CN108197355A - 一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法 - Google Patents

一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法 Download PDF

Info

Publication number
CN108197355A
CN108197355A CN201711382467.7A CN201711382467A CN108197355A CN 108197355 A CN108197355 A CN 108197355A CN 201711382467 A CN201711382467 A CN 201711382467A CN 108197355 A CN108197355 A CN 108197355A
Authority
CN
China
Prior art keywords
monte carlo
solid
virtual
parent
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711382467.7A
Other languages
English (en)
Inventor
郑玉来
苏明
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201711382467.7A priority Critical patent/CN108197355A/zh
Publication of CN108197355A publication Critical patent/CN108197355A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2117/00Details relating to the type or aim of the circuit design
    • G06F2117/08HW-SW co-design, e.g. HW-SW partitioning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法,该方法建立一个虚拟几何区域,将原有的实际存在的几何体包括在内;将所建立的虚拟几何区域划分为若干个单元;以所划分的各单元为母体,在各个单元中分别构建实际的几何体。本发明能够较好地解决粒子在几何体数量巨大的系统中的位置快速确定问题,提高蒙特卡罗方法的计算效率,节省计算时间。

Description

一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法
技术领域
本发明属于蒙特卡罗模拟计算技术,具体涉及一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法。
背景技术
蒙特卡罗方法(Monte Carlo)是一种以概率统计理论为基础的一种计算方法。该方法能够比较逼真地描述事物的特点及物理实验过程,解决数值方法难以解决的问题。广泛应用于粒子输运问题,统计物理,典型数学问题,真空技术,激光技术以及医学,生物,探矿等领域。
蒙特卡罗方法应用于粒子输运问题时的主要过程为源粒子的状态参数的确定,系统中的输运并确定下一个碰撞点,确定被碰撞的原子核、反应类型及粒子碰撞后的能量与运动方向,接着继续重复输运过程直到粒子达到停止输运的边界条件。输运过程首先是确定粒子的输运长度,然后计算粒子的当前位置与相关几何区域边界的距离,从而确定粒子的下一个碰撞点的位置。当系统中的几何区域数量较多时,因需要计算粒子到所有几何区域边界的距离,计算量较大,占用的机时较多。
Geant4是欧洲核子研究中心(CERN)研制开发的一个大型的蒙特卡罗模拟程序。蒙特卡罗模拟程序Geant4的构建几何模型方法如下,先构建一个世界体,整个系统都在这个世界体内,当粒子输运到这个世界体外时,粒子停止输运。同时,该世界体作为系统最大的母体,其它的主要几何区域应作为子体在该母体中建立。并且,每个子体同时可作为更小的感兴趣区域构建的母体。Geant4程序模拟粒子输运过程中,粒子输运到所在几何体边界后,需判断粒子输运的下一个碰撞点的所在区域,为此,需要根据粒子的位置和运动方向与其同一母体内的每一个几何体进行相交计算,确定到达边界的距离,进而确定粒子输运的下一个碰撞点的所在区域和准确位置。当前母体内的子体数量较多时,需要大量机时计算粒子到达各子体区域边界的距离。
发明内容
本发明的目的在于针对利用蒙特卡罗方法计算粒子在几何体数量巨大的系统中的输运问题时的计算效率低的问题,提出一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法,以提高蒙特卡罗方法的计算效率,节省计算时间。
本发明的技术方案如下:一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法,包括如下步骤:
(1)建立一个虚拟几何区域,将原有的实际存在的几何体包括在内;
(2)将所建立的虚拟几何区域划分为若干个单元;
(3)以所划分的各单元为母体,在各个单元中分别构建实际的几何体。
进一步,如上所述的用于蒙特卡罗模拟计算程序的虚拟分层建模方法,步骤(2)中,将所述的虚拟几何区域按照实际需要划分为多层结构,在上一层的单元中进一步划分若干个下一层的单元;步骤(3)中在最后一层的各个单元中分别构建实际的几何体。
进一步,如上所述的用于蒙特卡罗模拟计算程序的虚拟分层建模方法,步骤(3)中,所述的最后一层的各个单元为母体,实际的几何体为子体,蒙特卡罗模拟计算程序计算母体外的粒子与实际的几何体是否相交时,只需计算其是否与母体相交,不用考虑子体,也不用考虑母体以外的其它单元。
本发明的有益效果如下:本发明提供的虚拟分层建模方法可直接应用于蒙特卡罗方法的模拟程序Geant4的几何模型构建的优化,能够较好地解决粒子在几何体数量巨大的系统中的位置快速确定问题,提高蒙特卡罗方法的计算效率,节省计算时间。
附图说明
图1为本发明具体实施方式中虚拟分层建模方法的过程示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
本发明提供的可应用于蒙特卡罗模拟程序Geant4的虚拟分层建模方法的主要思想是通过建立一个虚拟的分层几何模型,对原有的数量巨大的几何体进行分区处理。即先建立一个大的虚拟区域,将原有的数量较大的实际存在的几何体包括在内,该虚拟区域可认为是第一层;然后在这个虚拟区域内继续划分多个虚拟的几何体,作为系统的第二层区域,其每个区域应包含数量相对较少的实际存在的几何体;按照上述分层方法,可根据实际问题对区域划分到合适的层数。最后一层应构建实际存在的几何体。该方法可先确定粒子即将到达的一个相对较大的区域,然后在这个较大区域中再不断确定更小的区域,最终定位粒子实际到达的区域和准确位置。
具体过程如图1所示,包括如下步骤:
(1)建立一个虚拟几何体V1,将原有的数量较大的实际存在的几何体包括在内;
(2)将几何体V1划分成单元V2、单元V3;
(3)在几何体V2中,构建实际的几何体v4、v5、v6。
由于,Geant4建立新几何体时要求指定其应被放在另外的哪个几何体中,该几何体可被认为是新几何体的母体,新几何体为子体。Geant4程序计算母体外粒子与几何体是否相交时,只需计算是否与母体相交,不用考虑子体。如图1所示,位于几何体V1之外的粒子只需计算是否与几何体V1相交,不用考虑其它几何体;位于几何体V1的粒子输运时只需考虑是否与几何体V2,V3相交,不用考虑V4,V5,V6,位于几何体V2的粒子只需考虑是否与几何体V4,V5,V6相交,不用考虑V1,V3。因此,按照上面的几何分层方法建模,不用每次都要对粒子到达系统中存在的所有几何区域边界是否相交进行计算,极大的节省了计算时间,提高计算效率。
实施例
本发明提供的虚拟分层建模方法可应用于中子成像的蒙特卡罗模拟计算。其中,成像系统探测器部分为500×500的液闪阵列组成。由于成像探测器阵列巨大(500×500光纤阵列),需要消耗大量的CPU资源来计算粒子下一步的所在位置,为节省计算时间,可通过虚拟分层建模方法来优化探测器阵列的几何模型。具体过程如下:
(1)建立一个长方体V1,将探测器阵列(500×500光纤阵列)包括其中,V1的长和宽分别为探测器每根光纤的外径×500,高为光纤的长度。
(2)将长方体V1细分成5×5的单元V2,共25个单元V2;
(3)将上一步细分后的每个单元继续细分成10×10的单元V3,共2500个单元V3;
(4)将500×500光纤阵列按照相对位置,放置于上一步细分后的每个单元V3中,这样,每个单元V3将放置10×10根光纤,共250000根光纤。
通过对几何模型优化前后的计算时间进行了测试,计算机硬件配置为Intel Corei5,主频为2.8GHz,模拟粒子数为10万,几何模型优化前的计算时间为150分钟,几何模型优化后的计算时间为5分钟,计算速度提高30倍。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (3)

1.一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法,包括如下步骤:
(1)建立一个虚拟几何区域,将原有的实际存在的几何体包括在内;
(2)将所建立的虚拟几何区域划分为若干个单元;
(3)以所划分的各单元为母体,在各个单元中分别构建实际的几何体。
2.如权利要求1所述的用于蒙特卡罗模拟计算程序的虚拟分层建模方法,其特征在于:步骤(2)中,将所述的虚拟几何区域按照实际需要划分为多层结构,在上一层的单元中进一步划分若干个下一层的单元;步骤(3)中在最后一层的各个单元中分别构建实际的几何体。
3.如权利要求2所述的用于蒙特卡罗模拟计算程序的虚拟分层建模方法,其特征在于:步骤(3)中,所述的最后一层的各个单元为母体,实际的几何体为子体,蒙特卡罗模拟计算程序计算母体外的粒子与实际的几何体是否相交时,只需计算其是否与母体相交,不用考虑子体,也不用考虑母体以外的其它单元。
CN201711382467.7A 2017-12-20 2017-12-20 一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法 Pending CN108197355A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711382467.7A CN108197355A (zh) 2017-12-20 2017-12-20 一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711382467.7A CN108197355A (zh) 2017-12-20 2017-12-20 一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法

Publications (1)

Publication Number Publication Date
CN108197355A true CN108197355A (zh) 2018-06-22

Family

ID=62577176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711382467.7A Pending CN108197355A (zh) 2017-12-20 2017-12-20 一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法

Country Status (1)

Country Link
CN (1) CN108197355A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522997B1 (en) * 1996-10-21 2003-02-18 Nec Corporation Simulation method of sputtering
CN106599514A (zh) * 2016-12-29 2017-04-26 安徽中科超安科技有限公司 一种基于非关联多级空间分割树的蒙特卡罗面片几何处理方法
CN107357993A (zh) * 2017-07-13 2017-11-17 中国科学院合肥物质科学研究院 一种基于特征长度的蒙特卡罗粒子输运快速几何处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522997B1 (en) * 1996-10-21 2003-02-18 Nec Corporation Simulation method of sputtering
CN106599514A (zh) * 2016-12-29 2017-04-26 安徽中科超安科技有限公司 一种基于非关联多级空间分割树的蒙特卡罗面片几何处理方法
CN107357993A (zh) * 2017-07-13 2017-11-17 中国科学院合肥物质科学研究院 一种基于特征长度的蒙特卡罗粒子输运快速几何处理方法

Similar Documents

Publication Publication Date Title
Brax et al. Nonlinear structure formation with the environmentally dependent dilaton
CN108052745A (zh) 一种模拟辐照缺陷与晶界协同演化的方法
Schultze et al. Performance of hull-detection algorithms for proton computed tomography reconstruction
Li et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation
CN108197355A (zh) 一种用于蒙特卡罗模拟计算程序的虚拟分层建模方法
Lin et al. Characterizing and understanding distributed GNN training on GPUs
Kang et al. Two-level time-dependent GET based CMFD acceleration for 3D whole core transient transport simulation using 2D/1D method
Pan et al. Acceleration method of fission source convergence based on RMC code
Henderson et al. A CUDA Monte Carlo simulator for radiation therapy dosimetry based on Geant4
CN113205179B (zh) 一种用于介质激光加速的深度学习架构
Gong et al. Short-term power prediction of a wind farm based on empirical mode decomposition and mayfly algorithm–back propagation neural network
CN105373665B (zh) 获取用于核电站辐射仿真系统的多核素等效参数的方法
CN105205289B (zh) 一种基于人脑变形仿真的快速连续碰撞检测方法
CN107590353A (zh) 大气紊流场模拟方法和采用knl处理器的服务器的集群
Chacon-Golcher et al. Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field
Oliva et al. The Spectral Deterministic Method applied to neutron fixed-source discrete ordinates problems in X, Y-geometry for multigroup calculations
Meng et al. Anisotropic Cartesian Grid Generation Strategy for Arbitrarily Complex Geometry Based on a Fully Threaded Tree
Murakami et al. Geant4 based simulation of radiation dosimetry in CUDA
CN115130363B (zh) 一种蒙特卡罗粒子输运程序模型自动精细化方法
Pan et al. MAGIC-GPS global variance reduction method for large-scale shielding calculation
CN116230166A (zh) 一种蒙特卡洛并行剂量计算方法
Shen et al. Parallel method of parabolic equation for electromagnetic environment simulation
CN115455796B (zh) 用于弥散硼颗粒的输运等效方法、电子设备和存储介质
Dahl PARTISN results for the OECD/NEA 3-D extension C5G7 MOX benchmark
Kaportsev et al. Modernization of the automated control system in the Kurchatov synchrotron radiation source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180622