CN108199794B - 一种新型Massive MIMO信道模型的统计性建模方法 - Google Patents

一种新型Massive MIMO信道模型的统计性建模方法 Download PDF

Info

Publication number
CN108199794B
CN108199794B CN201810178199.5A CN201810178199A CN108199794B CN 108199794 B CN108199794 B CN 108199794B CN 201810178199 A CN201810178199 A CN 201810178199A CN 108199794 B CN108199794 B CN 108199794B
Authority
CN
China
Prior art keywords
matrix
channel
base station
model
massive mimo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810178199.5A
Other languages
English (en)
Other versions
CN108199794A (zh
Inventor
左世奇
刘刚
张明
薄亚明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201810178199.5A priority Critical patent/CN108199794B/zh
Publication of CN108199794A publication Critical patent/CN108199794A/zh
Application granted granted Critical
Publication of CN108199794B publication Critical patent/CN108199794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种新型Massive MIMO信道模型的统计性建模方法该,兼顾模型结构简单和可移植性强等特点,实现了未来复杂的大规模多输入多输出移动通信环境中的信道模型构建。本发明在现有传统MIMO信道模型的研究基础上,扩展weichselberger信道模型,使用球面波假设和生灭过程描述Massive MIMO移动通信系统下的信道非平稳特性,得到二维信道模型。由于信道接收端和发送端的相关性矩阵是由推导得出,所以适合任意阵列形状的通信系统。且该模型沿用各主路径相互独立的传统假设,仅针对因基站端和移动端天线的大规模化而引起的信道非平稳特性,使用球面波假设和生灭因子改进其收发端的相关性矩阵,在不改变已有模型的基础上扩展其模型结构,适用于Massive MIMO信道的理论分析以及信道仿真。

Description

一种新型Massive MIMO信道模型的统计性建模方法
技术领域
本发明涉及一种新型Massive MIMO信道模型的统计性建模方法,属于计算机与5G无线移动通信技术领域。
背景技术
5G无线通信的关键技术在于大规模天线阵列的Massive MIMO传输。Massive MIMO技术通过空间复用提高频谱效率、传输分集等,因而该技术能够满足日益增长的通信需求。
与传统的MIMO信道不同,由于Massive MIMO技术下的天线分布在一个很大的空间区域,则对于MIMO信道模型的一些小尺度假设不再适用。其具体表现就是由于天线的空间位置不同,导致不同天线上传播路径参数的波动,总体表现为信道的非平稳特性。一般来说,时间非平稳性可以用多径簇的生灭过程建模。类似的,空间非平稳性可以用生灭过程建模阵列上两个天线的共同散射体数,距离越近的天线共同散射体越多。
传统的基于测量的随机信道模型,如3GPP-SCM、WINNERII-SCME、和COST系列模型,着重研究MIMO的小尺度假设下的应用场景。上述模型基于高分辨率算法如SAGE、RiMAX等对测量结果处理提取多径分量并估计其参数。将同一阵列的所有天线视为经历相同的传播过程,不考虑不同天线在空间分布上和相应散射路径的差异。目前,对于5G移动通信系统下Massive MIMO信道建模主要思路是扩展传统MIMO信道模型以囊括Massive MIMO所表现出的新的信道特性。
发明内容
针对现有相关性模型无法描述任意环境移动信道的不足,本发明提供一种兼顾可移植性和易于计算的链路级的新型Massive MIMO信道模型的统计性建模方法。该方法是基于如下内容:1、以球面波假设代替传统MIMO信道模型的平面波假设;2、将生灭过程以生灭因子的形式作用于移动端和基站端的相关性矩阵;3、基于weichselberger信道模型的建模思想,在现有的Massive MIMO信道建模研究的基础上,将生灭过程用于相关性模型以描述大规模天线传输的信道特性。
本发明为解决上述技术问题采用以下技术方案:
本发明提供一种新型Massive MIMO信道模型的统计性建模方法,该方法包括如下步骤:
步骤1:根据WINNERII信道标准协议的参数确定方法,确定Massive MIMO信道参数;
步骤2:生成单个路径的信道矩阵,具体生成方法如下:
2.1),根据各个天线单元之间的相关性,确定基站端和移动端各自的相关性矩阵Rrx和Rtx
2.2),确定移动端和基站端的生灭过程相关性矩阵Ct、Cr
2.3),生成基于生灭过程的收发端相关性矩阵RTx和RRx为:
RTx=Rtx·Ct
RRx=Rrx·Cr
其中,·表示矩阵对应位置的元素相乘;
2.4),对基于生灭过程的相关性矩阵进行特征值分解,得到其特征向量矩阵UTx和URx
2.5),由测量得到的信道系数矩阵Hm得到耦合矩阵Ω:
Figure BDA0001587947910000021
式中,E{·}表示数学期望,(·)*表示共轭矩阵;
2.6),生成某一路径下的信道传输矩阵H:
H=URx(Ω′·G)UTx
式中,Ω′为耦合矩阵Ω中每个元素分别取平方根绝对值后得到的矩阵,G为每个元的素实部和合虚部均服从高斯分布且相互独立的独立同分布的复高斯矩阵;
步骤3:依照步骤1中生成的参数,参照WINNERII给出的信道模型中将各不同时延路径叠加的方法,生成各路径的信道系数并叠加,得到总体的信道系数,从而完成建模。
进一步地,步骤1中确定的参数包括:收发端各自任一天线单元的到达角与离开角,以及散射体群与移动端、基站端的距离,移动端和基站端各自的天线间隔,时延,功率。
进一步地,步骤2.1)中:Rrx的第s行第l列元素
Figure BDA0001587947910000022
Figure BDA0001587947910000023
Rtx的第m行第n列元素
Figure BDA0001587947910000024
Figure BDA0001587947910000025
λ0为载波波长,x为到达角,dr为二维平面上散射体群与基站端的距离,d为二维平面上散射体群与移动端的距离,δr为基站端两相邻天线单元的间隔长度,δt为移动端两相邻天线单元的间隔长度,s、l分别为基站端两个天线单元的编号,m、n分别为移动端两个天线单元的编号。
进一步地,步骤2.2)中:Ct的第s行第l列元素
Figure BDA0001587947910000031
Cr的第m行第n列元素
Figure BDA0001587947910000032
λR为生灭过程中两个散射体群的组合率,
Figure BDA0001587947910000033
为环境因子,δr为基站端两相邻天线单元的间隔长度,δt为移动端两相邻天线单元的间隔长度,s、l分别为基站端两个天线单元的编号,m、n分别为移动端两个天线单元的编号。
进一步地,步骤2.4中):对基于生灭过程的相关性矩阵做如下特征值分解,得到其特征向量矩阵UTx和URx
Figure BDA0001587947910000034
Figure BDA0001587947910000035
式中,(·)H表示酉矩阵,ΛTx、ΛRx分别表示由RTx和RRx的特征值组成的对角阵。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、本发明实现了Massive MIMO信道的统计性建模,并将传统MIMO相关性模型拓展,囊括了球面波特性和非平稳特性,合理而准确的描述了Massive MIMO的信道特性,有利于5G移动通信系统信道的理论分析与仿真;
2、针对生灭因子的确定上,本发明给出了生灭过程方法中简单的依据指数型变化的设置,结合阵列单元间距和环境因子以及散射体群的组合率得出;
3、本发明向下覆盖了原有的传统MIMO信道模型,且适用任意天线阵列形状与传播环境,具有一定程度的灵活性。
附图说明
图1为WINNERII信道模型的方法流程图。
图2为weichselberger信道模型的方法流程图。
图3为本发明的方法流程图。
图4为球面波假设的前提下,某一路径信号的到达接收天线的示意图。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明公开了一种新型Massive MIMO信道模型的统计性建模方法该,兼顾模型结构简单和可移植性强等特点,实现了未来复杂的大规模多输入多输出移动通信环境中的信道模型构建。所述方法包括:在现有传统MIMO信道模型的研究基础上,扩展weichselberger信道模型(weichselberger信道模型的方法流程图如图2所示),使用球面波假设和生灭过程描述Massive MIMO移动通信系统下的信道非平稳特性,得到二维信道模型。由于信道接收端和发送端的相关性矩阵是由推导得出,所以适合任意阵列形状的通信系统。且该模型沿用各主路径相互独立的传统假设,仅针对因基站端和移动端天线的大规模化而引起的信道非平稳特性,使用球面波假设和生灭因子改进其收发端的相关性矩阵,在不改变已有模型的基础上扩展其模型结构,适用于Massive MIMO信道的理论分析以及信道仿真。
如图3所示,本发明所述方法包括如下步骤:
步骤1:根据WINNERII信道标准协议的参数确定方法,生成收发端各自任一天线单元的到达角与离开角,以及散射体群与移动端、基站端的距离dt、dr,移动端和基站端各自的天线间隔δt、δr,时延,功率。WINNERII信道模型生成方法如图1所示,而在本步骤要确定的参数及其流程详见图3中流程框“设置场景、天线参数等”到“对射线进行随机配对”部分。本步骤也是本发明与WINNERII信道模型相同之处,WINNERII信道模型是已知的信道标准协议,此处不予细述。
步骤2:生成单个路径的信道矩阵,具体生成方法如下:
2.1),确定基站端和移动端各自的相关性矩阵Rrx和Rtx
已知散射体群到某一天线单元的距离和角度时,可得到各个天线单元之间的相关性,因而可得到相关性矩阵。该方法适用任意收发端多天线排列形状下天线单元自相关性、互相关性计算。以图4所示均匀线型多天线为例,x为到达角,d为二维平面上某一散射体群与接收天线1的距离。则可依据几何关系,求得散射体群到各个接收天线的距离。即应用球面波假设求解各接收单元接收的信号的相位,而不是假设所有单元接收信号的相位相同。由相位可得到任意两个天线单元之间的相位差,相应的,可得各接收天线之间的相关性Rij
Figure BDA0001587947910000041
Figure BDA0001587947910000042
Figure BDA0001587947910000043
式中λ0为载波波长,δ为同一设备端(移动端或基站端)两相邻天线的间隔长度。i、j分别为同一设备端两个天线编号,则第i号天线和第j号天线的间距为|i-j|·δ。由此,按照得到Rij的方法,可在基站端和移动端相应的得到Rrx和Rtx。Rrx的第m行第n列元素
Figure BDA0001587947910000051
Figure BDA0001587947910000052
Rtx的第s行第l列元素
Figure BDA0001587947910000053
Figure BDA0001587947910000054
dr为二维平面上散射体群与基站端的距离,d为二维平面上散射体群与移动端的距离,δr为基站端两相邻天线单元的间隔长度,δt为移动端两相邻天线单元的间隔长度,m、n分别为基站端两个天线单元的编号,s、l分别为移动端两个天线单元的编号。
2.2),确定移动端和基站端的生灭过程相关性矩阵Ct、Cr
Figure BDA0001587947910000055
Figure BDA0001587947910000056
式中,λR为生灭过程中两个散射体群的组合率,
Figure BDA0001587947910000057
与传播环境有关的环境因子。Ct(s,l)为移动端生灭因子,表示基于生灭过程前提的移动端的第s号天线与第l号天线之间的相关性因子,为Ct的第s行第l列元素。Cr(m,n)为基站端生灭因子,表示基于生灭过程前提的基站端的第m号天线与第n号天线之间的相关性因子,为Cr的第m行第n列元素。
2.3),生成基于生灭过程的基站端和移动端相关性矩阵RRx和RTx为:
RTx=Rtx·Ct
RRx=Rrx·Cr
式中,●表示矩阵对应位置的元素相乘。
2.4),对基于生灭过程的相关性矩阵做如下特征值分解,得到其特征向量矩阵UTx和URx
Figure BDA0001587947910000058
Figure BDA0001587947910000059
式中,(·)H表示酉矩阵,ΛTx、ΛRx分别表示由RTx和RRx的特征值组成的对角阵;
2.5),由测量得到的信道系数矩阵Hm得到耦合矩阵Ω:
Figure BDA00015879479100000510
式中,E{·}表示数学期望,(·)*表示共轭矩阵。
2.6),生成某一路径下的信道传输矩阵H:
H=URx(Ω′·G)UTx
式中,Ω′为矩阵Ω中每个元素取平方根绝对值后得到的矩阵,G为每个元素实部和合虚部均服从高斯分布且相互独立的独立同分布的复高斯矩阵。
步骤3:依照步骤1中生成的参数,参照WINNERII给出的信道模型中将各不同时延路径叠加的方法,生成各路径的信道系数并叠加得到总体的信道系数。
本发明首先在通过对Massive MIMO信道测量得到空间耦合矩阵,通过增加球面波假设和生灭过程以描述大规模阵列天线通信的阵列相关性。本发明中,使用球面波假设代替传统MIMO信道建模中的平面波假设,求解天线单元之间的相位差以得出其相关性;使用环境因子和散射体群的组合率以及天线间隔等参数确定表示生灭过程的相关矩阵,使生灭过程得以具体确定的数值用于相关性模型构建当中;参照weichselberger模型的建模方法,weichselberger信道模型是目前MIMO信道相关性模型中覆盖环境较为广泛的模型,建模流程如图2所示。
本发明在传统MIMO信道建模方法的基础上,作了如下改进:针对传统MIMO相关性模型结构简单、便于理论分析的特点,本发明工作实现了Massive MIMO通信系统复杂信道的统计性建模,与基于几何的Massive MIMO统计性信道模型相比,大大降低了模型复杂度。因为传统MIMO相关性信道模型是基于广义平稳高斯过程的假设,一旦天线阵列大规模化后,会导致信道在空间上的非平稳现象。本发明是通过修改平面波假设为球面波假设,增加生灭因子改进其模型,当球面波和生灭过程参与天线阵列的相关性矩阵时,空间的非平稳特性得以在模型中体现。本发明的方法为二维信道模型构建方法,并以线型的收发天线阵列为例,由于信道矩阵推导而并非测量所得,且weichselberger模型本身均支持多种环境建模,因而本发明的模型框架结构与建模方法可扩展到任意的天线阵列形状与传播环境。本发明通过扩展传统MIMO的相关性信道模型以囊括Massive MIMO移动通信系统下信道的空间非平稳特性的方式,用传统MIMO的相关性信道模型结合生灭过程,实现该移动通信系统下的真实环境的信道描述。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.一种新型Massive MIMO信道模型的统计性建模方法,其特征在于,该方法包括如下步骤:
步骤1:根据WINNERII信道标准协议的参数确定方法,确定Massive MIMO信道参数;
步骤2:生成单个路径的信道矩阵,具体生成方法如下:
2.1),根据各个天线单元之间的相关性,确定基站端和移动端各自的相关性矩阵Rrx和Rtx;其中,Rrx的第m行第n列元素
Figure FDA0002923253740000011
Figure FDA0002923253740000012
Rtx的第s行第l列元素
Figure FDA0002923253740000013
Figure FDA0002923253740000014
λ0为载波波长,x为到达角,dr为二维平面上散射体群与基站端的距离,dt为二维平面上散射体群与移动端的距离,δr为基站端两相邻天线单元的间隔长度,δt为移动端两相邻天线单元的间隔长度,m、n分别为基站端两个天线单元的编号,s、l分别为移动端两个天线单元的编号;
2.2),确定移动端和基站端的生灭过程相关性矩阵Ct、Cr
2.3),生成基于生灭过程的收发端相关性矩阵RTx和RRx为:
RTx=Rtx·Ct
RRx=Rrx·Cr
其中,·表示矩阵对应位置的元素相乘;
2.4),对基于生灭过程的相关性矩阵进行特征值分解,得到其特征向量矩阵UTx和URx
2.5),由测量得到的信道系数矩阵Hm得到耦合矩阵Ω:
Figure FDA0002923253740000015
式中,E{·}表示数学期望,(·)*表示共轭矩阵;
2.6),生成某一路径下的信道传输矩阵H:
H=URx(Ω′·G)UTx
式中,Ω′为耦合矩阵Ω中每个元素分别取平方根绝对值后得到的矩阵,G为每个元素实部和虚部均服从高斯分布且相互独立的独立同分布的复高斯矩阵;
步骤3:依照步骤1中生成的参数,参照WINNERII给出的信道模型中将各不同时延路径叠加的方法,生成各路径的信道系数并叠加,得到总体的信道系数,从而完成建模。
2.根据权利要求1所述的一种新型Massive MIMO信道模型的统计性建模方法,其特征在于,步骤1中确定的参数包括:收发端各自任一天线单元的到达角与离开角,以及散射体群与移动端、基站端的距离,移动端和基站端各自的天线间隔,时延,功率。
3.根据权利要求1所述的一种新型Massive MIMO信道模型的统计性建模方法,其特征在于,步骤2.2)中:Cr的第m行第n列元素
Figure FDA0002923253740000021
Ct的第s行第l列元素
Figure FDA0002923253740000022
λR为生灭过程中两个散射体群的组合率,
Figure FDA0002923253740000023
为环境因子,δr为基站端两相邻天线单元的间隔长度,δt为移动端两相邻天线单元的间隔长度,m、n分别为基站端两个天线单元的编号,s、l分别为移动端两个天线单元的编号。
4.根据权利要求1所述的一种新型Massive MIMO信道模型的统计性建模方法,其特征在于,步骤2.4中):对基于生灭过程的相关性矩阵做如下特征值分解,得到其特征向量矩阵UTx和URx
Figure FDA0002923253740000024
Figure FDA0002923253740000025
式中,(·)H表示酉矩阵,ΛTx、ΛRx分别表示由RTx和RRx的特征值组成的对角阵。
CN201810178199.5A 2018-03-05 2018-03-05 一种新型Massive MIMO信道模型的统计性建模方法 Active CN108199794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810178199.5A CN108199794B (zh) 2018-03-05 2018-03-05 一种新型Massive MIMO信道模型的统计性建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810178199.5A CN108199794B (zh) 2018-03-05 2018-03-05 一种新型Massive MIMO信道模型的统计性建模方法

Publications (2)

Publication Number Publication Date
CN108199794A CN108199794A (zh) 2018-06-22
CN108199794B true CN108199794B (zh) 2021-06-01

Family

ID=62594998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810178199.5A Active CN108199794B (zh) 2018-03-05 2018-03-05 一种新型Massive MIMO信道模型的统计性建模方法

Country Status (1)

Country Link
CN (1) CN108199794B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625923B (zh) * 2020-04-16 2024-02-27 中国地质大学(武汉) 一种基于非平稳高斯过程模型的天线电磁优化方法及系统
CN112737653B (zh) * 2020-12-28 2022-03-25 重庆邮电大学 一种利用球面波模型的非均匀天线阵列系统设计方法
CN112968743B (zh) * 2021-02-25 2023-06-02 中国人民解放军陆军工程大学 基于可见区域划分的时变去蜂窝大规模mimo信道建模方法
CN113206716B (zh) * 2021-04-23 2022-06-24 成都坤恒顺维科技股份有限公司 正交信道矩阵的建模方法
CN115276861B (zh) * 2022-07-01 2024-03-19 网络通信与安全紫金山实验室 用于mimo无线通信信道的耦合特性分析方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103747456A (zh) * 2014-01-20 2014-04-23 南京信息工程大学 基于三维空间域多天线mimo统计信道的建模方法
CN105553584A (zh) * 2015-12-10 2016-05-04 国网山东省电力公司烟台供电公司 一种3d mimo信道建模的方法
CN107204819A (zh) * 2016-03-16 2017-09-26 上海交通大学 基于生灭过程的多用户hap-mimo信道模型建立方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594221B2 (en) * 2011-05-24 2013-11-26 Industrial Technology Research Institute Model-based channel estimator for correlated fading channels and channel estimation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103747456A (zh) * 2014-01-20 2014-04-23 南京信息工程大学 基于三维空间域多天线mimo统计信道的建模方法
CN105553584A (zh) * 2015-12-10 2016-05-04 国网山东省电力公司烟台供电公司 一种3d mimo信道建模的方法
CN107204819A (zh) * 2016-03-16 2017-09-26 上海交通大学 基于生灭过程的多用户hap-mimo信道模型建立方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A stochastic MIMO channel model with joint correlation of both link ends;W. Weichselberger等;《 IEEE Transactions on Wireless Communications》;20060116;全文 *
大规模MIMO信道建模及传播特性研究;吴海龙;《中国优秀硕士学位论文全文数据库信息科技辑》;20170215(第2期);第2.2.2节,第3.1-3.3节 *

Also Published As

Publication number Publication date
CN108199794A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN108199794B (zh) 一种新型Massive MIMO信道模型的统计性建模方法
Wu et al. A general 3-D non-stationary 5G wireless channel model
Huang et al. Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces
Zhang et al. Three-dimensional fading channel models: A survey of elevation angle research
Kammoun et al. Preliminary results on 3D channel modeling: From theory to standardization
CN107248877B (zh) 基于实测数据的MassiveMIMO信道建模方法
Payami et al. Channel measurements and analysis for very large array systems at 2.6 GHz
Larsen et al. Performance bounds for MIMO-OFDM channel estimation
Yuan et al. Spatial non-stationary near-field channel modeling and validation for massive MIMO systems
CN114095318B (zh) 智能超表面辅助的混合构型毫米波通信系统信道估计方法
CN107171757B (zh) 一种融合智能天线的mimo无线信道建模方法
Li et al. On 3D cluster-based channel modeling for large-scale array communications
BouDaher et al. DOA estimation with co-prime arrays in the presence of mutual coupling
Yu et al. Measurement and empirical modeling of massive MIMO channel matrix in real indoor environment
Sánchez et al. Distributed and scalable uplink processing for LIS: Algorithm, architecture, and design trade-offs
CN106680779B (zh) 脉冲噪声下的波束成形方法及装置
Chen et al. Channel estimation of IRS-aided communication systems with hybrid multiobjective optimization
Zheng et al. Coverage analysis of joint localization and communication in THz systems with 3D arrays
Abbas et al. Millimeter wave communications over relay networks
Hong et al. Joint channel parameter estimation and scatterers localization
Raschkowski et al. Directional propagation measurements and modeling in an urban environment at 3.7 GHz
Roberts et al. Spatial and statistical modeling of multi-panel millimeter wave self-interference
Björnson et al. Towards 6G MIMO: Massive Spatial Multiplexing, Dense Arrays, and Interplay Between Electromagnetics and Processing
De Bast et al. Expert-knowledge-based data-driven approach for distributed localization in cell-free massive MIMO networks
Nelson et al. Large intelligent surface measurements for joint communication and sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant