CN108196100A - 采用真空开关实现的多重回击波冲击电流发生器 - Google Patents

采用真空开关实现的多重回击波冲击电流发生器 Download PDF

Info

Publication number
CN108196100A
CN108196100A CN201810180835.8A CN201810180835A CN108196100A CN 108196100 A CN108196100 A CN 108196100A CN 201810180835 A CN201810180835 A CN 201810180835A CN 108196100 A CN108196100 A CN 108196100A
Authority
CN
China
Prior art keywords
switch
vacuum
charging
vacuum switch
current generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810180835.8A
Other languages
English (en)
Inventor
李军科
艾晓宇
周佳
安敬然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING HUATIAN ELECTROMECHANICAL INSTITUTE Co Ltd
Original Assignee
BEIJING HUATIAN ELECTROMECHANICAL INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING HUATIAN ELECTROMECHANICAL INSTITUTE Co Ltd filed Critical BEIJING HUATIAN ELECTROMECHANICAL INSTITUTE Co Ltd
Priority to CN201810180835.8A priority Critical patent/CN108196100A/zh
Publication of CN108196100A publication Critical patent/CN108196100A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/30Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier

Abstract

本发明具体涉及一种采用真空开关实现多重回击波的多脉冲冲击电流发生器。它包括两套高压直流充电电源、两支充电电阻、三台隔离开关、若干套电容器组、若干台真空开关及调波阻抗。采用若干台真空开关代替三电极高压放电球隙,不再需要三电极球间隙调节的传动机构和测量球间隙大小的装置,以及触发三电极放电球隙的脉冲放大器;采用三台隔离开关和若干台真空开关来切换多脉冲冲击电流发生器的充电及放电的回路,省掉大量的充电电阻,从而简化了系统的结构,提高了多脉冲冲击电流发生器运行的稳定性和可靠性。可以应用在航空器雷电效应试验以及电涌保护器的电气性能测试领域。

Description

采用真空开关实现的多重回击波冲击电流发生器
技术领域
本发明涉及航空器雷电试验和电涌保护器测试领域,尤其涉及一种采用真空开关实现多重回击波的多脉冲冲击电流发生器。
背景技术
雷电是大自然中气体放电的自然现象,其直接效应和间接效应对人们的生产和生活造成了极大影响。为了防止雷电对各种电气产品的影响,人们对雷电现象进行了大量的研究,制定了多种防雷测试的波形标准。美国机动车工程师学会(SAE)制定的SAE ARP 5412雷电环境及相关试验波形,与欧洲民用航空设备组织发布的ED(EUROCAE Documents)系列标准ED-84雷电环境及相关试验波形中,规定了多重回击波(Multiple stroke waveformset)的波形标准。近年来,随着标准的逐步严格,在电涌保护器测试领域也逐步采用多重回击波进行多脉冲测试。
按照多重回击波标准的规定,第一个电流脉冲波的峰值为100kA,波前时间不大于25μs,电流持续时间不超过500μs,其规定与雷电电流直接效应试验的D波相同,第二个脉冲和之后十几或二十几个电流脉冲的峰值为50kA,波前时间和持续时间与第一个脉冲相同。两个电流脉冲波之间的最小时间间隔为10ms,最大时间间隔为200ms。如图1所示,是多重回击波十四个脉冲组的波形的规定。
传统的多重回击波冲击电流发生器,如图2所示,主要包括高压直流充电电源A;高压直流充电电源B;电容器组C1、C2、…、C(n-1)、Cn;充电电阻R1、R2、…、R(n-1)、Rn,调波阻抗Z1、Z2、…、Z(n-1)、Zn;三电极高压放电球隙G1、G2、…、G(n-1)、Gn;被试负载RL。其中n是根据不同的标准要求及需要最多产生的脉冲个数取值,如果要产生图1所示的十四个脉冲电流波,则n等于14。
由于多重回击波第一个电流脉冲波的峰值为100kA,为其余电流脉冲波峰值的两倍,一般需要充电电压更高一些,因而用一套高压直流充电电源A通过充电电阻R1对电容电容器组C1单独充电。从C2开始,由高压直流充电电源B通过充电电阻R2、R3、…、R(n-1)、Rn对各电容器组C2、C3、…、C(n-1)、Cn并联充电。当充电到预先设置的电压后,由控制系统依次对三电极高压放电球隙G1、G2、…、G(n-1)、Gn进行触发,每两组放电球隙触发时间间隔在10ms和200ms之间,同时保证第一个触发到最后一个触发的时间在标准要求范围内,如图1所示的电流波形,要求第一个触发到最后一个触发的总时间小于1.5秒。在图2所示的传统的多重回击波冲击电流发生器中,充电电阻R1、R2、…、R(n-1)、Rn的阻值为kΩ数量级,调波阻抗Z1、Z2、…、Z(n-1)、Zn的阻值为mΩ数量级,因此放电球隙G2、…、G(n-1)、Gn依次触发放电对其余的还未放电的电容器组的影响相当有限,从而能够产生图1所示的多脉冲放电电流。
传统的多重回击波冲击电流发生器存在的问题是,三电极高压放电球隙G1、G2、…、G(n-1)、Gn结构复杂,每对放电球隙都要有一套球间隙调节的传动机构,需要一套球间隙大小的测量装置,同时还要有三电极放电球隙的触发脉冲放大器。除了这些复杂的机构和装置外,还要有大量的充电电阻R1、R2、…、R(n-1)、Rn。如果球间隙大小调整不合适,充电过程中,有些放电球隙有可能还没有触发就误动作放电;充电完成后,在控制系统依次对三电极高压放电球隙G1、G2、…、G(n-1)、Gn进行触发时,由于大电流脉冲放电回路引起地电位的抬升和电磁干扰会造成各个球间隙之间有可能发生自放电或不放电的故障,从而使得冲击电流发生器运行不稳定、不可靠,导致试验失败。
发明内容
本发明克服现有技术中的不足,采用若干台真空开关代替三电极高压放电球隙,从而简化系统的结构,不再需要球间隙调节的传动机构和测量球间隙大小的装置,以及触发三电极放电球隙的脉冲放大器,同时省掉大部分的充电电阻。采用三台隔离开关和若干台真空开关来切换多重回击波冲击电流发生器的充电及放电的回路。
本发明的实施方案:
如图3所示,它包括高压直流充电电源A;高压直流充电电源B;充电电阻R1、R2;电容器组C1、C2、…、C(n-1)、Cn;调波阻抗Z1、Z2、…、Z(n-1)、Zn;隔离开关KS1、KS2、KS3;真空开关KC1、KC2、…、KC(n-1)、KCn以及KT1、KT2、…、KT(n-1)、KTn;被试负载RL。其中n是根据不同的标准要求及需要最多产生的脉冲个数取值,如果要产生图1所示的十四个脉冲电流波,则n等于14。
高压直流充电电源A与充电电阻R1串联后,与隔离开关KS1串联,给电容器组C1充电。电容组C1的高压极出线与调波阻抗Z1串联后,再依次连接真空开关KC1和KT1,真空开关KT1的一极与隔离开关KS3的一极相连。
电容组C2的高压极出线与调波阻抗Z2串联后,再依次连接真空开关KC2和KT2;电容组C3的高压极出线与调波阻抗Z3串联后,再依次连接真空开关KC3和KT3;…;电容组C(n-1)的高压极出线与调波阻抗Z(n-1)串联后,再依次连接真空开关KC(n-1)和KT(n-1);高压直流充电电源B与充电电阻R2串联后,与隔离开关KS2串联,给电容器组Cn充电,电容组Cn的高压极出线与调波阻抗Zn串联后,再依次连接真空开关KCn和KTn;真空开关KT2、KT3、…、KT(n-1)和KTn的另一极并联后,与隔离开关KS3的一极相连。隔离开关KS3的另一极与被试负载RL串联。
在本发明中,每组电容器的一极与调波阻抗串联后,再与两台真空开关依次串联,用真空开关代替三电极高压放电球隙。由于真空开关合闸或分闸时,受机械结构动作所限,固有动作时间均大于150ms,不能在小于200ms时间段内完成合闸然后再分闸的动作,因此,每组电容器采用两台真空开关,放电前,一台真空开关处于合闸状态,另一台真空开关处于分闸状态。放电时,处于分闸状态的真空开关进行合闸动作,而处于合闸状态的真空开关延时数十毫秒后进行分闸动作,从而抵消机械动作时延,可以使得每组电容器通过真空开关放电的时间段控制在数十毫秒以内。
在本发明中,充电时,隔离开关KS3处于断开状态。电容组C1由处于闭合状态的隔离开关KS1,通过充电电阻R1由高压直流充电电源A进行充电,此时,与电容组C1连接真空开关KC1和KT1处于分闸状态。电容器组C2、C3、…、C(n-1)、Cn通过处于合闸状态的真空开关KC2、KC3、…、KC(n-1)和KCn,KT2、KT3、…、KT(n-1)和KTn并联,由处于闭合状态的隔离开关KS2,通过充电电阻R2由高压直流充电电源B进行充电。省掉大量的充电电阻,使得整套冲击电流发生器结构得以简化。
本发明与传统技术相比具有以下优点:
1)本发明采用若干台真空开关代替三电极高压放电球隙,从而简化系统的结构,不再需要球间隙调节的传动机构和测量球间隙大小的装置,以及触发三电极放电球隙的脉冲放大器。
2)本发明采用三台隔离开关和若干台真空开关来切换多重回击波冲击电流发生器的充电及放电的回路,省掉大量的充电电阻,使得整套冲击电流发生器结构得以简化。
3)本发明采用真空开关的开关量顺序控制,运行稳定、可靠性高。
附图说明
图1多重回击波标准规定的波形示意图;
图2传统的多重回击波冲击电流发生器回路示意图;
图3本发明的多重回击波冲击电流发生器回路示意图;
具体实施方式
本发明主要包括:两套高压直流充电电源、两支充电电阻、三台隔离开关、n组电容器组、2n台真空开关、n个调波阻抗以及一个被试负载。其中n是根据不同的标准要求及需要最多产生的脉冲个数取值,如果要产生图1所示的十四个脉冲电流波,则n等于14。
实施例:如图3,高压直流充电电源A与充电电阻R1串联后,与隔离开关KS1串联,给电容器组C1充电。电容组C1的高压极出线与调波阻抗Z1串联后,再依次连接真空开关KC1和KT1,真空开关KT1的一极与隔离开关KS3的一极相连。电容组C2的高压极出线与调波阻抗Z2串联后,再依次连接真空开关KC2和KT2;电容组C3的高压极出线与调波阻抗Z3串联后,再依次连接真空开关KC3和KT3;…;电容组C(n-1)的高压极出线与调波阻抗Z(n-1)串联后,再依次连接真空开关KC(n-1)和KT(n-1);高压直流充电电源B与充电电阻R2串联后,与隔离开关KS2串联,给电容器组Cn充电,电容组Cn的高压极出线与调波阻抗Zn串联后,再依次连接真空开关KCn和KTn;真空开关KT2、KT3、…、KT(n-1)和KTn的另一极并联后,与隔离开关KS3的一极相连。隔离开关KS3的另一极与被试负载RL串联。
如图3,所述的冲击电流发生器充电时,隔离开关KS1、KS2处于闭合状态,隔离开关KS3处于断开状态;真空开关KC1和KT1处于分闸状态;真空开关KC2、KC3、…、KC(n-1)和KCn处于合闸状态;真空开关KT2、KT3、…、KT(n-1)和KTn处于合闸状态。高压直流充电电源A通过充电电阻R1对电容组C1充电。高压直流充电电源B通过充电电阻R2对电容组C2、C3、…、C(n-1)、Cn进行并联充电。
如图3,所述的冲击电流发生器充电完毕时,进行放电前的准备。按以下顺序动作:首先,断开隔离开关KS1、KS2。接着,真空开关KC2、KC3、…、KC(n-1)和KCn分闸,而真空开关KT2、KT3、…、KT(n-1)和KTn继续处于合闸状态;同时,真空开关KT1合闸,真空开关KC1继续处于分闸状态。最后,合上隔离开关KS3,接入被试负载RL。
如图3,所述的冲击电流发生器充电完毕,放电前的准备进行妥当后,如果需要实现每两个电流脉冲的时间间隔为50ms(如图1,Δt=50ms)的多重回击波,假定每个真空开关合闸时间和分闸时间均为150ms,在控制系统发出放电指令后,按时间顺序依次对所有真空开关发出动作指令:延时100ms真空开关KC1合闸;延时120ms真空开关KT1分闸;延时150ms真空开关KC2合闸;延时170ms真空开关KT2分闸;…;延时[100+(n-2)×50]ms真空开关KC(n-1)合闸;延时[120+(n-2)×50]ms真空开关KT(n-1)分闸;延时[100+(n-1)×50]ms真空开关KCn合闸;延时[120+(n-1)×50]ms真空开关KTn分闸。如果n取值为14,则当控制系统发出放电指令后,延时0.25秒(延时100ms,真空开关合闸时间150ms)产生第一个电流脉冲,此后,每隔50ms产生一个电流脉冲,共有14个脉冲,如图1所示,14个多脉冲总时间不超过0.7秒,满足标准要求。如果某个开关动作时间为160ms,则相应的延时时间减去10ms;如果某个开关动作时间为140ms,则相应的延时时间增加10ms。依次类推。因为真空开关机械动作的时间相对是稳定的,按照此方法调整,可以产生标准的多重回击波冲击电流,且冲击电流发生器运行稳定,可靠性高。

Claims (3)

1.一种采用真空开关实现多重回击波的多脉冲冲击电流发生器。包括两套高压直流充电电源、两支充电电阻、三台隔离开关、若干套电容器组、一个被试负载、若干台真空开关及调波阻抗。其特征在于:其中一套高压直流充电电源串联一支充电电阻,连接一台隔离开关,可对一部分电容器组充电。另一套高压直流充电电源串联一支充电电阻,连接一台隔离开关,对其余部分的电容器组充电。一台隔离开关与被试负载串联,可在充电过程中断开负载回路。每组电容器的一极与调波阻抗串联后,再与两台真空开关依次串联,用真空开关代替三电极高压放电球隙。
2.根据权利要求1所述的多脉冲冲击电流发生器,其特征在于:每组电容器的一极与调波阻抗串联后,再与两台真空开关依次串联,用真空开关代替三电极高压放电球隙。冲击电流发生器放电时,与每组电容器串联的两台真空开关,一台由分闸状态向合闸状态动作,另一台由合闸状态向分闸状态动作。以便缩短放电时放电回路中分、合、分等状态的动作时间。
3.根据权利要求1所述的多脉冲冲击电流发生器,其特征在于:采用三台隔离开关和若干台真空开关来切换多重回击波冲击电流发生器的充电及放电的回路,减少充电电阻,使得整套冲击电流发生器结构得以简化。
CN201810180835.8A 2018-03-06 2018-03-06 采用真空开关实现的多重回击波冲击电流发生器 Pending CN108196100A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810180835.8A CN108196100A (zh) 2018-03-06 2018-03-06 采用真空开关实现的多重回击波冲击电流发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810180835.8A CN108196100A (zh) 2018-03-06 2018-03-06 采用真空开关实现的多重回击波冲击电流发生器

Publications (1)

Publication Number Publication Date
CN108196100A true CN108196100A (zh) 2018-06-22

Family

ID=62594466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810180835.8A Pending CN108196100A (zh) 2018-03-06 2018-03-06 采用真空开关实现的多重回击波冲击电流发生器

Country Status (1)

Country Link
CN (1) CN108196100A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850255A (zh) * 2019-11-26 2020-02-28 张利华 多重雷击冲击放电电流的试验方法
CN115549651A (zh) * 2022-11-26 2022-12-30 昆明理工大学 一种模拟多重雷击的冲击电流发生器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2527034Y (zh) * 2001-07-07 2002-12-18 广东天乐通信设备有限公司 与雷电波发生器配套的雷电波形成装置
CN103454463A (zh) * 2013-09-05 2013-12-18 国家电网公司 一种无间隙雷电冲击电流发生器
CN103475240A (zh) * 2013-09-05 2013-12-25 国家电网公司 一种无间隙雷电冲击电压发生器
CN104777337A (zh) * 2015-04-28 2015-07-15 南京信息工程大学 一种雷电多脉冲波形发生装置
CN206960563U (zh) * 2017-03-29 2018-02-02 武汉爱劳高科技有限责任公司 工频大电流和冲击电流联合熄弧的试验电路
CN208476982U (zh) * 2018-03-07 2019-02-05 北京华天机电研究所有限公司 采用真空开关实现的多重回击波冲击电流发生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2527034Y (zh) * 2001-07-07 2002-12-18 广东天乐通信设备有限公司 与雷电波发生器配套的雷电波形成装置
CN103454463A (zh) * 2013-09-05 2013-12-18 国家电网公司 一种无间隙雷电冲击电流发生器
CN103475240A (zh) * 2013-09-05 2013-12-25 国家电网公司 一种无间隙雷电冲击电压发生器
CN104777337A (zh) * 2015-04-28 2015-07-15 南京信息工程大学 一种雷电多脉冲波形发生装置
CN206960563U (zh) * 2017-03-29 2018-02-02 武汉爱劳高科技有限责任公司 工频大电流和冲击电流联合熄弧的试验电路
CN208476982U (zh) * 2018-03-07 2019-02-05 北京华天机电研究所有限公司 采用真空开关实现的多重回击波冲击电流发生器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850255A (zh) * 2019-11-26 2020-02-28 张利华 多重雷击冲击放电电流的试验方法
CN110850255B (zh) * 2019-11-26 2022-04-26 张利华 多重雷击冲击放电电流的试验方法
CN115549651A (zh) * 2022-11-26 2022-12-30 昆明理工大学 一种模拟多重雷击的冲击电流发生器

Similar Documents

Publication Publication Date Title
JP5859491B2 (ja) 複合インパルス電流発生器
CN108196100A (zh) 采用真空开关实现的多重回击波冲击电流发生器
CN103048570A (zh) 一种雷电流直接效应试验装置
CN103888015A (zh) 用于时效处理的高密度高能电脉冲发生装置
CN208476982U (zh) 采用真空开关实现的多重回击波冲击电流发生器
CN105891563A (zh) 高空核爆电磁脉冲标准信号模拟装置
US4868505A (en) High voltage impulse wave generator for testing equipment
CN105372462B (zh) 多波形冲击电流发生器
Budin et al. An experimental stand for investigating protective devices for high-voltage overhead lines
KR101211805B1 (ko) 뇌격 전류 발생기
CN109884479A (zh) 一种雷击冲击电压试验系统
EP2573930B1 (en) Current generation device
CN104820149A (zh) 避雷器比例单元动作负载的试验回路
CN102486512B (zh) 一种直流换流阀冲击电压多路触发试验装置
US2818532A (en) Single action timing circuit
CN114545221A (zh) 一种气体开关绝缘恢复特性测试实验装置
CN105044412B (zh) 雷电冲击模拟装置
US5531769A (en) Truncated pulse defibrillator with flash tube switch
CN110018335A (zh) 一种多波形雷电发生器
Yao et al. 10/350-$\mu\hbox {s} $ Crowbar Pulse Current System
CN115549651A (zh) 一种模拟多重雷击的冲击电流发生器
Xia et al. Development of a capacitive pulsed power supply for high-current high-velocity sliding electrical contact studies
CN210514413U (zh) 模拟雷击浪涌试验的脉冲发生装置
CN112394268B (zh) 一种冲击电压截波装置
Caldwell et al. The Sandia lightning simulator: recommissioning and upgrades

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination