CN108198879B - 一种纳米球壳阵列光伏结构 - Google Patents

一种纳米球壳阵列光伏结构 Download PDF

Info

Publication number
CN108198879B
CN108198879B CN201711487548.3A CN201711487548A CN108198879B CN 108198879 B CN108198879 B CN 108198879B CN 201711487548 A CN201711487548 A CN 201711487548A CN 108198879 B CN108198879 B CN 108198879B
Authority
CN
China
Prior art keywords
spherical shell
layer
light absorption
electrode layer
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711487548.3A
Other languages
English (en)
Other versions
CN108198879A (zh
Inventor
李本强
杨欢
江新兵
于伟
丁秋玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201711487548.3A priority Critical patent/CN108198879B/zh
Publication of CN108198879A publication Critical patent/CN108198879A/zh
Application granted granted Critical
Publication of CN108198879B publication Critical patent/CN108198879B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种纳米球壳阵列光伏结构,包括基底,基底上设有金属电极层,金属电极层上设有光吸收层,光吸收层为紧密排列的单层开口球壳阵列结构,光吸收层上面设有透明电极层;光吸收层是由p型掺杂层,i型层以及n型掺杂层三层组成p‑i‑n结;入射太阳光可以通过球壳阵列的减反作用和球壳腔体的共振作用极大提高光吸收层的光吸收效率。

Description

一种纳米球壳阵列光伏结构
技术领域
本发明涉及光伏技术领域,具体涉及一种纳米球壳阵列光伏结构。
背景技术
为了能够最大程度吸收可见光波段的能量,目前大部分的太阳能电池仍然是以180um-300um的硅基作为载体,所以大量半导体材料的消耗和其能量吸收效率不高仍然是太阳能产业的不足。一种可以减少材料消耗和制造成本的光伏结构是采用半导体薄膜作为光吸收层单元,但是由于半导体层的介电常数和带隙宽度等因素,单纯的半导体薄膜的光吸收效率较低,特别是对靠近带隙波段的能量吸收效率很低。美国专利US20120060913A1公开了一种利用在太阳能电池表面设置的单层密排介电粒子对入射光的共振陷光作用,将入射能量聚集在介电粒子内部,并通过介电粒子与电池的接触区域传递至吸收层中,提高电池在共振波长处的吸收效率;专利WO2008051235A2利用一层硅纳米粒子将入射光耦合至底层的光吸收层,提高吸收层的吸收效率。虽然这些方法都提高电池在太阳能光谱波段内的吸收效率,但是在带隙附近波长(近红外)的整体吸收效率还是较低。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种纳米球壳阵列光伏结构,提高整个波段的吸收效率。
一种纳米球壳阵列光伏结构,包括基底6,基底6上设有金属电极层5,金属电极层5上设有光吸收层,光吸收层为紧密排列的单层开口球壳阵列结构,光吸收层上面设有透明电极层1。
所述的开口球壳阵列结构中球壳内径为d,球壳厚度为t,球壳腔体深度为T,球壳单元的内径d满足200nm≤d≤800nm,壳层厚度t小于光吸收层材料的载流子复合长度,球壳腔体深度T满足d/2≤T≤3/4d。
所述的光吸收层是由p型掺杂层2,i型层3以及n型掺杂层4三层组成p-i-n结。
所述的光吸收层的材料是在太阳光谱波长300nm~900nm范围内,折射率n>2.8的半导体材料。
所述的透明电极层1是折射率n<2的透明导电材料,透明电极层1的厚度小于100nm。
所述的金属电极层5为银或铜,金属电极层5厚度小于100nm。
本发明的有益效果为:
紧密排列的单层开口球壳阵列结构可以提高光吸收材料的吸收效率:当太阳光入射至球壳阵列结构表面时,由于其上表面开口结构,所以可以使更多的入射能量进入球壳内,这种开口的球壳薄膜结构又可以看作一个近似的光学谐振腔,进入球壳内的特定波长的入射光会在球壳内形成稳定的共振模,这种共振模可以理解为回音壁模式(Whisperinggallery mode),所以该回音壁模式共振波长的入射能量在球壳中的有效光传播长度会大幅增加。回音壁模式的共振波长会随着由于密排相连的球壳阵列结构中球壳单元的内径和腔体深度而变化,所以球壳结构吸收效率也会发生变化。而且由于其密排结构,相邻的球壳之间也会发生共振耦合,使得光吸收层在共振波长附近得到较宽波段的能量吸收增强。再加上金属电极层5的反射作用,该纳米球壳的吸收效率在整个波段都得到了很大增强。
附图说明
图1是本发明纳米球壳光伏结构的横截面简图。
图2是FDTD仿真计算的实施例一球壳腔体深度T=190nm、210nm、230nm纳米的不定型硅球壳阵列和50nm不定型硅薄膜(比较例一)的吸收效率曲线,其中球壳内径d=320nm,球壳厚度t=50nm。
图3是FDTD仿真计算不定型硅球壳在吸收共振波长λ=670nm处沿着y-z截面电场分布图,其中球壳内径d=320nm,球壳腔体深度T=240nm,球壳厚度t=50nm。
图4是FDTD仿真计算的实施例一球壳腔体深度T=190nm、210nm、230nm的不定型硅球壳阵列的光伏结构和50nm不定型硅薄膜(比较例)的理想短路电流大小,其中球壳内径d=320nm,球壳厚度t=50nm。
图5是FDTD仿真计算球壳内径d=320nm,400nm,460nm,球壳腔体深度T=d/4不定型硅球壳阵列和50nm不定型硅薄膜(比较例)的吸收效率曲线,其中球壳厚度t=50nm。
图6是FDTD仿真计算球壳包含有内径d=320nm,400nm,460nm,球壳腔体深度T=d/4微晶硅球壳阵列的光伏结构和50nm微晶硅薄膜(比较例)的理想短路电流大小,其中球壳厚度t=50nm。
图7是FDTD仿真计算的球壳腔体深度T=190nm,210nm,230nm纳米的微晶硅球壳阵列和50nm微晶硅薄膜(比较例)的吸收效率曲线,其中球壳内径d=320nm,球壳厚度t=50nm。
图8是FDTD仿真计算微晶硅球壳在吸收共振波长λ=685nm处沿着y-z截面电场分布图,其中球壳内径d=320nm,球壳腔体深度T=240nm,球壳厚度t=50nm。
图9是FDTD仿真计算的包含有球壳腔体深度T=190nm,210nm,230nm的微晶硅球壳阵列的光伏结构和50nm微晶硅薄膜(比较例)的理想短路电流大小,其中球壳内径d=320nm,球壳厚度t=50nm。
图10是FDTD仿真计算球壳内径d=320nm,400nm,460nm,球壳腔体深度T=d/4微晶硅球壳阵列和50nm微晶硅薄膜(比较例)的吸收效率曲线,其中球壳厚度t=50nm。
图11是FDTD仿真计算包含有球壳内径d=320nm,400nm,460nm,球壳腔体深度T=d/4微晶硅球壳阵列的光伏结构和50nm微晶硅薄膜(比较例)的理想短路电流大小,其中球壳厚度t=50nm。
具体实施方式
下面结合附图和实施例对本发明做详细描述。
参照图1,一种纳米球壳阵列光伏结构,包括基底6,基底6上设有金属电极层5,金属电极层5上设有光吸收层,光吸收层为紧密排列的单层开口球壳阵列结构,光吸收层上面设有透明电极层1。所述的光吸收层是由p型掺杂层2,i型层3以及n型掺杂层4三层组成p-i-n结。入射太阳光经透明电极层1可以无损耗地进入光吸收层中,经依次穿过由p型掺杂层2,i型层3以及n型掺杂层4三层组成p-i-n结后,又可以经过金属电极层5的反射再次进入光吸收层,由于透明电极层1的折射率远小于光吸收层,所以入射太阳光在透明电极1和光吸收层的界面处容易形成全反射,使得入射太阳光再次反射到光吸收层中,这种多次反射延长了太阳光在光吸收层内的有效光学长度,提高了光吸收层的光吸收效率。光吸收层可以将吸收大部分太阳能光谱中的短波能量,而且由于共振作用可以高效率地吸收与球壳对应的共振波长的光能量。
所述的开口球壳阵列结构中球壳内径为d,球壳厚度为t,球壳腔体深度为T,球壳单元的内径d满足200nm≤d≤800nm,因为球壳的共振波长与球壳腔体的内径尺寸直接相关,在200nm<d<800nm可以使得入射光在光吸收层的共振波长在材料吸收波段内,特别是吸收材料带隙附近的光能量;壳层厚度t小于光吸收层材料的载流子复合长度,这样就可以抑制因为载流子(空穴和激子)的再复合而引起的光转化效率降低,提高单位吸收层材料的光吸收和转化电能效率;球壳腔体深度T满足d/2≤T≤3/4d,因为这样的球壳结构不仅可以实现由于腔体共振而形成的在吸收层带隙波长附近的吸收增强,也能实现在波长400nm~500nm范围内由于减反射作用而高效吸收。
所述的光吸收层的材料是不定型硅以及微晶硅。所述的透明电极层1是氧化铟锡ITO,透明电极层1的厚度小于100nm。所述的金属电极层5为银,金属电极层5厚度小于100nm。
实施例一:光吸收层材料为不定型硅(折射率n>3.5),开口球壳阵列结构中球壳内径d=320nm,球壳厚度t=50nm,其中透明电极层1为40nm ITO(n<1.8),金属电极层5为50nmAg,球壳腔体深度T=190nm、215nm、240nm。
比较例为50nm单纯硅薄膜在50nmAg电极上,并有40nm ITO层覆盖在硅薄膜表面上。
利用有限时域差分FDTD仿真计算单纯硅球壳阵列的吸收曲线,如图2所示,相比比较例中的50nm单纯硅薄膜吸收效率得到很大增强。实施例一的仿真曲线在波长λ>600nm附近都出现了一个很明显的吸收峰,入射光在d=320nm硅球壳中形成了回音壁共振模式,并且随着球壳腔体深度T的增加,共振波长位置红移;图3是硅球壳内径d=320nm,球壳厚度50nm,深度T=240nm时在共振波长λ=670nm的电场分布曲线,假设吸收的硅球壳所吸收光产生的载流子可以被完全收集,计算整个光伏结构的短路电流如图4所示,与比较例相比,球壳结构光伏结构的使得不定型硅产生的短路电流有很大的增强。
实施例二:光吸收层材料为不定型硅(折射率n>3.5),开口球壳阵列结构中球壳内径d=320nm、400nm、460nm,球壳厚度t=50nm,其中透明电极层1为40nm ITO(n<1.8),金属电极层5为50nmAg,球壳腔体深度T=3d/4。
比较例为50nm单纯硅薄膜在50nmAg电极上,并有40nm ITO层覆盖在硅薄膜表面上。
利用有限时域差分FDTD仿真计算单纯硅球壳阵列的吸收曲线如图5所示,相比比较例中的50nm单纯硅薄膜吸收效率得到很大增强。实施例二的仿真曲线在波长λ>670nm附近都出现了一个很明显的吸收峰,入射光在硅球壳中形成了回音壁共振模式,并且随着硅球壳直径的增加,共振波长位置红移;假设吸收的光产生的载流子可以被完全收集,计算整个光伏结构的短路电流如图6所示,与比较例相比,球壳结构光伏结构的使得不定型硅产生的短路电流有很大的增强。
实施例三:光吸收层材料为微晶硅(折射率n>3.5),开口球壳阵列结构中球壳内径d=320nm,球壳厚度t=50nm,其中透明电极层1为40nm ITO(n<1.8),金属电极层5为50nmAg,球壳腔体深度T=190nm、215nm、240nm。
比较例为50nm单纯硅薄膜在50nmAg电极上,并有40nm ITO层覆盖在硅薄膜表面上。
利用有限时域差分FDTD仿真计算单纯微晶硅球壳阵列的吸收曲线,如图7所示,相比比较例中的50nm单纯硅薄膜吸收效率得到很大增强。实施例三的仿真曲线在波长λ>600nm附近都出现了一个很明显的吸收峰,入射光在d=320nm硅球壳中形成了回音壁共振模式,并且随着硅球壳深度的增加,共振波长位置红移,图8是硅球壳内径d=320nm,球壳厚度50nm,深度T=240nm时在共振波长λ=685nm的电场分布曲线。假设硅球壳所吸收产生的载流子可以被完全收集,计算其光伏结构的短路电流如图9所示。
实施例四:光吸收层材料为微晶硅(折射率n>3.5),开口球壳阵列结构中球壳内径d=320nm,400nm,460nm,球壳厚度t=50nm,其中透明电极层1为40nm ITO(n<1.8),金属电极层5为50nmAg,球壳腔体深度T=3d/4。
比较例为50nm单纯硅薄膜在50nmAg电极上,并有40nm ITO层覆盖在硅薄膜表面上。
利用有限时域差分FDTD仿真计算单纯微晶硅球壳阵列的吸收曲线如图10所示,相比比较例中的50nm单纯微晶硅薄膜吸收效率得到很大增强,实施例四的仿真曲线在波长λ>685nm附近都出现了一个很明显的吸收峰,入射光在硅球壳中形成了回音壁共振模式,并且随着硅球壳直径的增加,共振波长位置红移;假设硅球壳所吸收的光产生的载流子可以被完全收集,计算整个光伏结构的短路电流如图11所示。

Claims (4)

1.一种纳米球壳阵列光伏结构,包括基底(6),其特征在于:基底(6)上设有金属电极层(5),金属电极层(5)上设有光吸收层,光吸收层为紧密排列的单层开口球壳阵列结构,光吸收层上面设有透明电极层(1);
所述的开口球壳阵列结构中球壳内径为d,球壳厚度为t,球壳腔体深度为T,球壳单元的内径d满足200nm≤d≤800nm,壳层厚度t小于光吸收层材料的载流子复合长度,球壳腔体深度T满足d/2≤T≤3/4d;
所述的光吸收层是由p型掺杂层(2),i型层(3)以及n型掺杂层(4)三层组成p-i-n结。
2.根据权利要求1所述的一种纳米球壳阵列光伏结构,其特征在于:所述的光吸收层的材料是在太阳光谱波长300nm~900nm范围内,折射率n>2.8的半导体材料。
3.根据权利要求1所述的一种纳米球壳阵列光伏结构,其特征在于:所述的透明电极层(1)是折射率n<2的透明导电材料,透明电极层(1)的厚度小于100nm。
4.根据权利要求1所述的一种纳米球壳阵列光伏结构,其特征在于:所述的金属电极层(5)为银或铜,金属电极层(5)厚度小于100nm。
CN201711487548.3A 2017-12-29 2017-12-29 一种纳米球壳阵列光伏结构 Expired - Fee Related CN108198879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711487548.3A CN108198879B (zh) 2017-12-29 2017-12-29 一种纳米球壳阵列光伏结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711487548.3A CN108198879B (zh) 2017-12-29 2017-12-29 一种纳米球壳阵列光伏结构

Publications (2)

Publication Number Publication Date
CN108198879A CN108198879A (zh) 2018-06-22
CN108198879B true CN108198879B (zh) 2020-01-14

Family

ID=62587164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711487548.3A Expired - Fee Related CN108198879B (zh) 2017-12-29 2017-12-29 一种纳米球壳阵列光伏结构

Country Status (1)

Country Link
CN (1) CN108198879B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110186119A1 (en) * 2009-12-24 2011-08-04 Atwater Harry A Light-trapping plasmonic back reflector design for solar cells
CN102709402B (zh) * 2012-06-29 2015-11-18 中国科学院上海高等研究院 基于图形化金属衬底的薄膜太阳电池及其制作方法
CN106409938B (zh) * 2016-10-26 2019-05-21 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法

Also Published As

Publication number Publication date
CN108198879A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN102934234B (zh) 使用增强的光捕获方案的薄膜光伏器件
CN204558502U (zh) 一种hit太阳能电池
Tao et al. High absorption perovskite solar cell with optical coupling structure
CN108365029B (zh) 一种含有六边柱GaAs光子晶体吸收层的多层太阳能电池
Wang et al. Enhanced optical properties in inclined GaAs nanowire arrays for high-efficiency solar cells
CN104157714B (zh) 一种非晶/微晶硅叠层太阳能电池
Spinelli et al. Photovoltaics: Light‐Trapping in Crystalline Silicon and Thin‐Film Solar Cells by Nanostructured Optical Coatings
CN108198879B (zh) 一种纳米球壳阵列光伏结构
CN110875399B (zh) 宽光谱吸收的薄膜太阳能电池及光伏发电装置
Haase et al. Efficient light trapping scheme by periodic and quasi-random light trapping structures
Zi et al. Modeling of triangular-shaped substrates for light trapping in microcrystalline silicon solar cells
JP4860836B2 (ja) 太陽電池
WO2018078659A1 (en) Refined light trapping technique using 3-dimensional globule structured solar cell
Li et al. Cylindrical lens array concentrator with a nanonipple-array antireflective surface for improving the performances of solar cells
TWI470814B (zh) 太陽能電池
Ye et al. Enhanced conversion efficiency for solar cells with periodic grating of nanowires
KR101086260B1 (ko) 플렉서블 기판 또는 인플렉서블 기판을 포함하는 광기전력 장치 및 광기전력 장치의 제조 방법
Bhatnagar et al. Cost effective and “high” power conversion efficiency ultra-thin film GaAs solar cell
Kundu et al. Tapered silicon nanopillars for enhanced performance thin film solar cells
Spinelli Light trapping in solar cells using resonant nanostructures
Isabella et al. Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells
Nagel et al. Enhanced light absorption in thin-film silicon solar cells by scattering from embedded dielectric nanoparticles
Sarkar et al. Design and Performance Analysis of a c-Si Thin-Film Solar Cell Using Plasmonic Ag Nanostructures
Akimov et al. Plasmon-enhanced light absorption in thin-film amorphous silicon solar cells
Chin et al. Efficiency improvement in nanorod amorphous silicon thin film with ultrathin metal electrode for photovoltaic application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200114