CN108225462A - 正反向排驱法两相流体微量计量装置及方法 - Google Patents

正反向排驱法两相流体微量计量装置及方法 Download PDF

Info

Publication number
CN108225462A
CN108225462A CN201711374267.7A CN201711374267A CN108225462A CN 108225462 A CN108225462 A CN 108225462A CN 201711374267 A CN201711374267 A CN 201711374267A CN 108225462 A CN108225462 A CN 108225462A
Authority
CN
China
Prior art keywords
electronic balance
fluid
micro
flask
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711374267.7A
Other languages
English (en)
Other versions
CN108225462B (zh
Inventor
郑军
冯章语
舒平华
肖易航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201711374267.7A priority Critical patent/CN108225462B/zh
Publication of CN108225462A publication Critical patent/CN108225462A/zh
Application granted granted Critical
Publication of CN108225462B publication Critical patent/CN108225462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/08Air or gas separators in combination with liquid meters; Liquid separators in combination with gas-meters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measuring Volume Flow (AREA)

Abstract

正反向排驱法两相流体微量计量装置,包括待测混合流体入口端、微管路、平流泵、电子天平I和电子天平II,电子天平I上设置有储存混合流体的锥形烧瓶I,电子天平II上设置有储存水的锥形烧瓶II,电子天平之间由电脑控制连接,微管路一端通过三通阀分别与待测混合流体入口端和烧瓶I相通,其另一端分成两个管道,一管道出口通过两通阀与烧瓶II相通,且管道伸入烧瓶II内部瓶底处,另一管道连接有平流泵的出口,平流泵的入口连接在两通阀与烧瓶II间的管路上。本装置适用范围广,能有效避免常规方法中被测流体速度及两相分离速度对计量的影响,同时应用于发生乳化等不可分离现象发生时的两相计量,实现了计算机自动监测及计算,自动化程度高。

Description

正反向排驱法两相流体微量计量装置及方法
技术领域
本发明属于计量技术领域,具体涉及到一种适用于对岩心驱替实验过程中产生的互不相溶、且存在一定密度差的两相流体(如气液,或油水)进行微量计量的装置及方法。
背景技术
油气工业中常常进行室内岩心驱替模拟实验,以研究油气在储层中的流动规律,为准确掌握油气井生产动态、制定开发方案及挖潜措施等提供科学依据。在此类驱替实验中,产出流体常常为油、气、水其中的两相混合流体。为了研究两相流体在岩心中的渗流规律,需要在出口端实时计量每一相流体的产出情况。实验中常常出现其中的一相体积微小,或者两者形成乳状液,分离困难等现象,为两相流体精确计量提出了更高的要求。目前的油水或气液计量装置都需要将两相流体先进行分离,然后分别计量。该类装置受混合液流动速度和分离速度的影响较大,导致计量精度低,对于分离困难的两相微体积流体(如乳化液),目前还没有有效的手段对其进行分别计量。
发明内容
本发明的目的在于提供一种正反向排驱法两相流体微量计量装置及方法,适用于气液或油水计量,由于不需要对混相流体进行分离,解决了乳化液的计量困难的问题,且该装置不受流速影响,实现了两相流体的高精度计量。
为了解决上述技术问题,本发明通过以下方式来实现:
一种正反向排驱法两相流体微量计量装置,包括待测混合流体入口端、微管路、平流泵、电子天平I和电子天平II,所述电子天平I上设置有储存混合流体的锥形烧瓶I,电子天平II上设置有储存水的锥形烧瓶II,且电子天平I与天子天平II之间由电脑控制连接,所述微管路一端通过三通阀分别与待测混合流体入口端和烧瓶I相通,其另一端分成两个管道出口,一管道出口通过两通阀与烧瓶II相通,且管道伸入烧瓶II内部瓶底处,另一管道出口连接有平流泵的出口,平流泵的入口连接在两通阀与烧瓶II间的管路上。
与现有技术相比,本发明具有的有益效果:
本装置既可用于具有密度差的液-液混合流体实时计量,也可用于气-液混合流体实时计量,适用范围广;能够有效避免常规方法混合液流速以及两相分离速度对计量的影响,同时应用于发生乳化等不可分离现象发生时的两相计量。本发明适应范围更广,实现了计算机自动监测及计算,自动化程度高。
附图说明
图1为本发明计量装置的结构示意图。
图中各个标记分别为:1、待测混合流体入口端;2、三通阀;3、微管路;4、两通阀;5、平流泵;6、烧瓶I,7、烧瓶II,8、电子天平I,9、电子天平II,10、电脑。
具体实施方式
下面结合附图和具体实施例对本发明的具体实施方式作进一步详细的说明。
如图1所示,一种正反向排驱法两相流体微量计量装置,包括待测混合流体入口端1、微管路3、平流泵5、电子天平I 8和电子天平II 9,所述电子天平I上设置有储存混合流体的锥形烧瓶I 6,电子天平II上设置有储存水的锥形烧瓶II 7,且电子天平I与天子天平II之间由电脑10控制连接,所述微管路一端通过三通阀2分别与待测混合流体入口端和烧瓶I相通,其另一端分成两个管道,一管道出口通过两通阀4与烧瓶II相通,且管道伸入烧瓶II内部瓶底处,另一管道连接有平流泵的出口,平流泵的入口连接在两通阀与烧瓶II间的管路上。
其中:三通阀为玻璃材质,微管路为内径3~6mm的不锈钢或玻璃材质管线,微管路的管壁光滑,避免混合流体在微管路流动过程中两相流体间相互滑动,且微管路内部体积大于被测混合流体的总体积;电子天平的精度为千分位以上,平流泵的流速为正向驱替时混合流体的平均流速。
一种利用正反向排驱法两相流体微量计量装置的方法,其具体包括如下步骤:
1)前期准备,烧瓶II 7中装满水,关闭两通阀4,将三通阀2旋转至微管路3与烧瓶I6连通状态,启动平流泵5,使整个微管路3中全部充满水;
2)正向排水驱替,待步骤1)完成后,将三通阀旋转至待测混合流体入口端1与微管路连通状态,并打开两通阀,调整电子天平II的读数归0,待测混合流体开始以一定速度排驱微管路中的水至电子天平II中,设定任意时间间隔Δt,记录电子天平II中不同累计时间ti下的重量G1(ti),i=0,1,2…m,直至所有待测混合流体均已进入微管路中,停止正向排水驱替。实验过程中累计时间ti=i·Δt,电子天平II初始的记录点为G1(t0)=0,最后的记录点为G1(tm);
3)反向排水驱替,待步骤2)完成后,调整电子天平I的读数归0,将两通阀旋至关闭,三通阀旋转至微管路与烧瓶I连通状态,再打开平流泵,以一定速度将烧瓶II中的水再反向驱替进入微管路中,此过程中电子天平II重量(记为G2)从G1(tm)逐步减小。当电子天平II重量返回到G1(ti)时,即G2(j)=G1(tm-j),j=0,1,2…m,记录电子天平I中重量G3(j),直到电子天平II中重量减少至正向排水驱替前的重量,记录此时电子天平I的重量为G3(m),结束实验;
4)计算结果,根据无论是正向排水驱替还是反向排水驱替,进入系统的液体体积等于流出系统的液体体积,因此在正向排水驱替时,待测混合流体在不同时间ti下的累计体积量Va+b为:
其中:ρw为水的密度。
在反向排水驱时,电子天平I的重量增量为:
ΔG3(j)=G3(j)-G3(j-1)j=1,2…m(2)
对公式(2)中重量增量按照j从大到小的顺序进行累加,得到正向排水驱替在t=ti时刻,进入系统的待测混合流体重量Ga+b(ti):
根据公式(1)和公式(3),可以得到正向驱阶段t=ti时刻,混合流体流进系统的体积和重量,假设此时两相流体体积分别为Va(ti),Vb(ti),可以得到以下方程组:
式中ρa、ρb分别为a、b两相流体密度,为已知参数。
由公式(4)可得t=ti时刻流出的两相流体的体积:
特别的,若b相流体为气相,则有ρb≈0,在反向排水驱替时气体逸散到空气中,此时电子天平I中计量的重量为a相液体重量,则有Ga+b(ti)=Ga(ti),上式可简化为
本发明技术原理是:利用正反向排水驱替相结合的方法,根据流体流进与流出系统体积守恒的原理,实现两相混合流体分别计量。其具体为待测混合流体正向驱替通过系统微管路排驱水,由于进入系统的混合流体体积等于流出系统的水体积,通过计量流出水在不同时间下的累计体积,即可得到待测流体流入系统的实时体积;直至所有待测流体进入微管路后,反向排水驱替待测流体从之前的系统入口端流出,测量驱替进入系统的累计水体积,即可得到流出待测混合流体体积,同时测量流出的混合流体累计重量,根据以上正反向排驱过程中测量的参数即可实现对待测流体的实时分别计量。
以上所述仅是本发明的实施方式,再次声明,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进,这些改进也列入本发明权利要求的保护范围内。

Claims (3)

1.正反向排驱法两相流体微量计量装置,其特征在于:包括待测混合流体入口端、微管路、平流泵、电子天平I和电子天平II,所述电子天平I上设置有储存混合流体的锥形烧瓶I,电子天平II上设置有储存水的锥形烧瓶II,且电子天平I与天子天平II之间由电脑控制连接,所述微管路一端通过三通阀分别与待测混合流体入口端和烧瓶I相通,其另一端分成两个管道,一管道出口通过两通阀与烧瓶II相通,且管道伸入烧瓶II内部瓶底处,另一管道连接有平流泵的出口,平流泵的进口连接在两通阀与烧瓶II间的管路上。
2.根据权利要求1所述的正反向排驱法两相流体微量计量装置,其特征在于:所述微管路为直径3~6mm的不锈钢或玻璃材质管路。
3.一种利用权利要求1所述正反向排驱法两相流体微量计量装置的方法,其特征在于:
具体包括如下步骤:
1)前期准备,烧瓶II中装满水,关闭两通阀,将三通阀旋转至微管路与烧瓶I连通状态,启动平流泵,使整个微管路中全部充满水;
2)正向排水驱替,待步骤1)完成后,将三通阀旋转至待测混合流体入口端与微管路连通状态,并打开两通阀,调整电子天平II的读数归0,待测混合流体开始以一定速度排驱微管路中的水至电子天平II中,设定任意时间间隔Δt,记录电子天平II中不同累计时间ti下的重量G1(ti),i=0,1,2…m,直至所有需要待测混合流体均已进入微管路中,停止正向排水驱替,实验过程中累计时间ti=i·Δt,电子天平II初始记录点为G1(t0)=0,最后记录点为G1(tm);
3)反向排水驱替,待步骤2)完成后,调整电子天平I的读数归0,将两通阀旋至关闭,三通阀旋转至微管路与烧瓶I连通状态,再打开平流泵,以一定速度将烧瓶II中的水再反向驱替进入微管路中,此过程中电子天平II重量从G1(tm)逐步减小,当电子天平II重量返回到G1(ti)时,即G2(j)=G1(tm-j),j=0,1,2…m,记录电子天平I中重量G3(j),直到电子天平II中重量减少至正向排水驱替前的重量,记录此时电子天平I的重量为G3(m),结束实验;
4)计算结果,根据无论是正向排水驱替还是反向排水驱替,进入系统的液体体积等于流出系统的液体体积,因此在正向排水驱替时,待测混合流体在不同时间ti下的累计体积量Va+b为:
其中:ρw为水的密度,
在反向排水驱时,电子天平I的重量增量为:
ΔG3(j)=G3(j)-G3(j-1) j=1,2…m (2)
对公式(2)中重量增量按照j从大到小的顺序进行累加,得到正向排水驱替在t=ti时刻,进入系统的待测混合流体重量Ga+b(ti):
根据公式(1)和公式(3),可以得到正向驱阶段t=ti时刻,混合流体流进系统的体积和重量,假设此时两相流体体积分别为Va(ti),Vb(ti),可以得到以下方程组:
式中ρa、ρb分别为a、b两相流体密度,为已知参数;
由公式(4)可得t=ti时刻流出的两相流体的体积:
CN201711374267.7A 2017-12-19 2017-12-19 正反向排驱法两相流体微量计量装置及方法 Active CN108225462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711374267.7A CN108225462B (zh) 2017-12-19 2017-12-19 正反向排驱法两相流体微量计量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711374267.7A CN108225462B (zh) 2017-12-19 2017-12-19 正反向排驱法两相流体微量计量装置及方法

Publications (2)

Publication Number Publication Date
CN108225462A true CN108225462A (zh) 2018-06-29
CN108225462B CN108225462B (zh) 2020-05-01

Family

ID=62652449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711374267.7A Active CN108225462B (zh) 2017-12-19 2017-12-19 正反向排驱法两相流体微量计量装置及方法

Country Status (1)

Country Link
CN (1) CN108225462B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2574019Y (zh) * 2002-09-30 2003-09-17 刘宝和 油气水自动计量仪
CN104948150A (zh) * 2015-06-12 2015-09-30 中国石油天然气股份有限公司 一种确定地层排驱压力的方法和装置
EP3088862A2 (en) * 2015-04-30 2016-11-02 Spirax-Sarco Limited Apparatus and method for determining an amount of non-condensable gas
CN106970014A (zh) * 2017-03-20 2017-07-21 西南石油大学 一种自动化测量计算岩心物性参数的驱替测试方法
CN107121374A (zh) * 2017-05-24 2017-09-01 北京永瑞达科贸有限公司 地层条件相对渗透率测定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2574019Y (zh) * 2002-09-30 2003-09-17 刘宝和 油气水自动计量仪
EP3088862A2 (en) * 2015-04-30 2016-11-02 Spirax-Sarco Limited Apparatus and method for determining an amount of non-condensable gas
CN104948150A (zh) * 2015-06-12 2015-09-30 中国石油天然气股份有限公司 一种确定地层排驱压力的方法和装置
CN106970014A (zh) * 2017-03-20 2017-07-21 西南石油大学 一种自动化测量计算岩心物性参数的驱替测试方法
CN107121374A (zh) * 2017-05-24 2017-09-01 北京永瑞达科贸有限公司 地层条件相对渗透率测定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁安青,彭彩珍,孟红丽,李亚辉: "CO2气/液交替驱提高M油藏采收率实验研究", 《应用化学》 *

Also Published As

Publication number Publication date
CN108225462B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN104568678B (zh) 高温高压高含硫气藏气液硫相渗曲线测试装置及方法
CN108119132B (zh) 致密砂岩气藏近井带径向渗流含水饱和度模拟装置及方法
CN100398998C (zh) 原油-天然气-水三相流量仪及其测量方法
CN104776971A (zh) 一种气流携液携砂可视化实验装置
CN108680481A (zh) 相对渗透率曲线测试方法和装置
CN203420706U (zh) 一种变角度水平井模拟实验装置
CN105675444B (zh) 一种三管混联式塑性流体漏斗黏度在线测量方法
CN203811507U (zh) 一种大型多功能压裂液实验装置
CN204255802U (zh) 液体参数测量系统
CN206177373U (zh) 一种油气水三相分离计量装置
CN108225462A (zh) 正反向排驱法两相流体微量计量装置及方法
CN208140194U (zh) 容积式油-气-水三相流分相流量在线测量装置
CN109142128A (zh) 一种三元复合驱油井井下采出设备动态结垢模拟实验方法及装置
CN206177778U (zh) 一种研究多孔介质全区域渗流机制的渗透装置
CN204666329U (zh) 一种气流携液携砂可视化实验装置
CN102704913A (zh) 利用锥形填砂管模拟含气稠油衰竭生产的实验装置和方法
CN206440585U (zh) 模拟现场条件的单岩心渗透率测试装置
CN107387061A (zh) 智能自检测高精度单井计量系统
CN109506882A (zh) 一种滑移边界条件密度流以及盐水楔生成的实验装置及方法
CN105092782B (zh) 一种流体驱替实验装置和方法
CN105869503B (zh) 测量岩石润湿性对泡沫油影响的实验系统和方法
CN204988956U (zh) 一种黄河排沙洞含沙量测量系统
CN103808448B (zh) 一种流体渗流环境中压力传导时间的测量方法
CN107607178A (zh) 一种油气水三相流测量的实验装置
CN211008562U (zh) 一种弱凝胶调剖剂注入性能评价装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant