CN108196416A - Laser projection module, depth camera and electronic device - Google Patents

Laser projection module, depth camera and electronic device Download PDF

Info

Publication number
CN108196416A
CN108196416A CN201810161928.6A CN201810161928A CN108196416A CN 108196416 A CN108196416 A CN 108196416A CN 201810161928 A CN201810161928 A CN 201810161928A CN 108196416 A CN108196416 A CN 108196416A
Authority
CN
China
Prior art keywords
lens barrel
side wall
optical element
diffraction optical
projection module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810161928.6A
Other languages
Chinese (zh)
Inventor
贾玉虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Huantai Technology Co Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN201810161928.6A priority Critical patent/CN108196416A/en
Publication of CN108196416A publication Critical patent/CN108196416A/en
Priority to PCT/CN2019/073949 priority patent/WO2019165879A1/en
Priority to EP19752412.7A priority patent/EP3572769A4/en
Priority to US16/484,705 priority patent/US11525669B2/en
Priority to TW108106939A priority patent/TWI771569B/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Abstract

The invention discloses a kind of laser projection modules.Laser projection module includes board unit, lens barrel, light source, collimating element, diffraction optical element and protection cap.Lens barrel includes lens barrel side wall, and lens barrel side wall is arranged on board unit and host cavity is collectively formed with board unit, and lens barrel is included from the inwardly projecting limit protrusion of lens barrel side wall.Light source is arranged on board unit and for emitting laser to host cavity.Collimating element is housed in host cavity.Diffraction optical element is mounted on limit protrusion, and light source, collimating element and diffraction optical element are successively set in the light path of light source.Protection cap is combined with lens barrel, and protection cap includes protection roof, and protection roof offers light hole, and light hole is corresponding with diffraction optical element, and diffraction optical element is located between limit protrusion and protection roof.Invention additionally discloses a kind of depth camera and electronic devices.Diffraction optical element limits position by protection roof together with limit protrusion, will not come off along light direction.

Description

Laser projection module, depth camera and electronic device
Technical field
The present invention relates to optics and electronic technology fields, more specifically, are related to a kind of laser projection module, depth camera And electronic device.
Background technology
Laser projection module needs to set diffraction optical element (diffractive in the transmitting light path of laser Optical elements, DOE), and diffraction optical element is usually adhered directly to by glue on the lens barrel of laser projection module, And glue easily fails, and diffraction optical element is caused to come off, laser is easily burnt user after directly launching.
Invention content
Embodiment of the present invention provides a kind of laser projection module, depth camera and electronic device.
The laser projection module of embodiment of the present invention includes:
Board unit;
Lens barrel, the lens barrel include lens barrel side wall, the lens barrel side wall be arranged on the board unit and with the base Host cavity is collectively formed in plate component, and the lens barrel is included from the inwardly projecting limit protrusion of the lens barrel side wall;
Light source, the light source are arranged on the board unit and for emitting laser to the host cavity;
Collimating element, the collimating element are housed in the host cavity;
Diffraction optical element, the diffraction optical element are mounted on the limit protrusion, the light source, the collimation member Part and the diffraction optical element are successively set in the light path of the light source;With
Protection cap, the protection cap are combined with the lens barrel, and the protection cap includes protection roof, and the protection roof is opened Equipped with light hole, the light hole is corresponding with the diffraction optical element, and the diffraction optical element is located at the limit protrusion Between the protection roof.
In some embodiments, the lens barrel includes opposite the first face and the second face, second face and the base Plate component combines, and the limit protrusion is between first face and second face, the protection roof and described first Face offsets.
In some embodiments, the lens barrel includes opposite the first face and the second face, second face and the base Plate component combines, and first face is overlapped with the upper surface of the limit protrusion, the protection roof and diffraction optics member Part offsets.
In some embodiments, the protection cap further includes the protective side wall of the periphery extension from the protection roof, The protection cap is located on the lens barrel, and the protective side wall is fixedly connected with the lens barrel side wall.
In some embodiments, the outer wall of the lens barrel side wall offers glue groove, the protective side wall and the appearance The corresponding position of glue groove offers dispensing hole, glue to be allowed to enter the glue groove by the dispensing hole.
In some embodiments, the dispensing hole is corresponding with the madial wall of the glue groove, and the madial wall, which tilts, to be connected Connect the inner bottom wall of the glue groove and the outer wall of the lens barrel side wall.
In some embodiments, the protection cap further includes the first card from the inwardly projecting elasticity of the protective side wall It hooks, the lens barrel further includes the second hook outwardly protruded from the inner bottom wall of the glue groove, and the protection cap is located at described When on lens barrel, engaging.
In some embodiments, the protective side wall offers avoid holes in position corresponding with first hook, The avoid holes are used for during the protection cap is located at the lens barrel, first hook and the second hook phase It supports and first hook occurs to provide deformation space during elastic deformation.
In some embodiments, second hook is formed with guide ramp, and the lens barrel is inserted in along the protection cap Direction, the guide ramp is gradually distance from the inner bottom wall, during the protection cap is located at the lens barrel, described One hook offsets with the guide ramp.
In some embodiments, the protective side wall includes the sub- side wall of protection that multiple head and the tail connect successively, Mei Gesuo It states the sub- side wall of protection and has been respectively formed on first hook and the dispensing hole.
In some embodiments, at least formed with two dispensing holes, first card on each sub- side wall of protection It hooks between at least two dispensing holes.
In some embodiments, first hook is located at the centre position of the corresponding sub- side wall of protection, each At least two dispensing holes on the sub- side wall of protection are symmetrical relative to first hook.
In some embodiments, the limit protrusion is in continuous cyclic annular;Or the limit protrusion is including multiple, it is multiple The limit protrusion is spaced apart.
The depth camera of embodiment of the present invention includes:
Laser projection module described in any of the above-described embodiment;
Image acquisition device, described image collector project for acquiring after the diffraction optical element into object space Laser pattern;With
The processor being connect respectively with the laser projection module and described image collector, the processor are used to handle The laser pattern is to obtain depth image.
The electronic device of embodiment of the present invention includes:
Housing;With
Depth camera described in the above embodiment, the depth camera are arranged in the housing and sudden and violent from the housing Reveal to obtain depth image.
In the laser projection module of embodiment of the present invention, depth camera and electronic device, due to protection cap and lens barrel knot It closes, the position of protection roof diffraction-limited optical element together with limit protrusion of protection cap, diffraction optical element will not be along going out Light direction comes off, and laser is avoided to launch without diffraction optical element.
The additional aspect and advantage of embodiments of the present invention will be set forth in part in the description, partly will be from following Description in become apparent or recognized by the practice of embodiments of the present invention.
Description of the drawings
The above-mentioned and/or additional aspect and advantage of the present invention is from combining in description of the accompanying drawings below to embodiment by change It obtains significantly and is readily appreciated that, wherein:
Fig. 1 is the structure diagram of the electronic device of embodiment of the present invention;
Fig. 2 is the structure diagram of the depth camera of embodiment of the present invention;
Fig. 3 is the stereoscopic schematic diagram of the laser projection module of embodiment of the present invention;
Fig. 4 is the floor map of the laser projection module of embodiment of the present invention;
Fig. 5 is the perspective exploded view of the laser projection module of embodiment of the present invention;
Fig. 6 is schematic cross-section of the laser projection module shown in Fig. 4 along line VI -- VI;
Fig. 7 is that the edge of another embodiment of the present invention is illustrated with the section of laser projection module line VI -- VI shown in Fig. 4 Figure;
Fig. 8 is schematic cross-section of the laser projection module shown in Fig. 4 along VIII-VIII lines;
Fig. 9 is the enlarged diagram of the IX parts of the laser projection module in Fig. 8;
Figure 10 is the enlarged diagram of the X section of laser projection module shown in fig. 5;
Figure 11 is the stereoscopic schematic diagram of the protection cap of the laser projection module of embodiment of the present invention;
Figure 12 is the part-structure schematic diagram of the laser projection module of embodiment of the present invention;
Figure 13 is the part-structure schematic diagram of the laser projection module of embodiment of the present invention;
Figure 14 is that the laser projection module of embodiment of the present invention removes the floor map after protection cap;
Figure 15 is that the laser projection module of another embodiment of the present invention removes the floor map after protection cap;
Figure 16 is that the laser projection module of a further embodiment of the present invention removes the floor map after protection cap;
Figure 17 is the diffraction optical element of embodiment of the present invention and the structure diagram of lens barrel side wall;
Figure 18 is that the laser projection module of a further embodiment of this invention removes the floor map after protection cap;
Figure 19 is the diffraction optical element of a further embodiment of this invention and the structure diagram of lens barrel side wall.
Main element symbol description:
Electronic device 1000, housing 200, depth camera 100, laser projection module 10, board unit 11, substrate 111, electricity Road plate 112, lens barrel 12, host cavity 121, lens barrel side wall 122, limit protrusion 123, crosses unthreaded hole 1231, confined planes at via 113 1232nd, the first face 124, the second face 125, glue groove 126, madial wall 1261, inner bottom wall 1262, the second hook 127, guide ramp 1271st, the first positioning region 128, the first chamfering 1281, confined planes recess 1282, confined planes convex block 1283, lens barrel recess 1284, mirror Cylinder convex block 1285, light source 13, collimating element 14, optical section 141, mounting portion 142, diffraction optical element 15, top surface 151, bottom surface 152nd, side 153, sub- side 1531, the second positioning region 154, the second chamfering 1541, bottom surface convex block 1542, bottom surface recess 1543, Side convex block 1544, side-facing depressions 1545, protection cap 16, protection roof 161, light hole 1611, protective side wall 162, protection Side wall 1621, dispensing hole 163, the first hook 164, avoid holes 165, connector 17, image acquisition device 20, processor 30, projection Window 40, acquisition window 50.
Specific embodiment
Embodiments of the present invention are described further below in conjunction with attached drawing.Same or similar label is from beginning in attached drawing To the whole element for representing same or similar element or there is same or like function.
In addition, the embodiments of the present invention described below in conjunction with the accompanying drawings are exemplary, it is only used for explaining the present invention's Embodiment, and be not considered as limiting the invention.
In the present invention unless specifically defined or limited otherwise, fisrt feature can be with "above" or "below" second feature It is that the first and second features are in direct contact or the first and second features pass through intermediary mediate contact.Moreover, fisrt feature exists Second feature " on ", " top " and " above " but fisrt feature right over second feature or oblique upper or be merely representative of Fisrt feature level height is higher than second feature.Fisrt feature second feature " under ", " lower section " and " below " can be One feature is immediately below second feature or obliquely downward or is merely representative of fisrt feature level height less than second feature.
Referring to Fig. 1, the electronic device 1000 of embodiment of the present invention includes housing 200 and depth camera 100.Electronics fills It can be that mobile phone, tablet computer, laptop computer, game machine, head show equipment, access control system, automatic teller machine etc. to put 1000, and the present invention is real It applies example to illustrate so that electronic device 1000 is mobile phone as an example, it will be understood that the concrete form of electronic device 1000 can be it He, this is not restricted.Depth camera 100 is arranged in housing 200 and exposes to obtain depth image, housing from housing 200 200 can provide the protection of dust-proof, waterproof, shatter-resistant etc. to depth camera 100, and it is right with depth camera 100 to be offered on housing 200 The hole answered, so that light from hole is pierced by or penetrates housing 200.
Referring to Fig. 2, depth camera 100 includes laser projection module 10, image acquisition device 20 and processor 30.Depth phase Could be formed on machine 100 it is corresponding with laser projection module 10 projection window 40 and with 20 corresponding acquisition of image acquisition device Window 50.Laser projection module 10 is used to project laser pattern to object space by projecting window 40, and image acquisition device 20 is used It is acquired in by acquisition window 50 by the modulated laser pattern of subject matter.In one example, laser projection module 10 projects Laser for infrared light, image acquisition device 20 is infrared camera.Processor 30 and laser projection module 10 and image acquisition device 20 are all connected with, and processor 30 is used to handle laser pattern to obtain depth image.Specifically, processor 30 is calculated using images match Method calculates the deviation value of each pixel corresponding with reference pattern of each pixel in the laser pattern, further according to the deviation Value further obtains the depth image of the laser pattern.Wherein, image matching algorithm can be digital picture correlation (Digital Image Correlation, DIC) algorithm.It is of course also possible to use other image matching algorithms replace DIC algorithms.Below will The structure of laser projection module 10 is described further.
Please refer to Fig. 3 to Fig. 5, laser projection module 10 include board unit 11, lens barrel 12, light source 13, collimating element 14, Diffraction optical element 15 and protection cap 16.Light source 13, collimating element 14 and diffraction optical element 15 are successively set on light source 13 In light path, specifically, the light that light source 13 is sent out sequentially passes through collimating element 14 and diffraction optical element 15.
Fig. 5 and Fig. 6 are please referred to, board unit 11 includes substrate 111 and the circuit board 112 being carried on substrate 111.Substrate 111 are used to carry lens barrel 12, light source 13 and circuit board 112.The material of substrate 111 can be plastics, such as poly terephthalic acid Glycol ester (Polyethylene Glycol Terephthalate, PET), polymethyl methacrylate (Polymethyl Methacrylate, PMMA), makrolon (Polycarbonate, PC), in polyimides (Polyimide, PI) at least It is a kind of.That is, the unitary plastic material that any one in PET, PMMA, PC or PI may be used in substrate 111 is made.Such as This, 111 lighter weight of substrate and with enough support strengths.
Circuit board 112 can be any one in printed circuit board, flexible PCB, Rigid Flex.Circuit board 112 On can offer via 113, can be used for accommodating light source 13 in via 113, the part of circuit board 112 is covered by lens barrel 12, Another part extends out and can be connect with connector 17, and laser projection module 10 can be connected to electronics dress by connector 17 It puts on 1000 mainboard.
Fig. 6 to Fig. 8 is please referred to, lens barrel 12 is arranged on board unit 11 and host cavity is collectively formed with board unit 11 121.Specifically, lens barrel 12 can be connect with the circuit board 112 of board unit 11, and lens barrel 12 can be by viscous with circuit board 112 Glue sticking, to improve the air-tightness of host cavity 121.Certainly, lens barrel 12 and the specific connection mode of board unit 11 can have it He, such as by being connected together.Host cavity 121 can be used for accommodating the components such as collimating element 14, diffraction optical element 15, receive Cavity volume 121 is formed simultaneously a part for the light path of laser projection module 10.In embodiments of the present invention, lens barrel 12 is in hollow cylinder Shape, lens barrel 12 include lens barrel side wall 122 and limit protrusion 123.
Lens barrel side wall 122 surrounds host cavity 121, and the outer wall of lens barrel side wall 122 could be formed with positioning and mounting structure, with Convenient for the position of the fixed laser projection module 10 when laser projection module 10 is mounted in electronic device 1000.Lens barrel 12 wraps Opposite the first face 124 and the second face 125 are included, wherein the one of host cavity 121 is opened on the second face 125, another It is opened on the first face 124.Second face 125 is combined with circuit board 112, such as glued, and the first face 124 can be used as lens barrel 12 with the faying face of 16 grade of diffraction optical element 15 or protection cap.Incorporated by reference to Fig. 9 and Figure 10, the outer wall of lens barrel side wall 122 opens up There is glue groove 126, glue groove 126 can be opened up from the first face 124 and be extended to the direction in the second face 125.
Fig. 8 and Fig. 9 are please referred to, limit protrusion 123 is inwardly projecting from lens barrel side wall 122, and specifically, limit protrusion 123 is certainly Lens barrel side wall 122 is prominent into host cavity 121.Limit protrusion 123 can be in that continuous cyclic annular or limit protrusion 123 includes Multiple, multiple limit protrusions 123 are spaced apart.Limit protrusion 123 surrounded unthreaded hole 1231, and receiving can be used as by crossing unthreaded hole 1231 A part for chamber 121, laser penetrated diffraction optical element 15 after passing through unthreaded hole 1231.In the embodiment illustrated in fig. 6, it limits For position protrusion 123 between the first face 124 and the second face 125, the host cavity 121 between 123 and second face 125 of limit protrusion can For receiving collimating element 14, the host cavity 121 between 123 and first face 124 of limit protrusion can be used for accommodating diffraction light Learn element 15.Meanwhile when assembling laser projection module 10, when diffraction optical element 15 and limit protrusion 123 offset, it can recognize It is installed in place for diffraction optical element 15, when collimating element 14 and limit protrusion 123 offset, it is believed that collimating element 14 is installed In place.Limit protrusion 123 includes confined planes 1232, when diffraction optical element 15 is mounted on limit protrusion 123, confined planes 1232 are combined with diffraction optical element 15.
Referring to Fig. 8, light source 13 is arranged on board unit 11, specifically, light source 13 can be arranged on circuit board 112 And be electrically connected with circuit board 112, light source 13 can also be arranged on it is on substrate 111 and corresponding with via 113, at this point it is possible to pass through Light source 13 is electrically connected by arrangement conducting wire with circuit board 112.Light source 13 is for emitting laser, and laser can be infrared light, at one In example, light source 13 can include the emitting laser of Semiconductor substrate and setting on a semiconductor substrate, and Semiconductor substrate is set It puts on substrate 111, emitting laser can be vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser,VCSEL).Semiconductor substrate can set single emitting laser, can also set and be swashed by multiple transmittings The array laser of light device composition, specifically, multiple emitting lasers can be with the shape of regularly or irregularly two-dimensional pattern Formula is arranged on a semiconductor substrate.
Referring to Fig. 8, collimating element 14 can be optical lens, collimating element 14 swashs for what collimated light source 13 emitted Light, collimating element 14 are housed in host cavity 121, and collimating element 14 can be directed toward the direction group in the first face 124 along the second face 125 It is attached in host cavity 121.Collimating element 14 includes optical section 141 and mounting portion 142, and mounting portion 142 is used for and lens barrel side wall 122 With reference to and fixed collimating element 14, in embodiments of the present invention, optical section 141 includes two positioned at 14 opposite both sides of collimating element A curved surface.
Fig. 8 and Fig. 9 are please referred to, diffraction optical element 15 is mounted on limit protrusion 123, specifically, diffraction optical element 15 are combined to be mounted on limit protrusion 123 with confined planes 1232.The outer surface of diffraction optical element 15 includes top surface 151, bottom Face 152 and side 153.Top surface 151 and bottom surface 152 are opposite, and side 153 connects top surface 151 and bottom surface 152, when diffraction optics member When part 15 is mounted on limit protrusion 123, bottom surface 152 is combined with confined planes 1232.In the embodiment of the present invention, shape on bottom surface 152 Into there is diffraction structure, top surface 151 can be smooth plane, after diffraction optical element 15 can collimate collimated element 14 Laser projection goes out laser pattern corresponding with diffraction structure.Diffraction optical element 15 can be made of glass, it may also be said to by multiple Plastics (such as PET) are closed to be made.
Fig. 8 and Fig. 9 are please referred to, protection cap 16 is combined with lens barrel 12, and protection cap 16 is for diffraction-limited optical element 15 Position, specifically, protection cap 16 are used to prevent the combination of diffraction optical element 15 and lens barrel 12 from after failing from lens barrel 12 deviating from. Incorporated by reference to Figure 11, protection cap 16 includes protection roof 161 and protective side wall 162.
Roof 161 is protected to be located at the opposite both sides of diffraction optical element 15 respectively with limit protrusion 123, in other words, is spread out It penetrates optical element 15 to be located between limit protrusion 123 and protection roof 161, in this way, even if diffraction optical element 15 and limit convex It plays 123 combination to fail, due to protecting the restriction effect of roof 161, diffraction optical element 15 will not deviate from.Protect roof 161 offer light hole 1611, and the position of light hole 1611 is corresponding with diffraction optical element 15, and laser successively passed through unthreaded hole 1231st, it is projected from laser projection module 10 after diffraction optical element 15 and light hole 1611.In embodiments of the present invention, it protects The global shape of roof 161 is rounded rectangular, and light hole 1611 can rounded, rectangle, ellipse, the shapes such as trapezoidal.Such as In embodiment shown in fig. 6, when protection cap 16 is combined with lens barrel 12, protection roof 161 offsets with the first face 124, further Ground, protection roof 161 can also be combined with the first face 124 by way of gluing etc..
Fig. 9 to Figure 11, the periphery extension of 162 self-shield roof 161 of protective side wall are please referred to, protection cap 16 is located at lens barrel On 12, protective side wall 162 is fixedly connected with lens barrel side wall 122.Protective side wall 162 includes protection that multiple head and the tail connect successively Side wall 1621 each protects sub- side wall 1621 to be fixedly connected with lens barrel side wall 122, and sub- side wall 1621 is each protected to be respectively formed on There is dispensing hole 163.The position in dispensing hole 163 is corresponding with the position of glue groove 126, after protection cap 16 is located on lens barrel 12, Can be after the dispensing into glue groove 126 of dispensing hole 163, glue curing, protective side wall 162 is fixedly connected with lens barrel side wall 122. In one example, it each protects and single dispensing hole 163 is offered on sub- side wall 1621, it is each to protect in another example Multiple dispensing holes 163, such as two, three, four etc., in embodiments of the present invention, Mei Gebao are offered on sub- side wall 1621 Protect on sub- side wall 1621 and open up there are two dispensing hole 163, two dispensing holes 163 respectively with two madial walls of glue groove 126 1261 correspond to, and convenient for user to the dispensing simultaneously of the both sides of glue groove 126, improve dispensing speed.Further, glue groove 126 Madial wall 1261 tilts the inner bottom wall 1262 of connection glue groove 126 and the outer wall of lens barrel side wall 122, tilts connection and refers to inside Wall 1261 and inner bottom wall 1262, the equal out of plumb of outer wall of madial wall 1261 and lens barrel side wall 122, when glue is injected into madial wall When on 1261, under the guide function of madial wall 1261, glue is easily flowed to the centre position of glue groove 126, accelerates glue Fill the speed of glue groove 126.
To sum up, in the electronic device 1000 of embodiment of the present invention, since protection cap 16 is combined with lens barrel 12, protection cap 16 Protection roof 161 and limit protrusion 123 together diffraction-limited optical element 15 position, diffraction optical element 15 will not be along going out Light direction comes off, and laser is avoided to protect user without launching after diffraction optical element 15, improve safety.
Referring to Fig. 7, in some embodiments, limit protrusion 123 can also be formed in the top of lens barrel 12, specifically Ground, the confined planes 1232 of limit protrusion 123 can be overlapped with the first face 124, and diffraction optical element 15 is mounted on limit protrusion 123 When upper, diffraction optical element 15 is combined with the first face 124.At this point, protection roof 161 offsets with diffraction optical element 15, protect Roof 161 clamps diffraction optical element 15 jointly with limit protrusion 123.In this way, the structure of lens barrel 12 is simple, diffraction optical element 15 are easily mounted on limit protrusion 123.
Fig. 9 to Figure 11 is please referred to, in some embodiments, it is inwardly projecting that protection cap 16 further includes self-shield side wall 162 Elasticity the first hook 164, lens barrel 12 further includes the second hook 127 outwardly protruded from the inner bottom wall 1262 of glue groove 126, When protection cap 16 is located on lens barrel 12, the first hook 164 is engaged with the second hook 127 is detached from lens barrel to limit protection cap 16 12。
Specifically, the first hook 164 is corresponding with the position of the second hook 127, is located on lens barrel 12 by protection cap 16 During, the first hook 164 and the second hook 127 offset and elastic deformation occur, after protection cap 16 is installed in place, first Hook 164 and the second hook 127 are engaged, and can be with tactile feedback and " clatter " sound being engaged into place.In this way, protection cap 16 Combined with lens barrel 12 it is more reliable, can be first by the first hook 164 and the and before protection cap 16 and lens barrel 12 is bonded with glue Two hooks 127 are engaged, and the relative position of protection cap 16 and lens barrel 12 can be effectively fixed, conducive to progress for dispensing glue.
Fig. 9 to Figure 11 is please referred to, in some embodiments, sub- side wall 1621 is each protected to be respectively formed on the first hook 164.It is corresponding, the position of the second hook 127, the second hook 127 and the first hook 164 is also both provided in multiple glue grooves 126 Correspondence is put, multiple first hooks 164 are engaged simultaneously with corresponding second hook 127, and the combination of protection cap 16 and lens barrel 12 more may be used It leans on.Specifically, the first hook 164 can be corresponding with protecting the centre position of sub- side wall 1621, and the second hook 127 can be with holding glue The centre position of slot 126 corresponds to.When each sub- side wall 1621 of protection is formed at least two dispensing holes 163, the first hook 164 Between at least two dispensing holes 163, more specifically, each protecting at least two dispensing holes, 163 phase on sub- side wall 1621 It is symmetrical for the first hook 164.In this way, it is flowed respectively in the both sides of the first hook 164 and the second hook 127 convenient for glue It is dynamic, and the glue quantity of both sides is suitable, cohesive force is more uniform.
Please refer to Fig. 9 and Figure 11, in some embodiments, protective side wall 162 with 164 corresponding position of the first hook Offer avoid holes 165.During protection cap 16 is located at lens barrel 12, the first hook 164 and the second hook 127 offset and When elastic deformation occurs for the first hook 164, avoid holes 165 provide deformation space for the elastic deformation of the first hook 164, that is, the One hook 164 occurs elastic deformation and stretches into avoid holes 165.Specifically, when the first hook 164 and the second hook 127 offset, the Elastic deformation occurs outward for one hook 164, and the first hook 164 stretches into avoid holes 165 and moved to avoid with protective side wall 162 Interference, in addition, the mated condition that user observes the first hook 164 and the second hook 127 by avoid holes 165 is also allowed for, such as Judge whether the first all hooks 164 is good with the occlusion of corresponding second hook 127.
Fig. 9 and Figure 10 are please referred to, in some embodiments, the second hook 127 is formed with guide ramp 1271, along protection Lid 16 is inserted in the direction of lens barrel 12, and guide ramp 1271 is far from inner bottom wall 1262, during protection cap 16 is located at lens barrel 12, First hook 164 offsets with guide ramp 1271.Since guide ramp 1271 is tilted relative to inner bottom wall 1262, the first hook 164 and second hook 127 coordinate during, the resist force of the second hook 127 that the first hook 164 is subject to slowly continuously increases Greatly, the deformation quantity of the first hook 164 also continuously becomes larger, and the first hook 164 easily engages with the second hook 127.
Referring to Fig. 9, in some embodiments, the first positioning region 128, diffraction optical element 15 are formed on lens barrel 12 Outer surface on be formed with the second positioning region 154, and if only if the bottom surface of diffraction optical element 15 152 and 123 knot of limit protrusion During conjunction, the first positioning region 128 coordinates with the second positioning region 154.It is appreciated that the bottom surface 152 and top surface of diffraction optical element 15 151 structure is different, and bottom surface 152 also differs the effect of laser with top surface 151, when in use, if by diffraction optics member Part 15 is anti-loaded (top surface 151 is combined with limit protrusion 123), and diffraction optical element 15 goes out the laser pattern of needs by diffraction is unable to, Laser concentration is even also resulted in emit and the user that easily burns.First positioning region 128 of present embodiment and the second positioning region 154 only can correctly coordinate when bottom surface 152 is combined with limit protrusion 123, and matching when diffraction optical element 15 and lens barrel 12 When conjunction relationship is not that bottom surface 152 is combined with the confined planes 1232 of limit protrusion 123, the first positioning region 128 and the second positioning region 154 Cannot correctly it coordinate and user is readily appreciated that.In this way, prevent 15 setup error of diffraction optical element.
Referring to Fig. 9, in some embodiments, the first positioning region 128 includes the first chamfering 1281, the first chamfering 1281 Limit protrusion 123 and 122 intersection of lens barrel side wall are formed in, specifically, the first chamfering 1281 is formed in confined planes 1232 and mirror 122 intersection of cylinder side wall.Second positioning region 154 includes the second chamfering 1541, and the second chamfering 1541 is formed in diffraction optical element 15 bottom surface 152 and 153 intersection of side.First chamfering 1281 with the angle of inclination of the second chamfering 1541 can be it is equal, If being appreciated that user is anti-loaded by diffraction optical element 15, top surface 151 will offset with the second chamfering 1541, lead to diffraction light Element 15 is padded by the second chamfering 1541, and user is readily appreciated that diffraction optical element 15 is anti-loaded, therefore the first chamfering 1281 It can be anti-loaded to avoid diffraction optical element 15 with the second chamfering 1541.
Please refer to Fig.1 2, in certain embodiments, the first positioning region 128 includes the confined planes being formed on confined planes 1232 Recess 1282, the second positioning region 154 includes the bottom surface convex block 1542 protruded from bottom surface 152, when bottom surface 152 and limit protrusion 123 With reference to when, bottom surface convex block 1542 stretch into confined planes recess 1282 in.Specifically, bottom surface convex block 1542 and confined planes recess 1282 Position corresponds to, and bottom surface convex block 1542 is equal with the quantity of confined planes recess 1282, and the shape of bottom surface convex block 1542 can be round Column, round table-like, prism-shaped etc., it will be understood that if user is anti-loaded by diffraction optical element 15, bottom surface 152 is upward and bottom surface Convex block 1542 causes out-of-flatness after the installation of diffraction optical element 15, and user is readily appreciated that diffraction optical element 15 is anti-loaded, therefore Bottom surface convex block 1542 can be anti-loaded to avoid diffraction optical element 15 with confined planes recess 1282.
3 are please referred to Fig.1, in some embodiments, the first positioning region 128 includes the confined planes protruded from confined planes 1232 Convex block 1283, the second positioning region 154 includes being formed in the bottom surface recess 1543 of bottom surface 152, when bottom surface 152 and limit protrusion 123 With reference to when, confined planes convex block 1283 stretch into bottom surface recess 1543 in.Specifically, confined planes convex block 1283 and bottom surface recess 1543 Position corresponds to, and confined planes convex block 1283 is equal with the quantity of bottom surface recess 1543, and the shape of confined planes convex block 1283 can be Cylindric, round table-like, prism-shaped etc., it will be understood that if user is anti-loaded by diffraction optical element 15, confined planes convex block 1283 will It offsets with bottom surface 152, diffraction optical element 15 is caused to be limited, and face convex block 1283 is padded, and user is readily appreciated that diffraction optics member Part 15 is anti-loaded, therefore confined planes convex block 1283 can be anti-loaded to avoid diffraction optical element 15 with bottom surface recess 1543.
4 are please referred to Fig.1, in some embodiments, the first positioning region 128 includes being formed in the lens barrel of lens barrel side wall 122 Recess 1284, the second positioning region 154 include the side convex block 1544 that the side 153 of self-diffraction optical element 15 outwardly protrudes, when When bottom surface 152 is combined with limit protrusion 123, side convex block 1544 is stretched into lens barrel recess 1284.Side convex block 1544 and lens barrel The position of recess 1284 corresponds to, and side convex block 1544 is equal with the quantity of lens barrel recess 1284, and side convex block 1544 is parallel The shape intercepted in the plane of bottom surface 152 can be rectangle, semicircle, triangle, it is trapezoidal, round in it is one or more.It can To understand, if user is anti-loaded by diffraction optical element 15, side convex block 1544 will offset with lens barrel side wall 122, lead to diffraction Optical element 15 can not be mounted on limit protrusion 123, and user is readily appreciated that diffraction optical element 15 is anti-loaded, therefore side is convex Block 1544 can be anti-loaded to avoid diffraction optical element 15 with lens barrel recess 1284.
Specifically, 4 are please referred to Fig.1, in some embodiments, side 153 includes the sub- side that multiple head and the tail connect successively Face 1531, lens barrel recess 1284 and the quantity of side convex block 1544 are single.Side convex block 1544 is formed in sub- side 1531 Centre position except other positions.That is, when the quantity of side convex block 1544 is one, side convex block 1544 can With the other positions being opened in except sub- 1531 centre position of side, prevent user by diffraction optical element 15 it is anti-loaded when, side Convex block 1544 still can extend into happening for lens barrel recess 1284, further avoid diffraction optical element 15 anti-loaded.
5 are please referred to Fig.1, in some embodiments, lens barrel recess 1284 is equal and equal with the quantity of side convex block 1544 To be multiple, identical, the different side convex block of the shape of the shape of each side convex block 1544 and corresponding lens barrel recess 1284 1544 shape differs.The foreign steamer for referring to side convex block 1544 identical with the shape of lens barrel recess 1284 of side convex block 1544 It is wide identical with the hollow shape of lens barrel recess 1284.In the present embodiment, due to the shape not phase of different side convex blocks 1544 Together, not mutual corresponding side convex block 1544 cannot be fully mated since shape is different from lens barrel recess 1284, and user is easy Discover whether diffraction optical element 15 is correctly installed.
6 are please referred to Fig.1, in some embodiments, side 153 includes the sub- side 1531 that multiple head and the tail connect successively, Lens barrel recess 1284 is equal with the quantity of side convex block 1544 and is multiple, and multiple side convex blocks 1544 are not in relation to any one The centre position of sub- side 1531 is symmetrical.In embodiment as shown in figure 16, diffraction optical element 15 is whole to be square, side 153 include four sub- sides 1531, and the quantity of side convex block 1544 for two and is respectively positioned on a sub- side 1531, two sides The centre position that face convex block 1544 is not in relation to any one sub- side 1531 is symmetrical.Certainly, side convex block 1544 is in certain sub- side Quantity on face 1531 can also be one, and side convex block 1544 is also distributed on other sub- sides 1531, but multiple The centre position that side convex block 1544 is not in relation to any one sub- side 1531 is symmetrical.In this way, when user is intended to diffraction optics member When part 15 turns installation, at least one side convex block 1544 can offset with lens barrel side wall 122, and user is readily appreciated that diffraction optics Element 15 is anti-loaded.
6 are please referred to Fig.1, in some embodiments, lens barrel recess 1284 is equal and equal with the quantity of side convex block 1544 To be multiple, multiple non-equiangularly spaced distributions of side convex block 1544.Specifically, when the quantity of side convex block 1544 is two, Two side convex blocks 1544 are not in respectively 180 degree with the angle of the line at the center of diffraction optical element 15;When side is convex The quantity of block 1544 be three when, adjacent two side convex blocks 1544 respectively with the line at the center of diffraction optical element 15 Angle is not all in 120 degree.In this way, when user is intended to diffraction optical element 15 turning installation, at least one side is convex Block 1544 can offset with lens barrel side wall 122, and user is readily appreciated that diffraction optical element 15 is anti-loaded.
7 are please referred to Fig.1, in some embodiments, along the direction of top surface 151 to bottom surface 152, the ruler of side convex block 1544 Very little to be gradually reduced, the size of lens barrel recess 1284 is gradually reduced.Further, the full-size of side convex block 1544 is more than lens barrel The minimum dimension of recess 1284, when user is intended to diffraction optical element 15 turning installation, side convex block 1544 cannot be stretched completely Enter in lens barrel recess 1284, side convex block 1544 can be padded by diffraction optical element 15, and user is readily appreciated that diffraction optics member Part 15 is anti-loaded.
8 are please referred to Fig.1, in some embodiments, the first positioning region 128 includes the lens barrel protruded from lens barrel side wall 122 Convex block 1285, the second positioning region 154 includes being formed in the side-facing depressions 1545 of side 153, when bottom surface 152 and limit protrusion 123 With reference to when, lens barrel convex block 1285 is stretched into side-facing depressions 1545.Lens barrel convex block 1285 is corresponding with the position of side-facing depressions 1545, and Lens barrel convex block 1285 is equal with the quantity of side-facing depressions 1545, what the plane that lens barrel convex block 1285 is parallel to bottom surface 152 intercepted Shape can be rectangle, semicircle, triangle, it is trapezoidal, round in it is one or more.If it is appreciated that user by diffraction Optical element 15 is anti-loaded, and lens barrel convex block 1285 will offset with diffraction optical element 15, cause diffraction optical element 15 that can not install On limit protrusion 123, user is readily appreciated that diffraction optical element 15 is anti-loaded, therefore lens barrel convex block 1285 and side-facing depressions 1545 can be anti-loaded to avoid diffraction optical element 15.
9 are please referred to Fig.1, in some embodiments, along the direction of top surface 151 to bottom surface 152, the ruler of side-facing depressions 1545 Very little gradual increase, the size of lens barrel convex block 1285 gradually increase.Further, the full-size of lens barrel convex block 1285 is more than side The minimum dimension of recess 1545, when user is intended to diffraction optical element 15 turning installation, lens barrel convex block 1285 cannot be stretched completely Enter in lens barrel recess 1284, lens barrel convex block 1285 can be padded by diffraction optical element 15, and user is readily appreciated that diffraction optics member Part 15 is anti-loaded.
In the description of this specification, reference term " certain embodiments ", " embodiment ", " some embodiment party The description of formula ", " exemplary embodiment ", " example ", " specific example " or " some examples " means with reference to the embodiment Or example particular features, structures, materials, or characteristics described are contained at least one embodiment or example of the present invention. In the present specification, schematic expression of the above terms are not necessarily referring to identical embodiment or example.Moreover, description Particular features, structures, materials, or characteristics can be in any one or more embodiments or example with suitable side Formula combines.
In addition, term " first ", " second " are only used for description purpose, and it is not intended that instruction or hint relative importance Or the implicit quantity for indicating indicated technical characteristic.Define " first " as a result, the feature of " second " can be expressed or Implicitly include at least one feature.In the description of the present invention, " multiple " are meant that at least two, such as two, Three, unless otherwise specifically defined.
Although the embodiments of the present invention has been shown and described above, it is to be understood that above-described embodiment is example Property, it is impossible to limitation of the present invention is interpreted as, those of ordinary skill in the art within the scope of the invention can be to above-mentioned Embodiment is changed, changes, replacing and modification, the scope of the present invention are limited by claim and its equivalent.

Claims (15)

1. a kind of laser projection module, which is characterized in that including:
Board unit;
Lens barrel, the lens barrel include lens barrel side wall, the lens barrel side wall be arranged on the board unit and with the substrate in batch Host cavity is collectively formed in part, and the lens barrel is included from the inwardly projecting limit protrusion of the lens barrel side wall;
Light source, the light source are arranged on the board unit and for emitting laser to the host cavity;
Collimating element, the collimating element are housed in the host cavity;
Diffraction optical element, the diffraction optical element be mounted on the limit protrusion on, the light source, the collimating element and The diffraction optical element is successively set in the light path of the light source;With
Protection cap, the protection cap are combined with the lens barrel, and the protection cap includes protection roof, and the protection roof offers Light hole, the light hole is corresponding with the diffraction optical element, and the diffraction optical element is located at the limit protrusion and institute State protection roof between.
2. laser projection module according to claim 1, which is characterized in that the lens barrel includes the first opposite face and the Two faces, second face are combined with the board unit, the limit protrusion between first face and second face, The protection roof offsets with first face.
3. laser projection module according to claim 1, which is characterized in that the lens barrel includes the first opposite face and the Two faces, second face are combined with the board unit, and first face is overlapped with the upper surface of the limit protrusion, the guarantor Shield roof offsets with the diffraction optical element.
4. according to the laser projection module described in claim 1-3 any one, which is characterized in that the protection cap further includes certainly The protective side wall of the periphery extension of the protection roof, the protection cap are located on the lens barrel, the protective side wall and institute Lens barrel side wall is stated to be fixedly connected.
5. laser projection module according to claim 4, which is characterized in that the outer wall of the lens barrel side wall offers appearance glue Slot, protective side wall position corresponding with the glue groove offer dispensing hole, with allow glue by the dispensing hole into Enter the glue groove.
6. laser projection module according to claim 5, which is characterized in that the dispensing hole and the inside of the glue groove Wall corresponds to, and the madial wall tilts the outer wall for connecting the inner bottom wall of the glue groove with the lens barrel side wall.
7. laser projection module according to claim 5, which is characterized in that the protection cap is further included from the protection side First hook of the inwardly projecting elasticity of wall, the lens barrel further include the second card outwardly protruded from the inner bottom wall of the glue groove It hooks, when the protection cap is located on the lens barrel, first hook engages with second hook.
8. laser projection module according to claim 7, which is characterized in that the protective side wall with first hook Corresponding position offers avoid holes, and the avoid holes are used for during the protection cap is located at the lens barrel, described First hook offsets with second hook and first hook occurs to provide deformation space during elastic deformation.
9. laser projection module according to claim 7, which is characterized in that second hook is formed with guide ramp, The direction of the lens barrel is inserted in along the protection cap, the guide ramp is gradually distance from the inner bottom wall, and the protection cap is provide with During the lens barrel, first hook offsets with the guide ramp.
10. laser projection module according to claim 7, which is characterized in that the protective side wall include multiple head and the tail according to The secondary sub- side wall of protection to connect, each sub- side wall of protection have been respectively formed on first hook and the dispensing hole.
11. laser projection module according to claim 10, which is characterized in that at least shape on each sub- side wall of protection Into there are two dispensing holes, first hook is between at least two dispensing holes.
12. laser projection module according to claim 11, which is characterized in that first hook is located at corresponding described The centre position of sub- side wall is protected, at least two dispensing holes on each sub- side wall of protection are relative to the described first card It hooks symmetrical.
13. laser projection module according to claim 1, which is characterized in that the limit protrusion is in continuous cyclic annular;Or Including multiple, multiple limit protrusions are spaced apart the limit protrusion.
14. a kind of depth camera, which is characterized in that including:
Laser projection module described in claim 1-13 any one;
Image acquisition device, described image collector swash for what acquisition projected after the diffraction optical element into object space Light pattern;With
The processor being connect respectively with the laser projection module and described image collector, the processor are described for handling Laser pattern is to obtain depth image.
15. a kind of electronic device, which is characterized in that including:
Housing;With
Depth camera described in claim 14, the depth camera are arranged in the housing and are obtained from the housing exposure Take depth image.
CN201810161928.6A 2018-02-27 2018-02-27 Laser projection module, depth camera and electronic device Pending CN108196416A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810161928.6A CN108196416A (en) 2018-02-27 2018-02-27 Laser projection module, depth camera and electronic device
PCT/CN2019/073949 WO2019165879A1 (en) 2018-02-27 2019-01-30 Laser projection module, depth camera, and electronic device
EP19752412.7A EP3572769A4 (en) 2018-02-27 2019-01-30 Laser projection module, depth camera, and electronic device
US16/484,705 US11525669B2 (en) 2018-02-27 2019-01-30 Laser projection module, depth camera and electronic device
TW108106939A TWI771569B (en) 2018-02-27 2019-02-27 Laser projection module , depth camera and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810161928.6A CN108196416A (en) 2018-02-27 2018-02-27 Laser projection module, depth camera and electronic device

Publications (1)

Publication Number Publication Date
CN108196416A true CN108196416A (en) 2018-06-22

Family

ID=62593956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810161928.6A Pending CN108196416A (en) 2018-02-27 2018-02-27 Laser projection module, depth camera and electronic device

Country Status (1)

Country Link
CN (1) CN108196416A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445644A (en) * 2018-06-27 2018-08-24 Oppo广东移动通信有限公司 Laser projection module, depth camera and electronic device
CN108776391A (en) * 2018-06-28 2018-11-09 Oppo广东移动通信有限公司 Laser projecting apparatus, image acquiring device and electronic equipment
CN108833888A (en) * 2018-06-28 2018-11-16 Oppo广东移动通信有限公司 Advanced treating device and three dimensional image apparatus
CN108845428A (en) * 2018-06-27 2018-11-20 Oppo广东移动通信有限公司 Laser projection mould group, depth camera and electronic device
CN108924295A (en) * 2018-06-27 2018-11-30 Oppo广东移动通信有限公司 Photoelectricity mould group, depth camera and terminal
CN108983432A (en) * 2018-06-28 2018-12-11 Oppo广东移动通信有限公司 Laser projecting apparatus, depth acquisition device and terminal
WO2019165853A1 (en) * 2018-02-27 2019-09-06 Oppo广东移动通信有限公司 Laser projection module, depth camera and electronic device
CN110275180A (en) * 2019-06-27 2019-09-24 Oppo广东移动通信有限公司 Collimate camera lens, mode of laser group, depth camera and electronic device
US11423557B2 (en) 2018-06-28 2022-08-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Depth processor and three-dimensional image device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704786A (en) * 2004-05-25 2005-12-07 鸿富锦精密工业(深圳)有限公司 Lens module fixing arrangement and method
EP1708278A2 (en) * 2005-03-29 2006-10-04 Sharp Kabushiki Kaisha Optical device module, lens holding device, and method for manufacturing optical device module
CN1885865A (en) * 2005-06-22 2006-12-27 姜信弘 Image sensing module for mobile phone
CN1996083A (en) * 2006-01-05 2007-07-11 鸿富锦精密工业(深圳)有限公司 Lens module
CN101109840A (en) * 2007-08-21 2008-01-23 三星高新电机(天津)有限公司 Glasses lens plated non-focusing mobile phone camera
JP2008111876A (en) * 2006-10-27 2008-05-15 Sony Corp Camera module
CN201637980U (en) * 2009-12-09 2010-11-17 亚洲光学股份有限公司 Lens barrel with improvable sand control capability
CN102681133A (en) * 2011-03-18 2012-09-19 Tdk株式会社 Lens driving device
CN106291856A (en) * 2015-06-23 2017-01-04 三星电机株式会社 Camera lens module and include the camera model of this camera lens module
CN107102506A (en) * 2017-07-07 2017-08-29 深圳奥比中光科技有限公司 Optical projection apparatus and its depth camera
CN208110247U (en) * 2018-02-27 2018-11-16 广东欧珀移动通信有限公司 Laser projection mould group, depth camera and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704786A (en) * 2004-05-25 2005-12-07 鸿富锦精密工业(深圳)有限公司 Lens module fixing arrangement and method
EP1708278A2 (en) * 2005-03-29 2006-10-04 Sharp Kabushiki Kaisha Optical device module, lens holding device, and method for manufacturing optical device module
CN1885865A (en) * 2005-06-22 2006-12-27 姜信弘 Image sensing module for mobile phone
CN1996083A (en) * 2006-01-05 2007-07-11 鸿富锦精密工业(深圳)有限公司 Lens module
JP2008111876A (en) * 2006-10-27 2008-05-15 Sony Corp Camera module
CN101109840A (en) * 2007-08-21 2008-01-23 三星高新电机(天津)有限公司 Glasses lens plated non-focusing mobile phone camera
CN201637980U (en) * 2009-12-09 2010-11-17 亚洲光学股份有限公司 Lens barrel with improvable sand control capability
CN102681133A (en) * 2011-03-18 2012-09-19 Tdk株式会社 Lens driving device
CN106291856A (en) * 2015-06-23 2017-01-04 三星电机株式会社 Camera lens module and include the camera model of this camera lens module
CN107102506A (en) * 2017-07-07 2017-08-29 深圳奥比中光科技有限公司 Optical projection apparatus and its depth camera
CN208110247U (en) * 2018-02-27 2018-11-16 广东欧珀移动通信有限公司 Laser projection mould group, depth camera and electronic device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019165853A1 (en) * 2018-02-27 2019-09-06 Oppo广东移动通信有限公司 Laser projection module, depth camera and electronic device
CN108924295B (en) * 2018-06-27 2020-07-03 Oppo广东移动通信有限公司 Photoelectric module, depth camera and terminal
CN108445644A (en) * 2018-06-27 2018-08-24 Oppo广东移动通信有限公司 Laser projection module, depth camera and electronic device
CN108845428A (en) * 2018-06-27 2018-11-20 Oppo广东移动通信有限公司 Laser projection mould group, depth camera and electronic device
CN108924295A (en) * 2018-06-27 2018-11-30 Oppo广东移动通信有限公司 Photoelectricity mould group, depth camera and terminal
WO2020000998A1 (en) * 2018-06-28 2020-01-02 Oppo广东移动通信有限公司 Laser projector, image acquisition apparatus and electronic device
CN108983432A (en) * 2018-06-28 2018-12-11 Oppo广东移动通信有限公司 Laser projecting apparatus, depth acquisition device and terminal
CN108833888A (en) * 2018-06-28 2018-11-16 Oppo广东移动通信有限公司 Advanced treating device and three dimensional image apparatus
EP3599497A3 (en) * 2018-06-28 2020-04-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Laser projector, image acquisition device and electronic apparatus
CN108776391B (en) * 2018-06-28 2020-04-24 Oppo广东移动通信有限公司 Laser projector, image acquisition device and electronic equipment
CN108776391A (en) * 2018-06-28 2018-11-09 Oppo广东移动通信有限公司 Laser projecting apparatus, image acquiring device and electronic equipment
CN111399156A (en) * 2018-06-28 2020-07-10 Oppo广东移动通信有限公司 Laser projector, image acquisition device and electronic equipment
US10725311B2 (en) 2018-06-28 2020-07-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Laser projector, image acquisition device and electronic apparatus
TWI708110B (en) * 2018-06-28 2020-10-21 大陸商Oppo廣東移動通信有限公司 Laser projector, image capturing device and electronic equipment
US11423557B2 (en) 2018-06-28 2022-08-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Depth processor and three-dimensional image device
CN110275180A (en) * 2019-06-27 2019-09-24 Oppo广东移动通信有限公司 Collimate camera lens, mode of laser group, depth camera and electronic device

Similar Documents

Publication Publication Date Title
CN108196416A (en) Laser projection module, depth camera and electronic device
CN108776391A (en) Laser projecting apparatus, image acquiring device and electronic equipment
CN108493767B (en) Laser generator, structured light projector, image obtain structure and electronic device
CN107102506B (en) Optical projection device and depth camera thereof
CN108388067A (en) Laser projection module, depth camera and electronic device
CN208110247U (en) Laser projection mould group, depth camera and electronic device
US11546453B2 (en) Projection module and terminal
CN108924295A (en) Photoelectricity mould group, depth camera and terminal
CN108508621A (en) Project structured light module, image acquiring device and electronic equipment
CN207780466U (en) Laser projection module, depth camera and electronic device
CN108388072A (en) Laser projection module, depth camera and electronic device
TW201937243A (en) Laser projection module, depth camera and electronic device
CN108490521A (en) Diffraction optical element and its manufacturing method, laser projection module, depth camera and electronic device
CN108845428A (en) Laser projection mould group, depth camera and electronic device
CN108344374A (en) Laser projection module, depth camera and electronic device
CN207780465U (en) Laser projection module, depth camera and electronic device
CN108344375A (en) Laser projection module, depth camera and electronic device
CN108548498A (en) Laser projection module, depth camera and electronic device
CN207780464U (en) Laser projection module, depth camera and electronic device
CN208110223U (en) Laser projection mould group, depth camera and electronic device
CN108873222A (en) Laser projection device, TOF depth camera and electronic equipment
CN108493771A (en) Laser generator, laser projection module, depth camera and electronic device
CN108490572A (en) Laser projection module, depth camera and electronic device
CN108983432A (en) Laser projecting apparatus, depth acquisition device and terminal
CN108508688A (en) Laser emitter, project structured light module, depth camera and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Changan town in Guangdong province Dongguan 523860 usha Beach Road No. 18

Applicant after: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS Corp.,Ltd.

Address before: Changan town in Guangdong province Dongguan 523860 usha Beach Road No. 18

Applicant before: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS Corp.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20211202

Address after: 518057 Fuan Science and Technology Building, Block B, No. 13, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province, 207-2

Applicant after: Shenzhen Huantai Technology Co.,Ltd.

Address before: Changan town in Guangdong province Dongguan 523860 usha Beach Road No. 18

Applicant before: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS Corp.,Ltd.

TA01 Transfer of patent application right