc. Single-shot spectral imager

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757421B1 (en) * 2000-09-27 2004-06-29 Cognex Corporation Method and apparatus for detecting defects
CN101339613A (zh) * 2008-08-12 2009-01-07 中国地质科学院矿产资源研究所 一种遥感图像背景噪声减弱方法
CN102564590A (zh) * 2011-12-29 2012-07-11 中国科学院长春光学精密机械与物理研究所 地物模拟光谱辐射定标源装置
CN102721650A (zh) * 2012-06-13 2012-10-10 中国地质科学院矿产资源研究所 基于特征指标的矿物成分遥感信息提取方法及装置
CN103454693A (zh) * 2013-09-12 2013-12-18 核工业北京地质研究院 一种白岗岩型铀矿勘查成矿要素遥感图谱特征识别方法
CN105512619A (zh) * 2015-11-27 2016-04-20 中国石油大学(华东) 一种基于分层知识的不透水面信息提取方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A REMOTE SENSING MODEL OF RESOURCE EXPLORATED AND NEW DISCOVERY IN GEOLOGICAL PROSPECTING WORK;Fojun Yao;《IGARSS 2016》;20161231;第5410-5413页 *
INFLUENCE OF MINERAL (PREFERED) ORIENTATION ON COMPOSITION MAPPING:OBSERVED IN IR RANGE OF TRANSMISSION SPECTRA;Carmina Ekaterina等;《IEEE Xplore》;20091016;全文 *
利用ASTER 提取德兴斑岩铜矿遥感蚀变分带信息;姚佛军等;《矿床地质》;20120831;第31卷(第4期);第881-890页 *
面向找矿的高光谱遥感岩矿信息提取方法研究;徐元进;《中国博士学位论文全文数据库 基础科学辑》;20091115;第2009年卷(第11期);第A011-28页 *

Also Published As

Publication number Publication date
CN108230419A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
Hosseinjani et al. Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran
Onojeghuo et al. Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats
Goodwin et al. Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundances
CN109493338B (zh) 基于联合提取空谱特征的高光谱图像异常检测方法
CN113033670A (zh) 一种基于Sentinel-2A/B数据的水稻种植面积提取方法
Fagbohun et al. Litho-structural analysis of eastern part of Ilesha schist belt, Southwestern Nigeria
CN110188716B (zh) 一种矿化信息提取方法及系统
Khaleghi et al. Spectral angle mapping, spectral information divergence, and principal component analysis of the ASTER SWIR data for exploration of porphyry copper mineralization in the Sarduiyeh area, Kerman province, Iran
CN101339613A (zh) 一种遥感图像背景噪声减弱方法
CN108280433B (zh) 一种植被覆盖区下金矿的识别方法及系统
Yu et al. 3D autoencoder algorithm for lithological mapping using ZY-1 02D hyperspectral imagery: a case study of Liuyuan region
CN108230419B (zh) 一种遥感图像光谱层析剥离方法及系统
CN109522918B (zh) 基于改进的局部奇异谱分析的高光谱图像特征提取方法
CN111552004B (zh) 一种遥感数据角度异常信息提取方法及系统
CN114118231A (zh) 多源遥感浅覆盖区地层岩性分类特征空间构建方法、岩性分类方法及系统
Mezned et al. Potential of ASTER’s VNIR, SWIR, and TIR bands for phosphate exploration in central west Tunisia
Kujjo Application of remote sensing for gold exploration in the Nuba Mountains, Sudan
CN108846361B (zh) 一种基于谱带特异性学习的高光谱图像分类方法
Wolfe et al. Hyperspectral analytics in ENVI
Guiang et al. Cloud detection and characterization using topological data analysis
MOHAMMADY et al. Role of smile correction in mineral detection on hyperion data
Pramudya et al. Satellite-based benthic habitat mapping using Landsat 8 in Nusa Lembongan and Nusa Ceningan Island
Chen et al. Lithological classification and analysis based on random forest and multiple features: a case study in the Qulong copper deposit, China
Wang et al. The ASTER tasseled cap interactive transformation using Gramm-Schmidt method
Pramudya et al. Satellite-based benthic habitat mapping using Landsat 8 in Nusa Lembongan and Nusa Ceningan Island Bali

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant