CN108182987B - 一种透明导电wc薄膜及其室温生长方法 - Google Patents

一种透明导电wc薄膜及其室温生长方法 Download PDF

Info

Publication number
CN108182987B
CN108182987B CN201711433026.5A CN201711433026A CN108182987B CN 108182987 B CN108182987 B CN 108182987B CN 201711433026 A CN201711433026 A CN 201711433026A CN 108182987 B CN108182987 B CN 108182987B
Authority
CN
China
Prior art keywords
film
electrically conducting
conducting transparent
room temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711433026.5A
Other languages
English (en)
Other versions
CN108182987A (zh
Inventor
吕建国
胡睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711433026.5A priority Critical patent/CN108182987B/zh
Publication of CN108182987A publication Critical patent/CN108182987A/zh
Application granted granted Critical
Publication of CN108182987B publication Critical patent/CN108182987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明公开了一种透明导电WC薄膜,该WC薄膜的基体为非晶态,在非晶态基体中无序分布着高密度的结晶态的WC微晶,WC微晶尺寸约5nm,为六方相结构;WC薄膜可见光透射率高达85%,电阻率低至4.7×10–3Ωcm;WC薄膜中的W:C的原子百分比为53.1:46.9;透明导电WC薄膜的显微硬度为21GPa。本发明还公开了该WC薄膜的制备方法:采用射频磁控溅射方法,以WC合金为靶材,Ar‑CH4为工作气体;当反应室抽至本底真空度高于1×10–4Pa后,通入Ar‑CH4混合气体,WC薄膜在Ar和CH4的等离子体气氛中室温生长;在沉积过程中采用汞灯照射衬底,汞灯的波长为185 nm和254 nm。通过等离子体增强和紫外增强的双重作用,提高室温生长WC薄膜的结晶质量。

Description

一种透明导电WC薄膜及其室温生长方法
技术领域
本发明属于碳化物半导体技术领域,尤其涉及一种透明导电WC准晶态薄膜及其室温生长方法。
背景技术
碳化钨(WC)是一种典型的硬质合金材料,为简单六方结构,六方WC直到3049K的温度下都是稳定的。WC具有非常优异的物理和化学性能,如高硬度,高耐磨,热稳定性和化学稳定性好,抗氧化性好,热膨胀系数低,弹性模量高,具有一定程度的塑性,并且WC被大多数粘结相浸润的性能优于其它碳化物,且比其它碳化物韧性好。此外,WC还具有高导热性和高导电性,有利于切削应用。鉴于上述优点,WC作为一种硬质耐磨涂层,广泛应用于国防军工、航空航天、冶金、石化、电力、交通运输、水利、海洋开发等军事和民用工业领域,成为解决重要零部件耐磨耐蚀与防护的关键技术。目前,WC硬质合金涂层的主流制备技术是热喷涂方法,包括:等离子体喷涂、火焰喷涂、电弧喷涂、爆炸喷涂和超音速喷涂等。
WC除了作为硬质合金应用外,它还是一种微电子材料,可在微电子领域有广阔的应用前景,如作为微电子器件的扩散阻挡层、透明导电薄膜等。WC薄膜有晶态和非晶态两种,晶态WC具有更好的导热和导电特性,非晶态WC可具有更高的表面平整度和均匀性,二者各具优势,在微电子领域均有较广阔的应用前景。目前,人们对WC的研究和开发主要集中于硬质合金领域,而对WC在微电子和光电子领域的研究很少。
在微电子和光电子领域,物理气相沉积(PVD)是一类广泛应用的生长技术,其中比较典型的是磁控溅射。采用磁控溅射制备WC薄膜,通常,在600℃以上可生长出晶态WC薄膜,低于600℃一般得到的是非晶WC薄膜,室温下生长的为高阻非晶WC薄膜。若能在室温条件下制备出具有优良光电性能的WC薄膜,不仅可以减少工艺过程,节约生长时间和能耗,而且可以拓展WC薄膜的应用领域,如适用于有机聚合物柔性基板等。
基于WC薄膜的研发现状,我们提出一种室温条件下生长WC薄膜的方法,采用磁控溅射方法,制备出在非晶基体上分布有微晶的WC薄膜,不仅具有高表面平整度,而且具有良好的透明导电特性,同时具有硬质合金的特性,还可形成柔性WC薄膜,可在微电子和光电子领域获得广泛应用。
发明内容
本发明的目的是为了拓展WC材料应用领域,提供一种透明导电WC薄膜及其室温生长方法。
本发明提供了一种透明导电WC薄膜,该WC薄膜的基体为非晶态,在非晶态基体中无序分布着高密度的结晶态的WC微晶,WC微晶尺寸约5nm,为六方相结构;WC薄膜可见光透射率高达85%,电阻率低至4.7×10–3Ωcm;WC薄膜中的W:C的原子百分比为53.1:46.9;透明导电WC薄膜的显微硬度为21GPa。
本发明还提供了一种透明导电WC薄膜的制备方法:采用射频磁控溅射方法,以高纯WC合金为靶材,Ar-CH4为工作气体;衬底在使用前由Ar等离子体轰击处理;当反应室抽至本底真空度高于1×10–4Pa后,通入Ar-CH4混合气体,沉积过程中气体压强保持在1.0 Pa,混合气体中CH4含量(以压强计)为6%;WC薄膜在Ar和CH4的等离子体气氛中生长;在沉积过程中采用汞灯照射衬底,汞灯的两个主要发光波长为185 nm(约占10%)和254 nm(约占90%);靶材旋转速率为30转/分钟,衬底旋转速率为40转/分钟;WC薄膜生长温度为室温。等离子体增强和紫外增强的双重作用,可以有助于提高室温生长WC薄膜的结晶质量。
上述制备方法中,可采用各种类型、尺寸和形状的固态衬底,包括但不限于玻璃、石英、PET和Si衬底。
上述工艺参数为发明人经多次试验确立的,需要严格和精确控制,在发明人的实验中若超出上述工艺参数的范围,则无法在室温下生长出符合要求的透明导电WC薄膜。
本发明的有益效果在于:
1)本发明的透明导电WC薄膜,C的原子百分含量为46.5%~47.2%,接近于WC的1:1的化学计量比,WC薄膜的基体为非晶态,在非晶态基体中无序分布着结晶态的WC微晶,WC微晶为六方相结构,这些准晶态的结构使所得的WC薄膜不仅具有非晶薄膜的高表面平整度和均匀性,还具有晶态薄膜的良好的透明和导电特性,因而具有优良的综合性能。
2)本发明的透明导电WC薄膜可见光透射率高于83%,电阻率低于7.9×10–3Ωcm,性能优良,可在发光二极管、太阳电池、透明显示、集成电路等微电子和光电子领域获得应用。
3)本发明的透明导电WC薄膜,显微硬度高于21GPa,是一种兼具透明导电和硬质合金两方面性能的功能薄膜,以透明导电WC薄膜为功能层所制备的器件,具有良好的耐磨和耐蚀特性,从而可拓展微电子和光电子器件在恶劣环境中的应用。
4)本发明所采用的磁控溅射方法,广泛应用于各工业领域,具有较低的沉积温度和较高的沉积速率,所形成的薄膜致密,且厚度可控,磁控溅射方法工艺参数可控性强,可实现透明导电WC晶态薄膜结构和光电性能的有效调控。
5)本发明采用等离子体增强和紫外增强的双重作用,有效提高了WC薄膜的结晶质量,在室温下生长的WC薄膜,非晶基体中已经出现了高密度的结晶态的WC微晶。
6)本发明所提供的制备方法工艺简单,制作成本低,易于操作,而且在室温下生长,节约制程时间和能耗,可实现大规模应用和产业化。
附图说明
图1为实施例制得的以玻璃为衬底的透明导电WC薄膜的X射线衍射(XRD)曲线。
图2为实施例制得的以石英为衬底的透明导电WC薄膜的扫描电子显微镜(SEM)图。
图3为实施例制得的以石英为衬底的透明导电WC薄膜的透射电子显微镜(TEM)图。
图4为实施例制得的以PET为衬底的透明导电WC薄膜的光学照片。
具体实施方式
以下结合附图及具体实施例进一步说明本发明。
本发明提供了一种透明导电WC薄膜的制备方法:采用射频磁控溅射方法,以高纯WC合金为靶材,Ar-CH4为工作气体;分别以玻璃、石英、PET或Si为衬底,在使用前由Ar等离子体轰击处理;当反应室抽至本底真空度高于1×10–4Pa后,通入Ar-CH4混合气体,沉积过程中气体压强保持在1.0 Pa,混合气体中CH4含量(以压强计)为6%;在沉积过程中采用汞灯照射衬底,汞灯的两个主要发光波长为185 nm(约占10%)和254 nm(约占90%);靶材旋转速率为30转/分钟,衬底旋转速率为40转/分钟。WC薄膜在Ar和CH4的等离子体气氛中和紫外(UV)照射下,在室温下生长。
对制得的WC薄膜进行XRD、X射线能谱(EDX)、SEM、TEM、紫外-可见光分光光谱、Hall及显微硬度测试,测试结果为:
附图1为以玻璃为衬底制得的WC薄膜的XRD图,上图为测试得到的XRD图谱,下图为JCPDS卡片25-1047给出的WC标准衍射谱线。所得的WC薄膜没有明显的衍射峰,仅有宽化的馒头峰存在,表明材料基体为无序态或非晶态;对比JCPDS卡片,可知该宽化峰与六方WC(100) 谱线吻合,表明材料基体为WC,且存在结晶态的WC相。
以玻璃为衬底制得的WC薄膜为例,测试得到WC薄膜可见光透射率高达85%,电阻率低至4.7×10–3Ωcm,WC薄膜中的W:C的原子百分比为53.1:46.9。
附图2为以石英为衬底制得的WC薄膜的平面SEM图,插图为断面SEM图。SEM图显示:WC薄膜厚度约390nm,表面平整,形貌均一,没有明显的裂纹和孔洞。这些特征符合非晶态薄膜的特征,说明所得薄膜基体为非晶态,其中存在的结晶态WC相颗粒细小。
附图3为以石英为衬底制得的WC薄膜的TEM图。TEM图显示:在WC薄膜的非晶基体中,无序分布着高密度的结晶态的WC微晶,WC微晶尺寸约5nm,为六方相结构;
附图4为以PET为衬底制得的WC薄膜的光学照片。可以看到,WC具有高透明度,且可弯曲,可折叠,是一种柔性薄膜。
以Si片为衬底,对制得的WC薄膜进行显微硬度测试,测得WC薄膜的显微硬度为21GPa。

Claims (5)

1.一种透明导电WC薄膜,其特征在于:所述WC薄膜的基体为非晶态WC,在非晶态WC基体中无序分布着高密度的结晶态的WC微晶,为六方相结构;所述WC薄膜中的W:C的原子百分比为53.1:46.9。
2.根据权利要求1所述一种透明导电WC薄膜,其特征在于:所述WC微晶尺寸5nm。
3.根据权利要求1所述一种透明导电WC薄膜,其特征在于:所述WC薄膜可见光透射率达85%,电阻率低至4.7×10–3Ωcm。
4.根据权利要求1所述一种透明导电WC薄膜,其特征在于:所述WC薄膜的显微硬度为21GPa。
5.制备权利要求1~4任一项所述一种透明导电WC薄膜的方法,采用射频磁控溅射方法,其特征在于,包含如下步骤:
以WC合金为靶材,Ar-CH4为工作气体;衬底在使用前由Ar等离子体轰击处理;当反应室抽至本底真空度高于1×10–4Pa后,通入Ar-CH4混合气体,沉积过程中气体压强保持在1.0Pa;以压强计,混合气体中CH4含量为6%;所述WC薄膜在Ar和CH4的等离子体气氛中室温生长;生长过程中,靶材旋转速率为30转/分钟,衬底旋转速率为40转/分钟;同时在沉积过程中采用汞灯照射衬底,汞灯的发光波长包括185nm和254nm,其中波长185nm的占10%,波长254nm的占90%。
CN201711433026.5A 2017-12-26 2017-12-26 一种透明导电wc薄膜及其室温生长方法 Active CN108182987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711433026.5A CN108182987B (zh) 2017-12-26 2017-12-26 一种透明导电wc薄膜及其室温生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711433026.5A CN108182987B (zh) 2017-12-26 2017-12-26 一种透明导电wc薄膜及其室温生长方法

Publications (2)

Publication Number Publication Date
CN108182987A CN108182987A (zh) 2018-06-19
CN108182987B true CN108182987B (zh) 2019-11-19

Family

ID=62547062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711433026.5A Active CN108182987B (zh) 2017-12-26 2017-12-26 一种透明导电wc薄膜及其室温生长方法

Country Status (1)

Country Link
CN (1) CN108182987B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905974A (zh) * 2004-01-30 2007-01-31 三菱麻铁里亚尔株式会社 表面包覆超硬合金制切削工具及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905974A (zh) * 2004-01-30 2007-01-31 三菱麻铁里亚尔株式会社 表面包覆超硬合金制切削工具及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Crystal structure, morphology and composition of magnetron sputtered tungsten carbide films;G. Keller等;《Analytical Chemistre》;19910531;第341卷(第5期);第349-352页 *
Deposition and some properties of nanocrystalline WC and nanocomposite WCya-C:H coatings;A. Czyzniewski;《Thin Solid Films》;20030602;第433卷(第1期);第180-185页 *
磁控溅射法制备碳化钨薄膜的研究及应用进展;郑华均等;《浙江化工》;20150120;第36卷(第1期);第33-36页 *

Also Published As

Publication number Publication date
CN108182987A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
Fang et al. Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering
Fang et al. Fabrication and characterization of transparent conductive ZnO: Al thin films prepared by direct current magnetron sputtering with highly conductive ZnO (ZnAl2O4) ceramic target
Fang et al. Effect of vacuum annealing on the properties of transparent conductive AZO thin films prepared by dc magnetron sputtering
Shakiba et al. Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film
Chuang ITO films prepared by long-throw magnetron sputtering without oxygen partial pressure
Sreedhar et al. Improved physical properties of Al-doped ZnO thin films deposited by unbalanced RF magnetron sputtering
Lee et al. Inverted bulk-heterojunction polymer solar cells using a sputter-deposited Al-doped ZnO electron transport layer
Nguyen et al. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering
Chiang et al. Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications
CN105316634A (zh) 一种Cr-B-C-N纳米复合薄膜的制备方法
Hameed et al. Structural and Nanomechanical Properties of Cu (In x Ga1–x) Se2 Thin Films Fabricated by One-Step Sputtering
Zhang et al. Optimization of Al-doped ZnO films by RF magnetron sputtering at room temperature for Cu (In, Ga) Se2 solar cells
CN108182987B (zh) 一种透明导电wc薄膜及其室温生长方法
Chua et al. High-rate, room temperature plasma-enhanced deposition of aluminum-doped zinc oxide nanofilms for solar cell applications
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
Sikkens et al. The development of high performance, low cost solar-selective absorbers
Liu et al. A transparent and conductive film prepared by RF magnetron cosputtering system at room temperature
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
Qian et al. Effect of sputtering conditions on growth and properties of ZnO: Al films
Liu et al. Reactive sputtering preparation of CuInS2 thin films and their optical and electrical characteristics
CN108130517B (zh) 一种透明导电wc晶态薄膜及其制备方法
Sun et al. Effects of annealing time on the structural and optoelectronic properties of p-type conductive transparent Cu–Cr–O films
Feng et al. Microstructure, hardness and corrosion resistance of ZrN films prepared by inductively coupled plasma enhanced RF magnetron sputtering
Fang et al. Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode
Akhmedov et al. ZnO-based nanocrystalline films obtained in a single vacuum cycle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant