CN108190016A - Power rotor structure applied to unmanned plane - Google Patents
Power rotor structure applied to unmanned plane Download PDFInfo
- Publication number
- CN108190016A CN108190016A CN201711241617.2A CN201711241617A CN108190016A CN 108190016 A CN108190016 A CN 108190016A CN 201711241617 A CN201711241617 A CN 201711241617A CN 108190016 A CN108190016 A CN 108190016A
- Authority
- CN
- China
- Prior art keywords
- rotor
- unmanned plane
- steering engine
- input port
- delivery outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 36
- 230000007246 mechanism Effects 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 14
- 230000000694 effects Effects 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 17
- 239000003381 stabilizer Substances 0.000 description 12
- 230000006378 damage Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- 230000033001 locomotion Effects 0.000 description 8
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 210000001015 abdomen Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 241000734468 Listera Species 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/06—Frames; Stringers; Longerons ; Fuselage sections
- B64C1/068—Fuselage sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Toys (AREA)
Abstract
The present invention discloses the power rotor structure applied to unmanned plane, belongs to unmanned air vehicle technique field, is connected including generator with engine;Electric pressure converter is connected with generator;First voltage stabilizing input port of voltage-stablizer is connected with electric pressure converter;Accumulator and the connection of the second voltage stabilizing input port;First shunting input port of current divider is connected with the first voltage stabilizing delivery outlet;First steering engine input port of the first steering engine is connected with the first shunting delivery outlet, and the first rotor shaft connects respectively with the first rotor, the first clump weight;Second steering engine input port of the second steering engine is connected with the second shunting delivery outlet, and the second rotor shaft connects respectively with the second rotor, the second clump weight;First driving motor of driving motor is connected with third shunting delivery outlet, the rotor mechanism of adjustable angle and the connection of the first driving motor.The present invention, which reaches, promotes unmanned plane cruise duration and practicability;Simplify rotor structure, the technique effect of rational in infrastructure.
Description
Technical field
The invention belongs to unmanned air vehicle technique field, more particularly to applied to the power rotor structure of unmanned plane.
Background technology
Unmanned unmanned plane referred to as " unmanned plane ", is grasped using radio robot and the presetting apparatus provided for oneself
Vertical not manned unmanned plane.Without cockpit on machine, but automatic pilot, presetting apparatus, information collecting device etc. are installed
Equipment.On ground, naval vessels or machine tool remote control station personnel are by equipment such as radars, to its into line trace, positioning, remote control, telemetering and
Digital Transmission.It can take off as common unmanned plane or be launched with booster rocket under wireless remotecontrol, it also can be by machine tool
Aerial launch is taken to fly.
At present, the rotor of unmanned plane is made of multi-disc (2 or more) blade, when the blade rotation in rotor, blade
It will interact with surrounding air, so as to generate the pulling force along rotor shaft, which can make aircraft have the lift moved up.
By adjusting the rotary speed of blade, to control the size of lift, and then aircraft is made to carry out landing.Also, it is provided to rotor dynamic
The power source of the power energy is mainly connected by accumulator with the various electric elements of unmanned plane, by being arranged on unmanned plane
Accumulator provides electric energy for the various electrical appliances on unmanned plane, such as accumulator is connected with steering engine, provides electric energy for steering engine, makes
Steering engine drives rotor work, then provides power for unmanned plane.But unmanned plane in landing and in-flight to the demand of electric energy compared with
Greatly, since the capacity of accumulator is relatively low, can not meet the needs of unmanned plane is to electric energy so that the cruise duration of unmanned plane is short, real
It is poor with property.
In conclusion existing applied in the technology of unmanned plane, cruise duration of unmanned plane is short, poor practicability;And
The complicated of rotor, daily maintenance are also inconvenient.
Invention content
The technical problems to be solved by the invention are that the cruise duration of unmanned plane is short, poor practicability;And the structure of rotor
Complexity, daily maintenance are also inconvenient.
In order to solve the above technical problems, the present invention provides the power rotor structure applied to unmanned plane, it is described to be applied to
The power rotor structure of unmanned plane includes:Engine;Generator, the generator are connect with the engine;Electric pressure converter,
The electric pressure converter is connect with the generator;Voltage-stablizer, the voltage-stablizer are defeated including the first voltage stabilizing input port, the second voltage stabilizing
Entrance and the first voltage stabilizing delivery outlet;The first voltage stabilizing input port is connect with the electric pressure converter, and the electric pressure converter
Between the first voltage stabilizing input port and the generator;Accumulator, the accumulator and the second voltage stabilizing input port
Connection;Current divider, the current divider include at least:First shunting input port, first shunting delivery outlet, second shunting delivery outlet and
Third shunts delivery outlet;The first shunting input port is connect with the first voltage stabilizing delivery outlet;Steering engine, the steering engine at least wrap
It includes:First steering engine and the second steering engine;Wherein, first steering engine includes at least:First steering engine input port and the first rotor shaft, institute
The first steering engine input port is stated to connect with the described first shunting delivery outlet;First rotor shaft is connect with the first rotor;Described
Two steering engines include at least:Second steering engine input port and the second rotor shaft, the second steering engine input port and the described second shunting are defeated
Outlet connection;Second rotor shaft is connect with the second rotor;Driving motor, the driving motor include at least:First driving
Motor;First driving motor is connect with third shunting delivery outlet, and the rotor mechanism of adjustable angle drives with described first
Dynamic motor connection, and first driving motor be located at the third shunt delivery outlet and the adjustable angle rotor mechanism it
Between;First rotor, first rotor include:First rotating vane, first rotating vane are consolidated with first rotor shaft
Fixed connection;First clump weight, first clump weight are fixedly connected with first rotor shaft, and first rotating vane and
First clump weight is symmetrical relative to first rotor shaft;Second rotor, second rotor include:Second rotation
Blade, second rotating vane are fixedly connected with second rotor shaft;Second clump weight, second clump weight with it is described
Second rotor shaft is fixedly connected, and second rotating vane and second clump weight are relative to the second rotor axial symmetry
Distribution.
Further, the making material of first clump weight is rigid material.
Further, the making material of second clump weight is rigid material.
Further, first rotating vane is single blade blade.
Further, second rotating vane is single blade blade.
Further, first rotating vane be fixedly connected with first rotor shaft including:First rotor shaft
It is perpendicular with the rotational plane of first rotating vane.
Further, second rotating vane be fixedly connected with second rotor shaft including:Second rotor shaft
It is perpendicular with the rotational plane of second rotating vane.
Further, the generator connect with the engine including:The rotor of the generator and the engine
Output shaft be fixedly connected;Wherein, the electric pressure converter is connected with the supply port of the generator, and the rotor is located at
Between the supply port and the output shaft.
Advantageous effect:
The present invention provides the power rotor structure applied to unmanned plane, by the way that generator is connected with engine, makes to start
Machine drives generator operation.It converts the voltage into device to connect with generator, the electric energy that generator generates is made to enter in electric pressure converter.
First voltage stabilizing input port of voltage-stablizer with electric pressure converter is connected, electric pressure converter is made to be arranged on the first voltage stabilizing input port and hair
Between motor, electric energy is input to voltage-stablizer from electric pressure converter.Accumulator is connected with the second voltage stabilizing input port of voltage-stablizer,
Electric energy is made to enter in accumulator to store, more electric energy are provided for unmanned plane.The electric energy that generator and engine generate, Ke Yitong
The the first shunting input port for crossing current divider is connected with the first voltage stabilizing delivery outlet of voltage-stablizer;The of first driving motor and current divider
Three shunting delivery outlet connections, the rotor mechanism of adjustable angle and the connection of the first driving motor, make the first driving motor be located at third
It shunts between delivery outlet and the rotor mechanism of adjustable angle.And the first steering engine input port and current divider due to the first steering engine
First shunting delivery outlet connection, the first rotor shaft of the first steering engine are connected with the first rotor;The second steering engine input of second steering engine
Mouth is connected with the second shunting delivery outlet of current divider, and the second rotor shaft of the second steering engine is connected with the second rotor.Second pivoting leaf
Piece and the second clump weight will be fixedly connected with the second rotor shaft respectively, make the second rotating vane and the second clump weight relative to second
Rotor shaft is symmetrical, is in in-flight in unmanned plane, the first rotating vane and the second pivoting leaf can remain and air-flow
Consistent direction so as to reduce resistance of the air-flow to rotor, overcomes traditional rotor to larger caused by unmanned plane during flying
Interference.So as to reach the cruise duration and the practicability that promote unmanned plane;Simplify rotor structure, the technology effect of rational in infrastructure
Fruit.
Description of the drawings
It in order to illustrate more clearly about the embodiment of the present invention or technical scheme of the prior art, below will be to institute in embodiment
Attached drawing to be used is needed to be briefly described, it should be apparent that, the accompanying drawings in the following description is only some implementations of the present invention
Example, for those of ordinary skill in the art, without creative efforts, can also obtain according to these attached drawings
Obtain other attached drawings.
Fig. 1 is the overall structure diagram of unmanned plane provided in an embodiment of the present invention;
Fig. 2 is the top view illustration of Fig. 1;
Fig. 3 is the bottom view schematic diagram of Fig. 1;
Fig. 4 is the front view schematic diagram of Fig. 1;
Fig. 5 is the rearview schematic diagram of Fig. 1;
Fig. 6 is the side view schematic diagram of Fig. 1;
Fig. 7 is the schematic diagram of the rotor mechanism of adjustable angle provided in an embodiment of the present invention;
Fig. 8 is generator provided in an embodiment of the present invention and engine connection relationship diagram;
Fig. 9 is the mechanism block diagram of circuit control system provided in an embodiment of the present invention.
Specific embodiment
The invention discloses the power rotor structures applied to unmanned plane, by the way that generator is connected with engine, make hair
Motivation drives generator operation.It converts the voltage into device to connect with generator, the electric energy that generator generates is made to enter electric pressure converter
In.First voltage stabilizing input port of voltage-stablizer with electric pressure converter is connected, electric pressure converter is made to be arranged on the first voltage stabilizing input port
Between generator, electric energy is input to voltage-stablizer from electric pressure converter.By the second voltage stabilizing input port of accumulator and voltage-stablizer
Connection, makes electric energy enter in accumulator and stores, more electric energy are provided for unmanned plane.The electric energy that generator and engine generate,
It can be connected by the first shunting input port of current divider with the first voltage stabilizing delivery outlet of voltage-stablizer;First driving motor and shunting
The third shunting delivery outlet connection of device, the rotor mechanism of adjustable angle and the connection of the first driving motor, make the first driving motor position
It is shunted between delivery outlet and the rotor mechanism of adjustable angle in third.And due to the first steering engine the first steering engine input port and point
The first shunting delivery outlet connection of device is flowed, the first rotor shaft of the first steering engine is connected with the first rotor;Second rudder of the second steering engine
Machine input port is connected with the second shunting delivery outlet of current divider, and the second rotor shaft of the second steering engine is connected with the second rotor.Second
Rotating vane and the second clump weight will be fixedly connected with the second rotor shaft respectively, make the second rotating vane and the second clump weight opposite
It is symmetrical in the second rotor shaft, it is in in-flight in unmanned plane, the first rotating vane and the second pivoting leaf can remain
The direction consistent with air-flow so as to reduce resistance of the air-flow to rotor, overcomes traditional rotor to produced by unmanned plane during flying
Larger interference.So as to reach the cruise duration and the practicability that promote unmanned plane;Simplify rotor structure, rational in infrastructure
Technique effect.
In order to which the power rotor structure applied to unmanned plane provided invention elaborates, to support that invention to be solved
Certainly the technical issues of, in the following, in embodiment provided by the invention, first elaborates to unmanned plane, is then describing nobody
During machine, the power rotor structure provided by the invention applied to unmanned plane is further targetedly drawn, to reach
Completely, clear, clear purpose.
Explanation is summarized below to the overall condition of unmanned plane first:The present invention is by the way that the fuselage of unmanned plane is divided at least
Including three sections, i.e. the first fuselage 10, the second fuselage 20 and third fuselage 30, and pass through the connection of detachable connection between three sections
Mode is attached, and is formed a dismountable unmanned plane of internal structure with this, so that when the fuselage of unmanned plane goes out current situation
When portion damages, it corresponding can remove the position for occurring damaging and repair, there is simple, convenient technique effect.And
And when the part of fuselage can not be repaired when damaging, can also the position that can not repair of corresponding dismounting, i.e., to can not
The position of reparation is substituted, so as to overcome in the prior art because fuselage is using integrated global design so that occur
When fuselage local damage can not be repaired, it has to replace the technological deficiency of the entire fuselage of unmanned plane, reach and significantly reduce
The technique effect of maintenance cost.
Meanwhile unmanned plane perform landing operation during, the present invention in unmanned plane included by the first rotor
1211st, the rotor mechanism 331 of the second rotor 1221 and adjustable angle matches operation (being operated) and generates lifting force, pulls
Fuselage rises or declines.Such as:When unmanned plane takes off, by the way that the first rotor 1211 and the second rotor 1221 is controlled to rotate,
And the rotation direction (rotor mechanism 331 is made to provide upward pulling force) of the adjustable rotor mechanism 331 of angle is adjusted, by the first rotation
Resultant force caused by the rotation of the wing 1211, the rotation of the second rotor 1221 and the operating of rotor mechanism 331, for unmanned plane provide to
On lifting force, so as to fulfill taking off vertically for unmanned plane.When unmanned plane is drawn high certain altitude, then can by adjusting angle
The rotation direction (rotor mechanism 331 is made to provide horizontal thrust) of the rotor mechanism 331 of tune, so as to which generation level pushes away on unmanned plane
Power pushes unmanned plane to slide in the air and takes off, and then enters stabilized flight;When declining, by controlling the first rotor 1211, the
The lifting force of two rotors 1221, and control the adjustable rotor mechanism 331 of angle that unmanned plane is made to pull fuselage under eminence stabilization
Drop, until stablizing landing, the damage of fuselage and carrying equipment, greatly reduces landing accident caused by avoiding fuselage hard landing
Risk, having reached makes unmanned plane be suitble to carry out the technique effect of landing operation in different flying field.
Below in conjunction with Figure of description, the technical solution in the embodiment of the present invention is clearly and completely described, is shown
So, described embodiment is only part of the embodiment of the present invention, instead of all the embodiments.
In order to which unmanned plane provided in an embodiment of the present invention is described in detail, first to involved in the embodiment of the present invention
And technical term do description below explanation:
Detachable connection can be bolted or be bonded;Being fixedly connected can be welding or integrated molding;Ground
Face can be the ground that unmanned plane is parked or the face with this plane parallel;First level face can be put down with level ground
Capable face, and the center vertical pivot 123 of the first noumenon is located in the plane;Minimum flying speed can be that unmanned plane is made to keep flying
Minimum flying speed when going, and not falling.Such as in the present embodiment, the minimum flying speed of unmanned plane can be 20m/s;It rises
The winged stage can be the process that unmanned plane reaches aerial vertical ascent from ground;Take off winged stage that flattens can be that unmanned plane arrives
Up to after aerial, the process of horizontal flight is carried out;The turning stage can be unmanned plane from level flight condition, the mistake turned
Journey, such as left and right turning;Landing phases can be process of the unmanned plane from airborne to ground.
For 10 part of the first fuselage:
Fig. 1-Fig. 6 is referred to, the first fuselage 10 includes:Portion 11, the first noumenon 12 and first connecting portion 13 windward, first
Ontology 12 is located at windward between portion 11 and first connecting portion 13, and portion 11, the first noumenon 12 and first connecting portion 13 1 windward
The first fuselage 10 of body formed composition.In the first fuselage 10, by the way that cone structure will be arranged in portion 11 windward, by portion 11 windward
Diameter of section is sequentially increased on the direction towards the first noumenon 12, and makes the diameter of section of the first noumenon 12 in direction first
It is sequentially reduced, allows in this way in unmanned plane during flying on the direction of connecting portion 13, the first fuselage 10 is in embodiments of the present invention
Global shape design advantageously reduce the resistance of air-flow.
In addition, the first forewing 121 and the second forewing 122 are additionally provided on the first noumenon 12.Wherein, first
Forewing 121 includes:First preceding 1212 and first forward open end 1213 of fastening end.Second forewing 122 includes:Before second
1222 and second forward open end 1223 of fastening end.And first preceding 1212 and second preceding fastening end 1222 of fastening end along the first noumenon 12
Center vertical pivot be symmetrically distributed in the both sides of the first noumenon 12, and three is relatively fixed.
It specifically, can be by can between the first preceding fastening end 1212 of the first forewing 121 and the first noumenon 12
The connection mode being detachably connected with is attached.Second preceding fastening end 1222 of the second forewing 122 and the first noumenon 12 it
Between can also be attached by the connection mode of detachable connection.The mode by being detachably connected is allowed in this way
It is detachable between first forewing 121, the second forewing 122 and the first noumenon 12, convenient for the assembling of the first fuselage 10, make
Obtain convenience easy to maintenance.
Fig. 4-Fig. 6 is referred to, the first forewing 121 and the angle in first level face can be 2.5 °, at unmanned plane
When minimum flying speed, 2.5 ° of angle can be that unmanned plane obtains enough lift, to overcome the weight of unmanned plane itself, from
And lift preferably is generated for unmanned plane, keep state of flight.Second forewing 122 can also be with first level face angle
2.5 °, when unmanned plane is in minimum flying speed, 2.5 ° of angle also can be that unmanned plane obtains enough lift, to overcome nothing
The man-machine weight of itself so as to preferably generate lift for unmanned plane, keeps state of flight.
The first rotor 1211 is provided on the first forewing 121 and for the first rotor 1211 to be driven to be revolved
The first steering engine 471 turned is provided with the second rotor 1221 on the second forewing 122 and for driving the second rotor 1221
The second steering engine 472 rotated.And in the first forward open end 1213 of the first forewing 121, also set up one first
Storage region 12131;One second storage region 12231 is also set up in the second forward open end 1223 of the second forewing 122.
Wherein, the first steering engine 471 includes:First rotor shaft 4712 and the first fixed seat for fixing the first steering engine 471
4713, and the first fixed seat 4713 is fixed in the first storage region 12131;Second steering engine 472 includes:Second rotor shaft 4722
With for fixing the second fixed seat 4723 of the second steering engine 472, and the second fixed seat 4723 is fixed on the second storage region 12231
It is interior.First rotor 1211 includes:First rotating vane 12111 and the first clump weight 12112, the first rotating vane 12111 and
One rotor shaft 4712 is fixedly connected, and the first clump weight 12112 is fixedly connected with the first rotor shaft 4712;And the first rotating vane
12111 and first clump weight 12112 it is symmetrical relative to the first rotor shaft 4712, the first rotor shaft 4712 and the first pivoting leaf
The rotational plane of piece 12111 is perpendicular.Second rotor 1221 includes:Second rotating vane 12211 and the second clump weight 12212,
Second rotating vane 12211 is fixedly connected with the second rotor shaft 4722, and the second clump weight 12212 is fixed with the second rotor shaft 4722
Connection, and the second rotating vane 12211 and the second clump weight 12212 are symmetrical relative to the second rotor shaft 4722, second
Rotor shaft 4722 and the rotational plane of the second rotating vane 12211 are perpendicular.
Specifically, the size and shape of the first storage region 12131 and the second storage region 12231 can be according to required
The form parameter of the steering engine 47 of placement and determine, such as the volume size of steering engine 47, so as to which the first steering engine 471 is positioned over first
It is positioned in the second storage region 12231 in storage region 12131 and by the second steering engine 472.First steering engine 471 passes through its own
The first fixed seat 4713 be fixed in the first storage region 12131, the first rotor shaft 4712 of the first steering engine 471 and the first rotation
First rotating vane 12111 of the wing 1211 is fixedly connected, and the first rotor shaft 4712 and the first clump weight 12112 are fixed and connected
It connects.First rotor shaft 4712 and the rotational plane of the first rotating vane 12111 are perpendicular, i.e., in the first rotating vane 12111
During rotation, the plane of the rotation is mutually perpendicular to the first rotor shaft 4712;First rotating vane 12111 and the first clump weight
12112 is symmetrical relative to the first rotor shaft 4712, i.e. the first rotating vane 12111 and the first clump weight 12112 are with first
Rotor shaft 4712 is symmetric for axis.The making material of first clump weight 12112 can use rigid material so that the first rotation
When the first rotating vane 12111 of drive of wing axis 4712 and the first clump weight 12112 rotate together, the first clump weight 12112 will not
It deforms upon, so as to influence the balance of the first rotor 1211.
On the other hand, the second steering engine 472 is fixed on by the second fixed seat 4723 in the second storage region 12231, the
Second rotor shaft 4722 of two steering engines 472 is fixedly connected with the second rotating vane 12211 of the second rotor 1221, and the second rotation
Wing axis 4722 is fixedly connected with the second clump weight 12212.The rotational plane of second rotor shaft 4722 and the second rotating vane 12211
Perpendicular, i.e., in the rotation of the second rotating vane 12211, the plane of the rotation is mutually perpendicular to the second rotor shaft 4722;The
Two rotating vanes 12211 and the second clump weight 12212 are symmetrical relative to the second rotor shaft 4722, i.e. the second rotating vane
12211 and second clump weight 12212 be symmetric with the second rotor shaft 4722 for axis.The making material of second clump weight 12212
Material can use rigid material so that the second rotor shaft 4722 drives the second rotating vane 12211 and the second clump weight 12,212 1
When playing rotation, the second clump weight 12212 will not deform upon, so as to influence the balance of the first rotor 1211.
In embodiment provided by the invention, it is especially desirable to it is to be noted that:First rotor 1211 includes the first rotating vane
12111 and first clump weight 12112;Second rotor 1221 includes the second rotating vane 12211 and the second clump weight 12212.
Exactly the first rotor 1211 uses single blade, and what the second rotor 1221 used is also single blade.What traditional rotor used
All it is twayblade, traditional rotor is namely made of two blades of similar first rotating vane 12111, the two blades lead to
Often it is symmetric relative to the axis that movable vane piece rotates.Traditional rotor due to the use of be twayblade, if unmanned plane fly
In row, which, so as to increase the resistance of air-flow, can produce the flight of unmanned plane larger do along flow rotation
Disturb, be unfavorable for the balance of unmanned plane, at the same can cause unmanned plane amount of power can be lost it is larger.Provided in an embodiment of the present invention
One rotor 1211 and the second rotor 1221 are all to use single blade, while be respectively arranged with the first clump weight with each single blade
12112 and second clump weight 12212, and then weight balancing is played to the first rotating vane 12111 and the second rotating vane 12211
Effect.Since rotor has single blade, if unmanned plane is awing, which will remain consistent with air-flow
Direction so as to reduce the resistance of air-flow, overcomes traditional twayblade rotor to larger dry caused by the flight of unmanned plane
It disturbs, to the destruction caused by the balance of unmanned plane and the technological deficiency for making the power capacity loss of unmanned plane larger.Reach
Be conducive to the flight balance of unmanned plane, reduce the technique effect of the energy loss of unmanned mechanomotive force.
Refer to Fig. 2, the first forewing 121 is in the first preceding fastening end 1212, along to 1213 direction of the first forward open end
On width be sequentially reduced;And/or second forewing 122 in the second preceding fastening end 1222, along to the second forward open end 1223
Width on direction is sequentially reduced.
Specifically, the shape for the first forewing 121 and the second forewing 122 provides following two embodiment party
Formula illustrates:
The first embodiment, by by the first forewing 121 since the first preceding fastening end 1212, towards to first
Width on 1213 direction of forward open end is sequentially reduced so that the first forewing 121 can be it is trapezoidal, due to tapered airfoil not
By angle of sweep drag reduction, so the angle of sweep of the leading edge of a wing can be smaller, so as to make unmanned plane that can awing obtain preferable liter
Power.
Second of embodiment, by by the second forewing 122 since the second preceding fastening end 1222, towards to second
Width on 1223 direction of forward open end is sequentially reduced so that the second forewing 122 can be it is trapezoidal, due to tapered airfoil not
By angle of sweep drag reduction, so the angle of sweep of the leading edge of a wing can be smaller, so as to make unmanned plane that can awing obtain preferable liter
Power.
More than first embodiment and second embodiment can implement simultaneously, can also be in first embodiment
Implement with optional one in second embodiment.Such as:Make the first forewing 121 trapezoidal, and make second preposition
Wing 122 is also trapezoidal, so as to which unmanned plane be made to obtain preferable lift.Make the first forewing 121 trapezoidal or make second
Forewing 122 is trapezoidal, so as to which unmanned plane in the global design of unmanned plane, be made to obtain preferable lift.
For 20 part of the second fuselage:Fig. 1-6 is referred to, the second fuselage 20 includes second connecting portion 21, second
Body 22 and third connecting portion 23;Wherein, the second ontology 22 is between second connecting portion 21 and third connecting portion 23, and second connects
Socket part 21, the second ontology 22 and third connecting portion 23, which are integrally formed, forms the second fuselage 20;Second connecting portion 21 and first connects
Portion 13 is detachably connected, and the second ontology 22 is fixedly connected with second connecting portion 21, and 23 and second ontology 22 of third connecting portion is fixed
Connection.
Specifically, since second connecting portion 21 and first connecting portion 13 are detachably connected so that the second fuselage 20 and
It is also to pass through detachable connection between one fuselage 10.Pass through mode the first fuselage 10 being detachably connected and the second fuselage
It is detachable between 20, convenient for the assembling of the second fuselage 20 so that convenience easy to maintenance significantly reduces maintenance cost.
Further, the second ontology 22 can include:First side 221, second side 222 and third side 223, and
First side 221 and second side 222 are symmetrical along the center vertical pivot 224 of the second ontology, and third side 223 is located at first
Between side 221 and second side 222;And the first postposition wing 2211, second side 222 are provided in first side 221
On be provided with the second postposition wing 2221, be provided with vertical stabilizer 2231 on third side 223.First postposition wing 2211 wraps
It includes:22111 and first rear open end 22112 of fastening end after first;Second forewing 122 includes:Fastening end 22211 after second
With the second rear open end 22212.Wherein, behind fastening end 22111 and second center of the fastening end 22211 along the second ontology after first
Vertical pivot 224 is symmetrically fixed at the both sides of the second ontology 22;And 22111 and first rear open end of fastening end after first
22112 be the both ends of the first postposition wing 2211 respectively, and 22211 and second rear open end 22212 of fastening end is respectively after second
The both ends of second postposition wing 2221.
Connect specifically, the first postposition wing 2211 can be fixed by fastening end 22111 after first with first side 221
It connects, the second postposition wing 2221 can be fixedly connected by fastening end 22211 after second with second side 222, vertical stabilizer
2231 can be fixedly connected with third side 223.By setting the first postposition wing 2211 and the second postposition wing 2221, make this
Two wings when unmanned plane is in flight, can provide the lift of bigger for unmanned plane.
Further, the second fuselage 20 further includes:First winglet 24 and the second winglet 25.Individually below to
One winglet 24 and the second winglet 25 are described in detail:
For 24 part of the first winglet.The angle of first winglet 24 and the first postposition wing 2211 is 60 °-
90°;First winglet 24 includes:First wing tip fastening end 241 and the first wing tip openend 242;And the first wing tip fastens
End 241 is fixedly connected with the first rear open end 22112, and the first wing tip openend 242 is away from the first rear open end 22112, with the
One wing tip fastening end 241 forms the both ends of the first winglet 24;And the first wing tip openend 242 and vertical stabilizer 2231
In the both sides of the first postposition wing 2211;
For 25 part of the second winglet.The angle of second winglet 25 and the second postposition wing 2221 is 60 °-
90°;Second winglet 25 includes:Second wing tip fastening end 251 and the second wing tip openend 252;And the second wing tip fastens
End 251 is fixedly connected with the second rear open end 22212, and the second wing tip openend 252 is away from the second rear open end 22212, with the
Two wing tip fastening ends 251 form the both ends of the second winglet 25;And the second wing tip openend 252 and vertical stabilizer 2231
In the both sides of the second postposition wing 2221.
More than the first wing tip openend 242 of the first winglet 24 and the second wing tip openend of the second winglet 25
252 can symmetrically be distributed along the center vertical pivot 224 of the second ontology.Certainly, the first wing tip openend of the first winglet 24
242 and second second wing tip openend 252 of winglet 25 can be along 224 asymmetric points of the center vertical pivot of the second ontology
Cloth.
Specifically, the first winglet 24 includes:First wing tip fastening end 241 and the first wing tip openend 242;First
First wing tip fastening end 241 of winglet 24 is fixedly connected with the first rear open end 22112 of the first postposition wing 2211, and
And first wing tip openend 242 away from the first rear open end 22112, i.e. the first wing tip openend 242 is as shown in figure 4, positioned at nothing
The lower section of man-machine fuselage.At this point, the first winglet 24 and the first postposition wing 2211 form angle, the range of the angle is:
60°-90°;Second wing tip fastening end 251 of the second winglet 25 and the second rear open end of the second postposition wing 2221
22212 are fixedly connected, and the second wing tip openend 252 is away from the second rear open end 22212, i.e. the second wing tip openend 252
As shown in figure 4, positioned at the lower section of unmanned aerial vehicle body.At this point, the second winglet 25 and the second postposition wing 2221 form angle,
The range of the angle is:60°-90°
Fig. 4, Fig. 5 are referred to, in order to which specification is made preferably to support the first winglet 24 and first in claims
The numerical value of the numberical range of the angle of postposition wing 2211 and the angle of the second winglet 25 and the second postposition wing 2221
Range is now chosen two endpoint values of angular range, is explained as follows with two embodiments respectively:
The first embodiment, if the angle of the first winglet 24 and the first postposition wing 2211 is 60 °, and the
The angle of two winglets 25 and the second postposition wing 2221 is also 60 °.I.e. when unmanned plane is parked in level ground, by first wing
The angle that first wing tip openend 242 of sharp winglet 24 and the first rear open end 22112 of the first postposition wing 2211 are formed
It is 60 °;And by the second wing tip openend 252 of the second winglet 25 and the second rear open end of the second postposition wing 2221
22212 angles formed are also 60 °.At this point, the first winglet 24 and the first postposition wing 2211 can effectively hinder first
The air of the upper lower aerofoil of postposition wing 2211 streams, and the second winglet 25 also can be effective with the second postposition wing 2221
The air of the upper lower aerofoil of the second postposition wing 2221 is hindered to stream.So as to reduce caused by first box the second wing tip trailing vortex
" induced drag ", and then reduce and stream to lift produced by the first postposition of unmanned plane wing 2211 and the second postposition wing 2221
Destruction, improve unmanned plane lift resistance ratio, increase voyage, have the function that increase unmanned plane lift.
Second of embodiment, if the angle of the second winglet 25 and the second postposition wing 2221 is 90 °, and the
The angle of two winglets 25 and the second postposition wing 2221 is also 90 °.I.e. when unmanned plane is parked in level ground, by first wing
The angle that first wing tip openend 242 of sharp winglet 24 and the first rear open end 22112 of the first postposition wing 2211 are formed
It is 90 °;And by the second wing tip openend 252 of the second winglet 25 and the second rear open end of the second postposition wing 2221
22212 angles formed are also 90 °.At this point, the first winglet 24 and the first postposition wing 2211 can effectively hinder first
The air of the upper lower aerofoil of postposition wing 2211 streams, and the second winglet 25 also can be effective with the second postposition wing 2221
The air of the upper lower aerofoil of the second postposition wing 2221 is hindered to stream.So as to reduce caused by the first and second wing tip trailing vortexs
" induced drag ", reduce the destruction streamed to lift, improve lift resistance ratio, increase voyage, have the function that increase lift.Together
When, since the first winglet 24 and the second winglet 25 are all mutually perpendicular to first level face, so the first winglet
24 and second the distance between winglet 25 and ground recently so that the first winglet 24 of manufacture and the second winglet 25
Required material is also less, so as to alleviate the own wt of the first winglet 24 and the second winglet 25, reduces nothing
Man-machine overall weight, has reached increase voyage, reduce unmanned plane kinetic equation loss (such as:Oil consumption, the electric energy of accumulator 45)
Technique effect.
Further, the second fuselage 20 further includes:First aileron 26, the second aileron 27 and third aileron 28.First aileron
26th, the second aileron 27 and third aileron 28 can be rectangle.The rotation of first aileron 26 is arranged on the first rear open end
On 22112, and the first aileron 26 is rotated in the first rear open end 22112 relative to the first rear open end 22112;
And/or second aileron 27 rotate be arranged in the second rear open end 22212, and the second aileron 27 is in the second rear open end
It is rotated on 22212 relative to the second rear open end 22212;And/or third aileron 28 rotate be arranged on vertical stabilizer
On 2231, and third aileron 28 is rotated on vertical stabilizer 2231 relative to vertical stabilizer 2231;Wherein, the first postposition
Fastening end 22111 after first of wing 2211 are sequentially reduced along the width on 22112 direction of the first rear open end;And/or
Second fastening end 22211 after second of postposition wing 2221, subtract successively along the width on 22212 direction of the second rear open end
It is small.
Fig. 5 is referred to, specifically, the first aileron 26 is arranged on the first rear open end in the first postposition wing 2211
On 22112, the first aileron 26 can be relative to the plane of the first postposition wing 2211, along the plane of the first postposition wing 2211
Vertically rotate;Second aileron 27 is arranged in the second rear open end 22212 in the second postposition wing 2221, and second is secondary
The wing 27 can be relative to the plane of the second postposition wing 2221, and the plane along the second postposition wing 2221 vertically turns
It is dynamic;Third aileron 28 is arranged on vertical stabilizer 2231, is rotated in the lateral direction along the plane of vertical stabilizer 2231.
Meanwhile first postposition wing 2211 can be trapezoidal, after first fastening end 22111 be the trapezoidal bottom, favorably
In the lift for improving unmanned plane, keep the in-flight stability of unmanned plane and flying for unmanned plane is controlled by the first aileron 26
Row posture;Second postposition wing 2221 can also be trapezoidal, and fastening end 22211 is also the trapezoidal bottom after second, is conducive to
The lift of unmanned plane is improved, keep the in-flight stability of unmanned plane and the flight of unmanned plane is controlled by the second aileron 27
Posture.
Referring to Fig. 4, the angle of the first forewing 121 and the first postposition wing 2211 can be 15 °, meanwhile, second
The angle of 122 and second postposition wing 2221 of forewing can also be 15 °.If the first forewing and the first postposition wing
Angle is 15 °, and the angle of the second forewing 122 and the second postposition wing 2221 is also 15 °, is pushed in tail rotor 33123
During unmanned plane during flying, the balance of unmanned plane surrounding flow is beneficial to, so as to reach the technology for the stability for promoting unmanned plane effect
Fruit.Fig. 3 is referred to, the abdomen of unmanned plane can include first (when i.e. unmanned plane is parked in level ground, close to the face of unmanned plane)
The abdomen of the abdomen of fuselage 10, the abdomen of the second fuselage 20 and third fuselage 30, the abdomen of unmanned plane can be rendered as arc, should
The abdomen of arc advantageously reduces obstruction of the air-flow to unmanned plane, reduces the energy loss of unmanned plane, reaches promotion unmanned plane and flies
The technique effect of row distance.
Fig. 9 is referred to, further, the second driving motor 482 is connect with the first aileron 26, and the second driving motor
482 be fixed at first after between 22111 and first rear open end 22112 of fastening end;Third driving motor 483 and second is secondary
The wing 27 connects, and third driving motor 483 be fixed at second after 22211 and second rear open end 22212 of fastening end it
Between;4th driving motor 484 is connect with third aileron 28, and the 4th driving motor 484 is fixed on vertical stabilizer 2231.
Specifically, after the second driving motor 482 is connect with the first aileron 26, pass through the work of the second driving motor 482
The pulling force rotated upwardly and downwardly is provided for the first aileron 26;After third driving motor 483 is connect with the second aileron 27, driven by third
The work of motor 483 provides the pulling force rotated upwardly and downwardly for the second aileron 27.4th driving motor 484 is connect with third aileron 28
Afterwards, the pulling force of left-right rotation is provided by the work of the 4th driving motor 484 for third aileron 28.
Continuing with referring to Fig. 9, further, current divider 46 further includes:The 4th shunting shunting output of delivery outlet the 465, the 5th
466 and the 6th shunting delivery outlet 467 of mouth.4th shunting delivery outlet 465 is connect with the second driving motor 482;5th shunting output
Mouth 466 is connect with third driving motor 483;6th shunting delivery outlet 467 is connect with the 4th driving motor 484.
Specifically, it can be by current divider by conducting wire that the 4th shunting delivery outlet 465 is connect with the second driving motor 482
46 connect with the second driving motor 482, power on the second driving motor 482;5th shunting delivery outlet 466 drives with third
The connection of motor 483 can be connect current divider 46 with third driving motor 483 by conducting wire, connect third driving motor 483
Energization source;It can be by current divider 46 and 4 wheel driven by conducting wire that 6th shunting delivery outlet 467 is connect with the 4th driving motor 484
Dynamic motor 484 connects, and powers on the 4th driving motor 484.So as to be the second driving motor 482 by current divider 46, the
Three driving motors 483 and the 4th driving motor 484 provide electric energy.Refer to Fig. 2 and Fig. 3, it should be noted that unmanned plane is set
The weight calculation heart is located at the first lift equalization point and first of the first forewing 121 and the second forewing 122 on unmanned plane
Between the second lift equalization point of the 2211 and second postposition wing 2221 of postposition wing on unmanned plane;And the design weight of unmanned plane
The heart is at the 3/4 of the first lift equalization point and the second lift equalization point spacing, and the design gravity of unmanned plane is close to the second lift
Equalization point.
Specifically, the lift equalization point of the first forewing 121 and the second forewing 122 on unmanned plane is first
Lift equalization point (abbreviation A points), the lift equalization point of the first postposition wing 2211 and the second postposition wing 2221 on unmanned plane
It is the second lift equalization point (abbreviation B points);Air line distance length between A points and B points is S, and the design gravity of unmanned plane is referred to as
For C points.In order to explain in detail the design gravity of unmanned plane (C points) and the first lift equalization point (A points), the second lift equalization point (B
Point) position relationship, now enumerate embodiment and be explained as follows:C points are located between A points and B points, and straight between C points and A points
Linear distance is assumed to be L, and L needs to meet:L=(3/4) * S.Meanwhile A points, B points and C points may be alternatively located on same straight line.Due to nothing
Man-machine design center of gravity is at the 3/4 of the first lift equalization point and the second lift equalization point spacing, when unmanned plane weight changes
When, the control performance to unmanned plane will not be influenced.So the design gravity of unmanned plane is in the first lift equalization point and second liter
At the 3/4 of power equalization point spacing, be conducive to adapt to the different weight of unmanned plane, and then reach the technology effect for not influencing control performance
Fruit.
Obviously, in embodiment provided by the invention, to the design gravity of unmanned plane in the first lift equalization point and second
At the 3/4 of lift equalization point spacing and explanation that position relationship that A points, B points and C points are located along the same line is carried out, and
To provide constraints to the position, those of ordinary skill in the art, can by modifying to the link position or
Equivalent replacement, but this modification or equivalent replacement are within protection scope of the present invention.Such as:The design gravity of unmanned plane exists
At the 4/5 of first lift equalization point and the second lift equalization point spacing;C points are located at except the line of B points and C points.
For 30 part of third fuselage:Fig. 1-Fig. 6 is referred to, third fuselage 30 includes the 4th connecting portion 31, third
Ontology 32 and tail portion 33;Third ontology 32 is between the 4th connecting portion 31 and tail portion 33, and the 4th connecting portion 31, third ontology
32 and tail portion 33 be integrally formed and form third fuselage 30, the diameter of section of tail portion 33 towards increasing on the direction of third ontology 32 successively
Greatly.It is fixedly connected by tail portion 33 with third ontology 32, third ontology 32 is fixedly connected with the 4th connecting portion 31, the 4th connecting portion
31 and third connecting portion 23 be detachably connected, 30 and second fuselage 20 of third fuselage is made to be connected as a single entity.
Specifically, since the third connecting portion 23 of the 4th connecting portion 31 and the second fuselage 20 is detachably connected so that the
It is also to pass through detachable connection between three fuselages 30 and the second fuselage 20.Pass through the mode third fuselage being detachably connected
30 and second detachable between fuselage 20, convenient for the assembling of third fuselage 30 so that convenience easy to maintenance significantly reduces dimension
Accomplish this.
Further, the rotor mechanism 331 of an adjustable angle is provided on tail portion 33;Third fuselage 30 can be divided
For:First caudal face 34, the second caudal face 35, third side caudal face 36 and the 4th caudal face 37 so that by the first caudal face 34,
Second caudal face 35, third side caudal face 36 and the 4th caudal face 37 are surrounded to form third fuselage 30, and the first caudal face 34
The both sides in the second caudal face 35 and/or the 4th caudal face 37 are symmetrically dispersed in third side.
Meanwhile the 4th shunting delivery outlet 465 of setting on current divider 46.First driving motor 481 can also include:First
Drive shaft 4811 and driving fixed seat 4812;Steering engine 47 can also include:Third steering engine 473, the third steering engine 473 include third
Steering engine input port 4733, third rotor shaft 4731 and third fixed seat 4732;By by third steering engine input port 4733 with shunting
4th shunting delivery outlet 465 of device 46 connects, so as to provide electric energy for third steering engine 473.
It should be noted that for 331 part of rotor mechanism of adjustable angle, the rotor mechanism 331 of the adjustable angle can
To include:Tailspin seat 3311, linkage portion 3312 and tail rotor 33123.Tailspin seat 3311 be fixed at the second caudal face 35 and/
Or the 4th caudal face 37 both sides on, and fixed seat 4812 is driven to be arranged on tailspin seat 3311 and/or the third ontology 32
On;Linkage portion 3312 includes:First cohesive end 33121 and the second cohesive end 33122, the first cohesive end 33121 and the first driving
Axis 4811 connects;Second cohesive end 33122 is connect with third fixed seat 4732;Third rotor shaft 4731 and tail rotor 33123
Center is fixedly connected, and third rotor shaft 4731 and the rotational plane of tail rotor 33123 are perpendicular.Pass through the first cohesive end
The driving force of first drive shaft 4811 is transferred to the second cohesive end 33122 by 33121, and third rotor shaft 4731 is made to drive tailspin
The wing 33123 is moved along the first caudal face 34, the second caudal face 35, third side caudal face 36 or 37 direction of the 4th caudal face.
On the other hand, tailspin seat 3311 can also be opened including the first hinged seat, the first hollow portion, the first opening face, second
Mouth face and the first mounting base;First hinged seat can be fixed at the first mounting base in the first hollow portion that (hollow portion can
Be aircraft fuselage in), and the first opening face can be fixedly connected with the tail portion 33 of unmanned plane, and the first opening face and
Second opening face can be two corresponding surfaces of the tailspin seat 3311 respectively;First driving of first driving motor 481
Fixed seat can be fixedly connected with first mounting base.
Base assembly can include the second hinged seat, the second hollow portion, third opening face and the 4th opening face;Third is open
Face can be hinged, and the second hinged seat with the second opening face flexible connection, i.e. third opening face with the second opening face
It can be fixedly connected with the 4th opening face, third opening face and the 4th opening face can be two of the second base assembly right respectively
Answer face;Second driving fixed seat can be fixed on the tail portion 33.
Turning part may include housing, and housing may include third hollow portion, first side and second side;The first side
It may include first end, second end and positioning area, first end can be hinged with the second hinged seat, and second hinged seat
It can be between first end and the 4th opening face;It is hollow that the third fixed seat of third steering engine 473 can be arranged on third
In portion, and third rotor shaft 4731 can also be located at outside the second side, and the third rotor shaft of third steering engine 473
4731 can also be fixedly connected with the center of tail rotor, and third rotor shaft 4731 can also be with the rotational plane phase of tail rotor
It is mutually vertical.
Linkage portion 3312 may include the first cohesive end 33121, the second cohesive end 33122 and third cohesive end.First linking
End 33121 can also be hinged with the second end;Second cohesive end 33122 can also be fixed with second drive shaft to be connected
It connects;Third cohesive end can also be hinged with first hinged seat;And the second cohesive end 33122 can be located at described first
Between cohesive end 33121 and the third cohesive end.
Driving section may include the first driving wheel and the second driving wheel, and the first driving wheel may also include first gear 50 and endoporus, endoporus
The center of first gear 50 can be located at, and endoporus can be fixedly connected with the first drive shaft 4811.Second driving wheel can wrap
Second gear 51 and supporter are included, supporter can include lateral surface and medial surface, and second gear 51 can be with the medial surface
It is fixedly connected, and lateral surface can also be fixedly connected with the second hollow portion, and lateral surface can also be located at the second hollow portion
It is interior, meanwhile, second gear 51 can be meshed with first gear 50;Lateral surface and medial surface can be two of the supporter
Corresponding surface.
Specifically, tailspin seat 3311 is fixed to the second caudal face 35 and/or the 4th tail outside third fuselage 30
The the second caudal face 35 that tailspin seat 3311 can also be fixed in third fuselage 30 on the both sides of side 37 and/or
On the both sides in four caudal faces 37.By driving the fixation of fixed seat 4812 and tailspin seat 3311, the first driving motor 481 is fixed
On third fuselage 30;Directly the first driving motor 481 can also be fixed in third fuselage 30.
A kind of embodiment as the embodiment of the present invention.First driving motor 481 can also use straight line steering engine 47, connection
Dynamic portion 3312 can also use upset connecting rod, and the first cohesive end 33121 and the second cohesive end 33122 of linkage portion 3312 can divide
It is not the both ends of upset connecting rod.
As shown in fig. 7, upset connecting rod is in " 7 " font, i.e., the first cohesive end 33121 forms fixed angle with second end,
The numerical value of the angle can be 90 °.When the first driving motor 481 pushes the first cohesive end 33121 to move right, the will be driven
Two cohesive ends 33122 will move down;When the first driving motor 481 pulls the first cohesive end 33121 to be moved to the left, will drive
Second cohesive end 33122 will move up.By the leftward or rightward mobile so as to cause the second cohesive end of the first cohesive end 33121
33122 move up or down.
Also, tail rotor 33123 can use twayblade rotor, the third rotor of tail rotor 33123 and third steering engine 473
Axis 4731 is fixedly connected, and makes third rotor shaft 4731 that tail rotor 33123 be driven to rotate.When tail rotor 33123 rotates, third rotation
Wing axis 4731 and the plane of the rotation are mutually perpendicular to.One tail rotor can be formed by tail rotor 33123 and third steering engine 473
33123 overturning components, the tail rotor 33123 overturning component can be included:Coniform shell.Third steering engine 473 can be with
It is fixed in coniform shell, by the way that the third rotor shaft 4731 of third steering engine 473 is stretched out except coniform shell, from
And tail rotor 33123 is made to be fixedly connected except coniform shell with third rotor shaft 4731.Since coniform shell can be set
Sealing is set to, and then in the flight of rainwater day, damage of the rainwater to the electric elements inside unmanned plane can be prevented.It can also
In coniform shell, connecting hole can be set on the one side of third fuselage 30, by by the second cohesive end 33122 with should
Connecting hole is fixedly connected, so as to which the second cohesive end 33122 be made to be connect with third fixed seat 4732, if the second cohesive end 33122
It is mobile, also third steering engine 473 will be driven to move together.
Fig. 7 is referred to, second gear 51 can be set on the one side of third fuselage 30 in coniform shell, this
Two gears 51 can be gear ring, and second gear 51 is made to be rotated centered on first gear 50.It can be in third fuselage 30
One servo motor of interior fixed setting, for first gear 50 is driven to rotate, since first gear 50 and second gear 51 rotate
Connection, the rotation of first gear 50 will drive second gear 51 and then to rotate together.Or pass through 481 band of the first driving motor
Dynamic first gear 50 rotates, and due to the connection that first gear 50 and second gear 51 rotate, the rotation of first gear 50 will drive
Second gear 51 and then rotates together.
Furthermore because second gear 51 by first gear 50 with rotating together, it will pass through the rotation of second gear 51
Coniform shell or third steering engine 473 is made to rotate together, so as to make tail rotor 33123 far from the first vertical pivot 53 or close to first
Vertical pivot 53 moves.
In embodiment provided by the invention, since tail rotor 33123 moves up or down, tail rotor 33123 will be made
It is moved relative to the first vertical pivot 53, i.e., tail rotor 33123 moves formed angular range relative to the first vertical pivot 53 to be
0°—90°.Since tail rotor 33123 is mobile to the left or to the right, tail rotor 33123 will be made to be moved relative to the first vertical pivot 53, i.e.,
It can be 0 ° -60 ° that tail rotor 33123 is moved to the left formed angular range relative to the first vertical pivot 53;Tail rotor 33123
It can be 0 ° -60 ° relative to the first vertical pivot 53 formed angular range that moves right.
Embodiment provided by the invention is described in detail in order to clearer, it is now upward to tail rotor 33123 respectively
Or move down, tail rotor 33123 is mobile to the left or to the right to carry out following detailed description:
It is initially noted that:Tail rotor 33123, which moves up, to be:Tail rotor 33123 is along third caudal face
Direction is moved, i.e., is moved along the direction of vertical stabilizer 2231, at this time far from the first horizontal axis 54;Tail rotor 33123 moves down
Can be:Tail rotor 33123 is moved along 37 direction of the 4th caudal face, i.e., is moved away from the direction of vertical stabilizer 2231, at this time
Close to the first horizontal axis 54;Tail rotor 33123, which is moved to the left, to be:Tail rotor 33123 is moved along 34 direction of the first caudal face,
It such as Fig. 5, i.e., is moved along 2211 direction of the first postposition wing, at this time far from the first vertical pivot 53;Tail rotor 33123 moves right can
To be:Tail rotor 33123 is moved along 35 direction of the second caudal face, such as Fig. 5, i.e., is moved along 2221 direction of the second postposition wing
It is dynamic, at this time far from the first vertical pivot 53.
Tail rotor 33123 is moved up or down, below by way of two embodiments to tail rotor 33123 upwards or
It moves down and is described in detail respectively:
The first embodiment.If the first cohesive end 33121 moves right, by cause the second cohesive end 33122 to
Lower movement.Since the second cohesive end 33122 is connect with third fixed seat 4732, tail rotor 33123 and the with third steering engine 473
Three rotor shafts, 4731 fixed seat connects.Moving down for second cohesive end 33122 can drive tail rotor 33123 to move downwardly together
It is dynamic, it is achieved thereby that unmanned plane, in flight, landing, tail rotor 33123 can move gradually downward, reach change tail rotor
33123 directions of motion, and then tail rotor 33123 is controlled thrust direction to be made gradually to move up the thrust direction of unmanned plane.
When tail rotor 33123 moves gradually downward, and is moved to the folder that tail rotor 33123 is moved relative to the first vertical pivot 53
When angle is 90 °.Tail rotor 33123 will upwards (such as Fig. 7) to the thrust direction of unmanned plane, and the rotation of tail rotor 33123 at this time will
Lift is provided for unmanned plane, so as to increase the lift of unmanned plane.
Second of embodiment.If the first cohesive end 33121 is moved to the left, by cause the second cohesive end 33122 to
Upper movement.Since the second cohesive end 33122 is connect with third fixed seat 4732, the third of tail rotor 33123 and third steering engine 473
4731 fixed seat of rotor shaft connects.Moving up for second cohesive end 33122 can drive tail rotor 33123 to move upwardly together,
It is achieved thereby that unmanned plane, in flight, landing, tail rotor 33123 can be moved up gradually, reach change tail rotor
33123 directions of motion, and then tail rotor 33123 is controlled the direction of thrust to be made to move gradually downward the thrust direction of unmanned plane.
When tail rotor 33123 gradually moves up, and is moved to what tail rotor 33123 was moved relative to the first vertical pivot 53
When angle is 0 °.Tail rotor 33123 will be consistent with 11 direction of portion windward to the thrust direction of unmanned plane, and the thrust direction with
First horizontal axis 54 parallel (such as Fig. 7), the thrust that the rotation of tail rotor 33123 at this time will provide advance for unmanned plane, so as to make nothing
Man-machine thrust increase.
It is mobile to the left or to the right for tail rotor 33123, below by way of two embodiments to tail rotor 33123 to the left or
It moves right and is described in detail respectively:
Fig. 5 and Fig. 7 are referred to, the first embodiment.If the rotation of first gear 50 drives second gear 51 clockwise
Since second gear 51 is fixedly connected with third steering engine 473, drive tail rotor 33123 is moved right for rotation.It is achieved thereby that
In flight, landing, tail rotor 33123 can gradually move right unmanned plane, reach 33123 side of moving of change tail rotor
To, and then tail rotor 33123 is controlled the direction of thrust to be made gradually to move right the thrust direction of unmanned plane.
Fig. 7 is referred to, is gradually moved right in tail rotor 33123, and it is perpendicular relative to first to be moved to tail rotor 33123
When the angle that axis 53 moves is 60 °.Tail rotor 33123 to the thrust direction of unmanned plane will to the left, at this time tail rotor 33123 turn
It is dynamic to provide thrust to the left for unmanned plane, change the thrust direction of unmanned plane, so as to change the stressing conditions of unmanned plane entirety.
Refer to Fig. 5, Fig. 7, second of embodiment.If the rotation of first gear 50 drives second gear 51 to turn counterclockwise
It is dynamic, since second gear 51 is fixedly connected with third steering engine 473, drive tail rotor 33123 is moved to the left.It is achieved thereby that
In unmanned plane during flying, landing, tail rotor 33123 can be gradually moved to the left, and reach 33123 direction of motion of change tail rotor,
And then tail rotor 33123 is controlled the direction of thrust to be made gradually to move right the thrust direction of unmanned plane.
Fig. 7 is referred to, is gradually moved to the left in tail rotor 33123, and it is perpendicular relative to first to be moved to tail rotor 33123
When the angle that axis 53 moves is 0 °, tail rotor 33123 will be mutually perpendicular to the first horizontal axis 54.Tail rotor 33123 is to unmanned plane
Thrust direction will be towards portion 11 windward, i.e., to the direction of advance of unmanned plane, the rotation of tail rotor 33123 at this time will be carried for unmanned plane
For the thrust of advance, the thrust direction of unmanned plane is changed, so as to increase the thrust of unmanned plane.
Continuing with referring to Fig. 7, if tail rotor 33123 continues gradually to be moved to the left, and it is moved to 33123 phase of tail rotor
When angle for the movement of the first vertical pivot 53 is 60 °.Tail rotor 33123 will to the right to the thrust direction of unmanned plane, tailspin at this time
Thrust for unmanned plane to the right is changed the thrust direction of unmanned plane by the rotation of the wing 33123, so as to change unmanned plane it is whole by
Power situation.
The present invention provides the embodiment of the power rotor structure applied to unmanned plane.In embodiment provided by the invention,
Power source 40 can include:Engine 41, generator 42, electric pressure converter 43, voltage-stablizer 44, accumulator 45, current divider 46, rudder
Machine 47 and driving motor 48.Power source 40 can be fixed on the outside of the first fuselage 10, the second fuselage 20 or third fuselage 30;
In-flight damage of the rainwater to power source 40 in order to prevent, power source 40 sealed set or can also be directly anchored to the first machine
The inside of body 10, the second fuselage 20 or third fuselage 30.The effect of power source 40 is mainly carried for flight, the landing of unmanned plane
For power.
In embodiment provided by the invention, exist to increase thrust or increase unmanned plane of the unmanned plane in the landing stage
The thrust of mission phase, shortens the departure time of unmanned plane VTOL, and improves flight of the unmanned plane in flight course
Rate.The quantity of power source 40 can be positive integer in unmanned plane, i.e., the quantity of power source 40 can be:1,2,3,
4.
Fig. 2 is referred to, when the quantity of power source 40 is 2, two power sources 40 can symmetrically be distributed in the first machine
The left and right sides of body 10.Since unmanned plane is in landing, flight course, the fuselage of unmanned plane needs to bear multidirectional pressure,
Such as:Gravity, wind direction resistance, stream pressure of unmanned plane itself etc..And the pressure that the fuselage of unmanned plane is born is limited.
If two power sources 40 are all fixed on the left side either right side of the first fuselage 10 of the first fuselage 10, easily increase by first
The pressure that 10 left side of fuselage either the first fuselage, 10 right side is carried, so as to influence the stationarity of complete machine flight.If moreover,
The pressure that one fuselage, 10 left side either the first fuselage, 10 right side is carried is more than itself to bear the limit of pressure, will be occurred
There is situation about being broken in first fuselage, 10 left side either the first fuselage, 10 right side.So in embodiment provided by the invention,
Two power sources 40 are symmetrically distributed in the left and right sides of the first fuselage 10, the steady of unmanned plane itself flight can be improved
Property, and it is more than itself institute that can also prevent by the pressure that 10 left side of the first fuselage either the first fuselage, 10 right side is carried
The limit of pressure is born, and there is a situation where 10 left side of the first fuselage either the first fuselage, 10 right side is broken.
Certainly, it is obvious to one skilled in the art that two power sources 40 can also symmetrically be distributed in the first machine
The left and right sides of body 10, the second fuselage 20 and third fuselage 30, and first can be symmetrically distributed in for two power sources 40
The left and right sides of fuselage 10 is only a kind of embodiment provided in an embodiment of the present invention, is not the limitation to the present invention.It is practical
In operating process, according to actual demand, the quantity for either reducing power source 40 can be increased or change power source 40 it is located at the
The specific location of one fuselage 10, the second fuselage 20 or third fuselage 30, these may also apply to the present invention.
Fig. 9 is referred to, further, engine 41 can be two stroke engine 41, and generator 42 connects with engine 41
It connects;Electric pressure converter 43 can be AC/DC converters, and electric pressure converter 43 is connect with generator 42;Voltage-stablizer 44 includes:First
Voltage stabilizing input port 441, the second voltage stabilizing input port 442 and the first voltage stabilizing delivery outlet 443, the first voltage stabilizing input port 441 turn with voltage
Parallel operation 43 connects, and makes electric pressure converter 43 between the first voltage stabilizing input port 441 and generator 42;Accumulator 45 and
Two voltage stabilizing input ports 442 connect;Current divider 46 can also include:First shunting input port 461, first shunts delivery outlet 462, the
Two shunting delivery outlets 463, third shunting delivery outlet 464 and the 7th shunt delivery outlet 468, the first shunting input port 461 and first
Voltage stabilizing delivery outlet 443 connects;Steering engine 47 includes at least:First steering engine 471, the second steering engine 472 and third steering engine 473, the first rudder
Machine 471 includes at least:First steering engine input port 4711 and the first rotor shaft 4712, the first steering engine input port 4711 and the first shunting
Delivery outlet 462 connects, so as to provide energy, and the first rotor shaft 4712 and first of the first steering engine 471 for the first steering engine 471
Rotor 1211 connects, and is driven by the rotation of the first rotor shaft 4712, carrys out the rotation of the first rotor 1211;Second steering engine 472 wraps
It includes:Second steering engine input port 4721 and the second rotor shaft 4722;Second steering engine input port 4721 connects with the second shunting delivery outlet 463
It connects, so as to provide energy, and the second rotor shaft 4722 of the second steering engine 472 connects with the second rotor 1221 for the second steering engine 472
It connects, by the rotation of the second rotor shaft 4722, to drive the rotation of the second rotor 1221;Third steering engine 473 further includes:Third rudder
Machine input port 4733, third steering engine input port 4733 is connect with the 7th shunting delivery outlet 468, so as to be provided for third steering engine 473
Energy.Driving motor 48 includes at least:First driving motor 481, the first driving motor 481 connect with third shunting delivery outlet 464
It connects, the rotor mechanism 331 of adjustable angle is connect with the first driving motor 481, and makes the first driving motor 481 positioned at third point
It flows between delivery outlet 464 and the rotor mechanism 331 of adjustable angle.
Specifically, engine 41 is that other forms can be converted into mechanical energy;Generator 42 is to produce engine 41
Raw mechanical energy is converted into electric energy;Voltage-stablizer 44 is to maintain the electric energy as caused by generator 42 and is exported after voltage-stablizer 44 surely
Fixed voltage, and accumulator 45 is also connect with voltage-stablizer 44.It is with the effect that voltage-stablizer 44 is connect for accumulator 45:Electric power storage
Pond 45 can be that voltage-stablizer 44 provides electric energy, and voltage-stablizer 44 makes to be exported after voltage-stablizer 44 by the electric energy that accumulator 45 generates steady
Fixed voltage;And if engine 41 or generator 42 break down, and electric energy can not be provided for unmanned plane, and it at this time can be automatic
It is switched to accumulator 45 to power, electric energy is provided for unmanned plane by accumulator 45;If engine 41 or generator 42 can normal works
Make, electric energy can be provided for unmanned plane, then accumulator 45 stops providing electric energy for unmanned plane;Certainly, if electricity occurs in accumulator 45
Power is insufficient, can not provide electric energy for unmanned plane, can be by engine 41 by the normal work of engine 41 or generator 42
Or generator 42 provides electric energy for accumulator 45, so as to supplement the electric energy of accumulator 45.
If only engine 41 and generator 42 is set to provide electric energy for voltage-stablizer 44, when engine 41 or generator 42 occur
Failure, when can not provide electric energy for unmanned plane, unmanned plane in landing or in-flight will be faced with no power resources, and send out
The danger of the raw damage unmanned plane that falls;Or only setting accumulator 45 provides electric energy for voltage-stablizer 44, when electricity occurs in accumulator 45
The failures such as energy deficiency, when can not provide electric energy for unmanned plane, unmanned plane in landing or in-flight will be faced with no power
Source, and the danger for the damage unmanned plane that falls.So electric energy is provided for voltage-stablizer 44 by engine 41 and generator 42, with
And accumulator 45 provides electric energy, and it is voltage-stablizer 44 that this accumulator 45 can mutually switch with generator 42 for voltage-stablizer 44
Electric energy is provided, can overcome unmanned plane awing since generator 42 breaks down or accumulator 45 breaks down, it can not
Electric energy is provided for unmanned plane, makes unmanned plane that will be faced with no power resources, and the technological deficiency for the damage unmanned plane that falls,
Reach the technique effect of the safety, the in-flight stability of power that improve unmanned plane.
Meanwhile the burning voltage that electric pressure converter 43 is exported will enter current divider 46, each shunting of current divider 46 is defeated
Outlet is that electric energy is assigned to each steering engine 47 or driving motor 48, such as:First shunting 462 and first steering engine of delivery outlet
471 input ports connect, so as to provide energy for the first steering engine 471;Second 463 and second steering engine input port 4721 of shunting delivery outlet
Connection, so as to provide energy for the second steering engine 472;Third shunting delivery outlet 464 connect with the first driving motor 481, so as to for
First driving motor 481 provides energy.
In embodiment provided by the invention, engine 41 can be two-stroke aviation piston engine 41, i.e., piston from
The engine 41 of top to bottm, from top to bottom two strokes, since two stroke engine 41 has simple in structure, lighter in weight, fortune
The advantages of dynamic component is few easy to maintain, and power per liter density is big, so as to be suitble to the low latitude of unmanned plane, high speed (reality provided by the invention
The unmanned plane F-Zero for applying example can be 60m/s) flight.Electric pressure converter 43 can be AC/DC converters, and AC/DC turns
Parallel operation is the equipment that alternating current is become to direct current, and AC/DC converters have the AC-DC conversion of better stability, can be nothing
Man-machine offer stable DC, from the stability for improving unmanned mechanomotive force.
Certainly, it is obvious to one skilled in the art that engine 41 can also be started using four stroke aviation pistons
Machine 41.In actual mechanical process, the shunting delivery outlet of current divider 46 can also be set according to actual demand, such as:If nothing
Video camera, automatic flight control system, current divider 46 or video camera, automatic flight control system point are provided on man-machine
With electric energy, the mode (mode including being above steering engine 47, the distribution electric energy of driving motor 48) of the distribution electric energy can be passed through
Conducting wire connects or using wireless power transmission, these may also apply to the present invention.
Fig. 8 is referred to, Fig. 8 is 41 connection relationship diagram of generator 42 and engine provided in an embodiment of the present invention.Institute
Rotor 61 and supply port can be included by stating generator 42, the rotor 61 of the generator 42 can directly with the engine 41
Output shaft 60 be fixedly connected, the end face that the electric machine casing 62 of generator 42 can be directly with 41 housing of engine is fixedly connected.
And the electric pressure converter can with the supply port of the generator 42 (supply port be generator 42 electric energy output
End) connection;Wherein, the rotor 61 can be between the supply port and the output shaft 60.When engine 41 rotates,
Mechanical energy caused by engine 41 can be directly passed to the rotor 61 of generator 42 by the output shaft 60 of engine 41,
Then the rotor 61 of generator 42 is driven to rotate together, the mechanical energy that engine 41 generates is converted by electricity by generator 42
Can, the electric energy of the conversion exports outward from the supply port of generator 42.
The electric energy that the supply port of generator 42 exports outward can be delivered to power unit, which has
Distribute the power to the function of different electrical appliances.What the power distribution unit can export the supply port of generator 42 outward
Electric energy is divided into two parts (abbreviation E1 and E2), and the electric energy of E1 parts can be delivered to battery (can be accumulator), which can
Required electric energy when carrying out VTOL to be provided for aircraft;The electric energy of E2 parts can be conveyed to the winged control system of aircraft respectively
The uses such as system, steering engine, motor, load.
Since the mechanical energy that engine 41 generates can be directly passed to the rotor 61 of generator 42 by output shaft 60, and
And can the mechanical energy that engine 41 generates be converted by electric energy by generator 42, then electric energy is conveyed to by conducting wire winged
Electrical appliance in machine.So as to which the energy that engine 41 generates is converted into conveying by conducting wire by generator 42, to avoid
Loss in energy process produced by engine 41 is conveyed.It should be noted that:Such as above-mentioned first fuselage 10, second
Fuselage 20 and third fuselage 30, the integral body that embodiment provided by the invention provides unmanned plane be by:First fuselage 10,
Two fuselages 20 and third fuselage 30 and form.The fuselage can also include the circuit control system of following unmanned plane, by nobody
The circuit control system of machine carries out the unmanned plane whole control.
Fig. 9 is referred to, further, in embodiment provided by the invention, unmanned plane circuit control system can be down to
Include less:Ground remote control device 56, engine 41, generator 42, electric pressure converter 43, voltage-stablizer 44, stores flight control system 55
Battery 45, current divider 46, the first steering engine 471, the second steering engine 472, third steering engine 473, the driving of the first driving motor 481, second
Motor 482, third driving motor 483, the 4th driving motor 484.Wherein, for engine 41, generator 42, electric pressure converter
43rd, voltage-stablizer 44, accumulator 45, current divider 46, the first steering engine 471, the second steering engine 472, the driving electricity of third steering engine 473, first
Machine 481, the second driving motor 482,483 and the 4th driving motor 484 of third driving motor, as described above in Example.Flight
The ground remote control device 56 on control system 55 and ground carries out signal transmission, and then by being from ground remote control device 56 to flight control
System 55 sends control instruction, and passes through the first steering engine 471, the second steering engine 472, third that flight control system 55 controls unmanned plane
Steering engine 473, the first driving motor 481, the second driving motor 482,483 and the 4th driving motor 484 of third driving motor work
Make state, and then realize and the state of unmanned plane landing, flight is controlled.
It is noted that flight control system 55 mainly passes through turn of the first rotor 1211 in the first steering engine 471 of control
In dynamic speed, the second steering engine 472 in the velocity of rotation of second rotor 1221, third steering engine 473 velocity of rotation of third rotor and
The first driving motor 481 is controlled to pull linkage portion 3312, and then tail rotor 33123 is controlled to be moved up and down relative to the first vertical pivot 53
The angle change and the first driving motor 481 of control of formed angle drive second gear 51 to rotate, and then control tail rotor
33123 move left and right the angle change of formed angle relative to the first vertical pivot 53.Reach and controlled by flight control system 55
The motion state to unmanned plane landing, flight is made, and controls the movement speed of unmanned plane landing, flight.
Advantageous effect:The present invention provides the power rotor structure applied to unmanned plane, by the way that generator and engine are connected
It connects, makes driven by engine generator operation.It converts the voltage into device to connect with generator, the electric energy that generator generates is made to enter voltage
In converter.First voltage stabilizing input port of voltage-stablizer with electric pressure converter is connected, electric pressure converter is made to be arranged on the first voltage stabilizing
Between input port and generator, electric energy is input to voltage-stablizer from electric pressure converter.By the second voltage stabilizing of accumulator and voltage-stablizer
Input port connects, and electric energy is made to enter in accumulator and is stored, more electric energy are provided for unmanned plane.What generator and engine generated
Electric energy can be connected by the first shunting input port of current divider with the first voltage stabilizing delivery outlet of voltage-stablizer;First driving motor
It is connected with the third shunting delivery outlet of current divider, the rotor mechanism of adjustable angle and the connection of the first driving motor make the first driving
Motor is located between third shunting delivery outlet and the rotor mechanism of adjustable angle.And since the first steering engine of the first steering engine inputs
Mouth is connected with the first shunting delivery outlet of current divider, and the first rotor shaft of the first steering engine is connected with the first rotor;Second steering engine
Second steering engine input port is connected with the second shunting delivery outlet of current divider, and the second rotor shaft of the second steering engine and the second rotor connect
It connects.Second rotating vane and the second clump weight will be fixedly connected with the second rotor shaft respectively, match the second rotating vane and second
Pouring weight is symmetrical relative to the second rotor shaft, is in in-flight in unmanned plane, the first rotating vane and the second pivoting leaf can begin
It remains the direction consistent with air-flow eventually, so as to reduce resistance of the air-flow to rotor, overcomes traditional rotor and unmanned plane is flown
Larger interference caused by row.So as to reach the cruise duration and the practicability that promote unmanned plane;Simplify rotor structure, facilitate day
The technique effect often safeguarded.
It should be noted last that more than specific embodiment is merely illustrative of the technical solution of the present invention and unrestricted,
Although the present invention is described in detail with reference to example, it will be understood by those of ordinary skill in the art that, it can be to the present invention
Technical solution be modified or replaced equivalently, without departing from the spirit and scope of technical solution of the present invention, should all cover
In scope of the presently claimed invention.
Claims (8)
1. the power rotor structure applied to unmanned plane, which is characterized in that the power rotor structure packet applied to unmanned plane
It includes:
Engine;
Generator, the generator are connect with the engine;
Electric pressure converter, the electric pressure converter are connect with the generator;
Voltage-stablizer, the voltage-stablizer include the first voltage stabilizing input port, the second voltage stabilizing input port and the first voltage stabilizing delivery outlet;Described
One voltage stabilizing input port is connect with the electric pressure converter, and the electric pressure converter is located at the first voltage stabilizing input port and described
Between generator;
Accumulator, the accumulator are connect with the second voltage stabilizing input port;
Current divider, the current divider include at least:First shunting input port, first shunting delivery outlet, second shunting delivery outlet and
Third shunts delivery outlet;The first shunting input port is connect with the first voltage stabilizing delivery outlet;
Steering engine, the steering engine include at least:First steering engine and the second steering engine;Wherein, first steering engine includes at least:First rudder
Machine input port and the first rotor shaft, the first steering engine input port are connect with the described first shunting delivery outlet;First rotor
Axis is connect with the first rotor;Second steering engine includes at least:Second steering engine input port and the second rotor shaft, second steering engine
Input port is connect with the described second shunting delivery outlet;Second rotor shaft is connect with the second rotor;
Driving motor, the driving motor include at least:First driving motor;First driving motor is shunted with the third
Delivery outlet connects, and the rotor mechanism of adjustable angle is connect with first driving motor, and first driving motor is located at institute
It states between third shunting delivery outlet and the rotor mechanism of the adjustable angle;
First rotor, first rotor include:
First rotating vane, first rotating vane are fixedly connected with first rotor shaft;
First clump weight, first clump weight are fixedly connected with first rotor shaft, and first rotating vane and institute
It is symmetrical relative to first rotor shaft to state the first clump weight;
Second rotor, second rotor include:
Second rotating vane, second rotating vane are fixedly connected with second rotor shaft;
Second clump weight, second clump weight are fixedly connected with second rotor shaft, and second rotating vane and institute
It is symmetrical relative to second rotor shaft to state the second clump weight.
2. it is applied to the power rotor structure of unmanned plane as described in claim 1, it is characterised in that:
The making material of first clump weight is rigid material.
3. it is applied to the power rotor structure of unmanned plane as claimed in claim 2, it is characterised in that:
The making material of second clump weight is rigid material.
4. it is applied to the power rotor structure of unmanned plane as claimed in claim 3, it is characterised in that:
First rotating vane is single blade blade.
5. it is applied to the power rotor structure of unmanned plane as claimed in claim 4, it is characterised in that:
Second rotating vane is single blade blade.
6. it is applied to the power rotor structure of unmanned plane as claimed in claim 5, which is characterized in that first rotating vane
Be fixedly connected with first rotor shaft including:
First rotor shaft and the rotational plane of first rotating vane are perpendicular.
7. it is applied to the power rotor structure of unmanned plane as claimed in claim 6, which is characterized in that second rotating vane
Be fixedly connected with second rotor shaft including:
Second rotor shaft and the rotational plane of second rotating vane are perpendicular.
8. the use as claimed in claim 7 in the power rotor structure of unmanned plane, which is characterized in that the generator with it is described
Engine connection includes:
The rotor of the generator is fixedly connected with the output shaft of the engine;
Wherein, the electric pressure converter is connected with the supply port of the generator, and the rotor is located at the supply port
Between the output shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711241617.2A CN108190016A (en) | 2017-11-30 | 2017-11-30 | Power rotor structure applied to unmanned plane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711241617.2A CN108190016A (en) | 2017-11-30 | 2017-11-30 | Power rotor structure applied to unmanned plane |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108190016A true CN108190016A (en) | 2018-06-22 |
Family
ID=62573262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711241617.2A Pending CN108190016A (en) | 2017-11-30 | 2017-11-30 | Power rotor structure applied to unmanned plane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108190016A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109896022A (en) * | 2019-03-28 | 2019-06-18 | 河南机电职业学院 | A kind of light-duty unmanned plane high-pressure pneumatic accelerated take-off device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1907806A (en) * | 2005-08-02 | 2007-02-07 | 韩培洲 | helicopter with tilted front rotary wing |
US9334049B1 (en) * | 2014-12-03 | 2016-05-10 | Amazon Technologies, Inc. | Single blade rotor system for use in a vertical takeoff and landing (VTOL) aircraft |
CN105683041A (en) * | 2013-08-29 | 2016-06-15 | 空中客车防卫和太空有限责任公司 | Aircraft capable of vertical take-off |
CN205440869U (en) * | 2016-03-31 | 2016-08-10 | 西安东锐航空科技有限公司 | Fixed chord flight time aircraft of canard configuration of VTOL |
CN206288237U (en) * | 2016-12-09 | 2017-06-30 | 西安通飞航空科技有限责任公司 | Can VTOL Fixed Wing AirVehicle |
CN107042884A (en) * | 2017-03-18 | 2017-08-15 | 北京天宇新超航空科技有限公司 | A kind of tilting rotor wing unmanned aerial vehicle |
CN206645007U (en) * | 2016-12-09 | 2017-11-17 | 上海圣尧智能科技有限公司 | Aircraft |
-
2017
- 2017-11-30 CN CN201711241617.2A patent/CN108190016A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1907806A (en) * | 2005-08-02 | 2007-02-07 | 韩培洲 | helicopter with tilted front rotary wing |
CN105683041A (en) * | 2013-08-29 | 2016-06-15 | 空中客车防卫和太空有限责任公司 | Aircraft capable of vertical take-off |
US9334049B1 (en) * | 2014-12-03 | 2016-05-10 | Amazon Technologies, Inc. | Single blade rotor system for use in a vertical takeoff and landing (VTOL) aircraft |
CN205440869U (en) * | 2016-03-31 | 2016-08-10 | 西安东锐航空科技有限公司 | Fixed chord flight time aircraft of canard configuration of VTOL |
CN206288237U (en) * | 2016-12-09 | 2017-06-30 | 西安通飞航空科技有限责任公司 | Can VTOL Fixed Wing AirVehicle |
CN206645007U (en) * | 2016-12-09 | 2017-11-17 | 上海圣尧智能科技有限公司 | Aircraft |
CN107042884A (en) * | 2017-03-18 | 2017-08-15 | 北京天宇新超航空科技有限公司 | A kind of tilting rotor wing unmanned aerial vehicle |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109896022A (en) * | 2019-03-28 | 2019-06-18 | 河南机电职业学院 | A kind of light-duty unmanned plane high-pressure pneumatic accelerated take-off device |
CN109896022B (en) * | 2019-03-28 | 2023-12-08 | 河南机电职业学院 | High-pressure pneumatic booster take-off device of light unmanned aerial vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013376864B2 (en) | Vertical takeoff and landing aircraft | |
CN104816823A (en) | Duct rotary wing aircraft | |
CN105228904A (en) | For the kinetic energy of aircraft and potential energy being fetched and changing the system of electric energy into | |
CN208746231U (en) | A kind of distribution shrouded propeller power vertical take-off and landing drone | |
CN106184736A (en) | The compound aircraft that a kind of fixed-wing forms with many rotors | |
CN108528714A (en) | Adjustable rotor engine head device for fixed-wing unmanned plane | |
CN207773463U (en) | Power source system applied to unmanned plane | |
CN108190016A (en) | Power rotor structure applied to unmanned plane | |
CN108216614A (en) | The power wingtip device of adjustable angle applied to unmanned plane | |
CN108190014A (en) | Wing tip fuselage applied to unmanned plane | |
CN108216612A (en) | Unmanned plane | |
CN108216611A (en) | Rotor structure applied to unmanned plane | |
CN108216615A (en) | Wing tip rotor applied to unmanned plane | |
CN108190015A (en) | The rotor fuselage of adjustable angle applied to unmanned plane | |
CN208264560U (en) | Power wing tip structure applied to unmanned plane | |
CN207773437U (en) | The rotor structure of adjustable angle applied to unmanned plane | |
CN207748008U (en) | A kind of airframe structure applied to unmanned plane | |
CN208134599U (en) | Wing tip structure applied to unmanned plane | |
CN207748003U (en) | Fuselage device applied to unmanned plane | |
CN106965921A (en) | Fixed-wing and the integral unmanned aerial vehicle of many rotors | |
CN108146631A (en) | The rotor power device of adjustable angle applied to unmanned plane | |
CN108146630A (en) | The power rotor structure of adjustable angle applied to unmanned plane | |
CN208264561U (en) | The rotor driver of adjustable angle applied to unmanned plane | |
CN207748011U (en) | Rotor driver applied to unmanned plane | |
CN208021716U (en) | Adjustable rotary wing mechanism for fixed-wing unmanned plane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180622 |