CN108181809A - Miso紧格式无模型控制器基于系统误差的参数自整定方法 - Google Patents

Miso紧格式无模型控制器基于系统误差的参数自整定方法 Download PDF

Info

Publication number
CN108181809A
CN108181809A CN201711325704.6A CN201711325704A CN108181809A CN 108181809 A CN108181809 A CN 108181809A CN 201711325704 A CN201711325704 A CN 201711325704A CN 108181809 A CN108181809 A CN 108181809A
Authority
CN
China
Prior art keywords
miso
systematic error
tight
form non
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711325704.6A
Other languages
English (en)
Other versions
CN108181809B (zh
Inventor
卢建刚
李雪园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711325704.6A priority Critical patent/CN108181809B/zh
Publication of CN108181809A publication Critical patent/CN108181809A/zh
Application granted granted Critical
Publication of CN108181809B publication Critical patent/CN108181809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种MISO紧格式无模型控制器基于系统误差的参数自整定方法,利用系统误差集作为BP神经网络的输入,BP神经网络进行前向计算并通过输出层输出惩罚因子、步长因子等MISO紧格式无模型控制器待整定参数,采用MISO紧格式无模型控制器的控制算法计算得到针对被控对象的控制输入向量,以系统误差函数的值最小化为目标,采用梯度下降法,并结合控制输入分别针对各个待整定参数的梯度信息集,进行系统误差反向传播计算,在线实时更新BP神经网络的隐含层权系数、输出层权系数,实现控制器基于系统误差的参数自整定。本发明提出的MISO紧格式无模型控制器基于系统误差的参数自整定方法,能有效克服控制器参数的在线整定难题,对MISO系统具有良好的控制效果。

Description

MISO紧格式无模型控制器基于系统误差的参数自整定方法
技术领域
本发明属于自动化控制领域,尤其是涉及一种MISO紧格式无模型控制器基于系统误差的参数自整定方法。
背景技术
MISO(Multiple Input and Single Output,多输入单输出)系统的控制问题,一直以来都是自动化控制领域所面临的重大挑战之一。
MISO控制器的现有实现方法中包括MISO紧格式无模型控制器。MISO紧格式无模型控制器是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于MISO 被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,对未知非线性时变MISO系统也能够进行很好的控制,具有良好的应用前景。MISO 紧格式无模型控制器的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第95页)中提出,其控制算法如下:
其中,u(k)为k时刻的控制输入向量,u(k)=[u1(k),…,um(k)]T,m为控制输入个数;e(k)为 k时刻的系统误差;为k时刻的MISO系统伪梯度估计值的行矩阵,为行矩阵的2范数;λ为惩罚因子,ρ为步长因子。
然而,MISO紧格式无模型控制器在实际投用前需要依赖经验知识来事先设定惩罚因子λ和步长因子ρ等参数的数值,在实际投用过程中也尚未实现惩罚因子λ和步长因子ρ等参数的在线自整定。参数有效整定手段的缺乏,不仅使MISO紧格式无模型控制器的使用调试过程费时费力,而且有时还会严重影响MISO紧格式无模型控制器的控制效果,制约了MISO 紧格式无模型控制器的推广应用。也就是说:MISO紧格式无模型控制器在实际投用过程中还需要解决在线自整定参数的难题。
为此,为了打破制约MISO紧格式无模型控制器推广应用的瓶颈,本发明提出了一种 MISO紧格式无模型控制器基于系统误差的参数自整定方法。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于,提供一种MISO紧格式无模型控制器基于系统误差的参数自整定方法。
为此,本发明的上述目的通过以下技术方案来实现,包括以下步骤:
步骤(1):针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO(MultipleInput and Single Output,多输入单输出)系统,采用MISO紧格式无模型控制器进行控制;所述MISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定MISO紧格式无模型控制器待整定参数,所述MISO紧格式无模型控制器待整定参数,为所述MISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;确定 BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述MISO紧格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;
步骤(2):将当前时刻记为k时刻;
步骤(3):基于系统输出期望值与系统输出实际值,采用系统误差计算函数计算得到k 时刻的系统误差,记为e(k);将所述系统误差及其函数组、系统输出期望值、系统输出实际值的任意之一或任意种组合,放入集合{系统误差集};
步骤(4):将步骤(3)得到的所述集合{系统误差集}作为BP神经网络的输入,所述BP神经网络进行前向计算,计算结果通过所述BP神经网络的输出层输出,得到所述MISO 紧格式无模型控制器待整定参数的值;
步骤(5):基于步骤(3)得到的所述系统误差e(k)、步骤(4)得到的所述MISO紧格式无模型控制器待整定参数的值,采用MISO紧格式无模型控制器的控制算法,计算得到 MISO紧格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T
步骤(6):针对步骤(5)得到的所述控制输入向量u(k)中的第j个控制输入uj(k)(1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO紧格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:
当所述MISO紧格式无模型控制器待整定参数中包含惩罚因子λ时,所述第j个控制输入uj(k)针对所述惩罚因子λ在k时刻的梯度信息为:
其中,为k时刻的MISO系统伪梯度估计值的行矩阵,为行矩阵的第j个梯度分量估计值,为行矩阵的2范数;
上述全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};
针对步骤(5)得到的所述控制输入向量u(k)中的其他m-1个控制输入,重复执行本步骤,直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合,然后进入步骤(7);
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述集合{梯度信息集},进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;
步骤(8):所述控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。
在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术方案:
所述步骤(3)中的所述系统误差计算函数的自变量包含系统输出期望值与系统输出实际值。
所述步骤(3)中的所述系统误差计算函数采用e(k)=y*(k)-y(k),其中y*(k)为k时刻设定的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值;或者采用 e(k)=y*(k+1)-y(k),其中y*(k+1)为k+1时刻的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值。
所述步骤(3)中的所述系统误差及其函数组,包含k时刻的系统误差e(k)、k时刻及之前所有时刻的系统误差的累积即k时刻系统误差e(k)的一阶后向差分e(k)-e(k-1)、 k时刻系统误差e(k)的二阶后向差分e(k)-2e(k-1)+e(k-2)、k时刻系统误差e(k)的高阶后向差分的任意之一或任意种组合。
所述步骤(7)中的所述系统误差函数的自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合。
所述步骤(7)中的所述系统误差函数为其中,e(k)为系统误差,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于0的常数,1≤j≤m。
本发明提供的MISO紧格式无模型控制器基于系统误差的参数自整定方法,能够实现良好的控制效果,并有效克服惩罚因子λ和步长因子ρ1,…,ρL需要费时费力进行整定的难题。
附图说明
图1为本发明的原理框图;
图2为本发明采用的BP神经网络结构示意图;
图3为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的控制效果图;
图4为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的控制输入图;
图5为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的惩罚因子λ变化曲线;
图6为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的步长因子ρ变化曲线;
图7为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ自整定时的控制效果图;
图8为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ自整定时的控制输入图;
图9为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ自整定时的步长因子ρ变化曲线。
具体实施方式
下面结合附图和具体实施例对本发明进一步说明。
图1给出了本发明的原理框图。针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO系统,采用MISO紧格式无模型控制器进行控制;MISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定MISO紧格式无模型控制器待整定参数,其为所述MISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;在图1中,MISO紧格式无模型控制器待整定参数为惩罚因子λ和步长因子ρ;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,其中输出层节点数不少于MISO紧格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数。
将当前时刻记为k时刻;将系统输出期望值y*(k)与系统输出实际值y(k)之差作为k时刻的系统误差e(k),然后将k时刻的系统误差e(k)、k时刻及之前所有时刻的系统误差的累积即k时刻系统误差e(k)的一阶后向差分e(k)-e(k-1)的组合,放入集合{系统误差集};将集合{系统误差集}作为BP神经网络的输入,BP神经网络进行前向计算,计算结果通过BP神经网络的输出层输出,得到MISO紧格式无模型控制器待整定参数的值;基于所述系统误差e(k)、所述MISO紧格式无模型控制器待整定参数的值,采用MISO紧格式无模型控制器的控制算法,计算得到MISO紧格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T;针对控制输入向量u(k)中的第j个控制输入uj(k) (1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO紧格式无模型控制器待整定参数在k时刻的梯度信息,并将全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};针对控制输入向量u(k)中的其他m-1个控制输入,重复执行直至集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合;随后,结合所述集合{梯度信息集},以系统误差函数的值最小化为目标,图1中以e2(k)最小化为目标,采用梯度下降法,进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP 神经网络进行前向计算时的隐含层权系数、输出层权系数;控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,然后重复执行本段落所述的工作,进行后一时刻的MISO紧格式无模型控制器基于系统误差的参数自整定过程。
图2给出了本发明采用的BP神经网络结构示意图。BP神经网络可以采用隐含层为单层的结构,也可以采用隐含层为多层的结构。在图2的示意图中,为简明起见,BP神经网络采用了隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为3个,隐含层节点数设为6个,输出层节点数设为待整定参数个数(图2中待整定参数个数为2个)。输入层的3个节点,与系统误差e(k)、系统误差的累积系统误差e(k)的一阶后向差分e(k)-e(k-1)分别对应。输出层的节点,与惩罚因子λ和步长因子ρ分别对应。BP神经网络的隐含层权系数、输出层权系数的更新过程具体为:以系统误差函数的值最小化为目标,图2中以e2(k)最小化为目标,采用梯度下降法,结合所述集合{梯度信息集},进行系统误差反向传播计算,从而更新BP神经网络的隐含层权系数、输出层权系数。
以下是本发明的一个具体实施例。
被控对象为典型非线性的两输入单输出MISO系统:
系统输出期望值y*(k)如下:
y*(k)=(-1)round((k-1)/100)
在本具体实施例中,m=2。
BP神经网络采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为3个,隐含层节点数设为6个,输出层节点数设为待整定参数个数。
针对上述具体实施例,共进行了两组试验验证。
第一组试验验证时,图2中BP神经网络的输出层节点数预设为2个,对惩罚因子λ和步长因子ρ进行同时自整定,图3为控制效果图,图4为控制输入图,图5为惩罚因子λ变化曲线,图6为步长因子ρ变化曲线。结果表明,本发明的方法通过对惩罚因子λ和步长因子ρ进行同时自整定,能够实现良好的控制效果,并且可以有效克服惩罚因子λ和步长因子ρ需要费时费力进行整定的难题。
第二组试验验证时,图2中BP神经网络的输出层节点数为1个,首先将惩罚因子λ固定取值为第一组试验验证时惩罚因子λ的平均值,然后对步长因子ρ进行自整定,图7为控制效果图,图8为控制输入图,图9为步长因子ρ变化曲线。结果同样表明,本发明的方法在惩罚因子λ固定时通过对步长因子ρ进行自整定,能够实现良好的控制效果,并且可以有效克服步长因子ρ需要费时费力进行整定的难题。
应该特别指出的是,在上述具体实施例中,将系统输出期望值y*(k)与系统输出实际值 y(k)之差作为系统误差e(k),也就是e(k)=y*(k)-y(k),仅为所述系统误差计算函数中的一种方法;也可以将k+1时刻的系统输出期望值y*(k+1)与k时刻的系统输出实际值y(k)之差作为系统误差e(k),也就是e(k)=y*(k+1)-y(k);所述系统误差计算函数还可以采用自变量包含系统输出期望值与系统输出实际值的其它计算方法,举例来说, 对上述具体实施例的被控对象而言,采用上述不同的系统误差计算函数,都能够实现良好的控制效果。
还应该特别指出的是,在上述具体实施例中,作为BP神经网络输入的集合{系统误差集} 选择了系统误差e(k)、系统误差的累积系统误差e(k)的一阶后向差分e(k)-e(k-1) 的组合,仅为其中一种组合;所述集合{系统误差集}还可以采用其他组合,举例来说,为系统误差e(k)、系统误差的累积即系统误差e(k)的一阶后向差分e(k)-e(k-1)、系统误差e(k)的二阶后向差分e(k)-2e(k-1)+e(k-2)、系统误差e(k)的三阶或四阶或更高阶的后向差分等函数的任意之一或任意种组合。对上述具体实施例的被控对象而言,采用上述不同的集合{系统误差集},都能够实现良好的控制效果。
更应该特别指出的是,在上述具体实施例中,在以系统误差函数的值最小化为目标来更新BP神经网络的隐含层权系数、输出层权系数时,所述系统误差函数采用e2(k),仅为所述系统误差函数中的一种函数;所述系统误差函数还可以采用自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合的其他函数,举例来说,系统误差函数采用(y*(k)-y(k))2或(y*(k+1)-y(k))2,也就是采用e2(k)的另一种函数形式;再举例来说,系统误差函数采用其中,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于 0的常数,1≤j≤m;显然,当bj均等于0时,系统误差函数仅考虑了e2(k)的贡献,表明最小化的目标是系统误差最小,也就是追求精度高;而当bj大于0时,系统误差函数同时考虑e2(k)的贡献和的贡献,表明最小化的目标在追求系统误差小的同时,还追求控制输入变化小,也就是既追求精度高又追求操纵稳。对上述具体实施例的被控对象而言,采用上述不同的系统误差函数,都能够实现良好的控制效果;与系统误差函数仅考虑e2(k)贡献时的控制效果相比,在系统误差函数同时考虑e2(k)的贡献和的贡献时其控制精度略有降低而其操纵平稳性则有提高。
最后应该特别指出的是,所述MISO紧格式无模型控制器待整定参数,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;在上述具体实施例中,第一组试验验证时惩罚因子λ和步长因子ρ实现了同时自整定,第二组试验验证时惩罚因子λ固定而步长因子ρ实现了自整定;在实际应用时,还可以根据具体情况,选择待整定参数的任意种组合,举例来说,步长因子ρ固定而惩罚因子λ实现自整定;此外,MISO紧格式无模型控制器待整定参数,包括但不限于惩罚因子λ和步长因子ρ,举例来说,根据具体情况,还可以包括MISO系统伪梯度估计值的行矩阵等参数。
上述具体实施方式用来解释说明本发明,仅为本发明的优选实施例,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换、改进等,都落入本发明的保护范围。

Claims (6)

1.MISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于包括以下步骤:
步骤(1):针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO(MultipleInput and Single Output,多输入单输出)系统,采用MISO紧格式无模型控制器进行控制;所述MISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定MISO紧格式无模型控制器待整定参数,所述MISO紧格式无模型控制器待整定参数,为所述MISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述MISO紧格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;
步骤(2):将当前时刻记为k时刻;
步骤(3):基于系统输出期望值与系统输出实际值,采用系统误差计算函数计算得到k时刻的系统误差,记为e(k);将所述系统误差及其函数组、系统输出期望值、系统输出实际值的任意之一或任意种组合,放入集合{系统误差集};
步骤(4):将步骤(3)得到的所述集合{系统误差集}作为BP神经网络的输入,所述BP神经网络进行前向计算,计算结果通过所述BP神经网络的输出层输出,得到所述MISO紧格式无模型控制器待整定参数的值;
步骤(5):基于步骤(3)得到的所述系统误差e(k)、步骤(4)得到的所述MISO紧格式无模型控制器待整定参数的值,采用MISO紧格式无模型控制器的控制算法,计算得到MISO紧格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T
步骤(6):针对步骤(5)得到的所述控制输入向量u(k)中的第j个控制输入uj(k)(1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO紧格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:
当所述MISO紧格式无模型控制器待整定参数中包含惩罚因子λ时,所述第j个控制输入uj(k)针对所述惩罚因子λ在k时刻的梯度信息为:
当所述MISO紧格式无模型控制器待整定参数中包含步长因子ρ时,所述第j个控制输入uj(k)针对所述步长因子ρ在k时刻的梯度信息为:
其中,为k时刻的MISO系统伪梯度估计值的行矩阵,为行矩阵的第j个梯度分量估计值,为行矩阵的2范数;
上述全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};
针对步骤(5)得到的所述控制输入向量u(k)中的其他m-1个控制输入,重复执行本步骤,直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合,然后进入步骤(7);
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述集合{梯度信息集},进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;
步骤(8):所述控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。
2.根据权利要求1所述的MISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(3)中的所述系统误差计算函数的自变量包含系统输出期望值与系统输出实际值。
3.根据权利要求1或2所述的MISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(3)中的所述系统误差计算函数采用e(k)=y*(k)-y(k),其中y*(k)为k时刻设定的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值;或者采用e(k)=y*(k+1)-y(k),其中y*(k+1)为k+1时刻的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值。
4.根据权利要求1所述的MISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(3)中的所述系统误差及其函数组,包含k时刻的系统误差e(k)、k时刻及之前所有时刻的系统误差的累积即k时刻系统误差e(k)的一阶后向差分e(k)-e(k-1)、k时刻系统误差e(k)的二阶后向差分e(k)-2e(k-1)+e(k-2)、k时刻系统误差e(k)的高阶后向差分的任意之一或任意种组合。
5.根据权利要求1所述的MISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(7)中的所述系统误差函数的自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合。
6.根据权利要求1或5所述的MISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(7)中的所述系统误差函数为其中,e(k)为系统误差,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于0的常数,1≤j≤m。
CN201711325704.6A 2017-12-12 2017-12-12 Miso紧格式无模型控制器基于系统误差的参数自整定方法 Active CN108181809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711325704.6A CN108181809B (zh) 2017-12-12 2017-12-12 Miso紧格式无模型控制器基于系统误差的参数自整定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711325704.6A CN108181809B (zh) 2017-12-12 2017-12-12 Miso紧格式无模型控制器基于系统误差的参数自整定方法

Publications (2)

Publication Number Publication Date
CN108181809A true CN108181809A (zh) 2018-06-19
CN108181809B CN108181809B (zh) 2020-06-05

Family

ID=62546284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711325704.6A Active CN108181809B (zh) 2017-12-12 2017-12-12 Miso紧格式无模型控制器基于系统误差的参数自整定方法

Country Status (1)

Country Link
CN (1) CN108181809B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814388A (zh) * 2019-02-01 2019-05-28 浙江大学 参数自整定的miso异因子偏格式无模型控制方法
CN111522235A (zh) * 2019-02-01 2020-08-11 浙江大学 参数自整定的mimo异因子紧格式无模型控制方法
CN112015083A (zh) * 2020-06-18 2020-12-01 浙江大学 Siso紧格式无模型控制器基于集成学习的参数自整定方法
CN111522235B (zh) * 2019-02-01 2024-05-24 浙江大学 参数自整定的mimo异因子紧格式无模型控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274435A (zh) * 1997-10-06 2000-11-22 美国通控集团公司 无模型自适应过程控制
CN101349893A (zh) * 2007-07-18 2009-01-21 太极光控制软件(北京)有限公司 自适应模型预测控制装置
CN101968629A (zh) * 2010-10-19 2011-02-09 天津理工大学 基于rbf辨识的弹性积分bp神经网络的pid控制方法
CN107023825A (zh) * 2016-08-31 2017-08-08 西安艾贝尔科技发展有限公司 流化床锅炉控制与燃烧优化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274435A (zh) * 1997-10-06 2000-11-22 美国通控集团公司 无模型自适应过程控制
CN101349893A (zh) * 2007-07-18 2009-01-21 太极光控制软件(北京)有限公司 自适应模型预测控制装置
CN101968629A (zh) * 2010-10-19 2011-02-09 天津理工大学 基于rbf辨识的弹性积分bp神经网络的pid控制方法
CN107023825A (zh) * 2016-08-31 2017-08-08 西安艾贝尔科技发展有限公司 流化床锅炉控制与燃烧优化系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEN CHEN 等: "Design of Self-Tuning SISO Partial-Form Model-Free Adaptive Controller for Vapor-Compression Refrigeration System", 《IEEE ACCESS》 *
CHEN CHEN 等: "Parameter Self-Tuning of SISO Compact-Form Model-Free Adaptive Controller based on Neural Network with System Error Set as Input", 《2019 12TH ASIAN CONTROL CONFERENCE》 *
MINGWANG ZHAO: "Neural-net-based model-free self-tuning controller with on-line self-learning ability for industrial furnace", 《1994 PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON CONTROL AND APPLICATIONS》 *
李雪园: "无模型控制器参数在线自整定研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
郭代银: "无模型自适应控制参数整定方法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
马平 等: "无模型控制器参数学习步长和惩罚因子的整定研究", 《仪器仪表学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814388A (zh) * 2019-02-01 2019-05-28 浙江大学 参数自整定的miso异因子偏格式无模型控制方法
CN111522235A (zh) * 2019-02-01 2020-08-11 浙江大学 参数自整定的mimo异因子紧格式无模型控制方法
CN111522235B (zh) * 2019-02-01 2024-05-24 浙江大学 参数自整定的mimo异因子紧格式无模型控制方法
CN112015083A (zh) * 2020-06-18 2020-12-01 浙江大学 Siso紧格式无模型控制器基于集成学习的参数自整定方法

Also Published As

Publication number Publication date
CN108181809B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN108287471A (zh) Mimo偏格式无模型控制器基于系统误差的参数自整定方法
CN109674080B (zh) 烟叶回潮加水量预测方法、存储介质及终端设备
CN108170029A (zh) Mimo全格式无模型控制器基于偏导信息的参数自整定方法
CN109304086B (zh) 一种电站锅炉scr脱硝精细化喷氨控制方法
CN111045326A (zh) 一种基于递归神经网络的烘丝过程水分预测控制方法及系统
CN107942655A (zh) Siso紧格式无模型控制器基于系统误差的参数自整定方法
CN108181809A (zh) Miso紧格式无模型控制器基于系统误差的参数自整定方法
CN105469142A (zh) 一种基于样本增量驱动的神经网络增量型前馈算法
CN108154231A (zh) Miso全格式无模型控制器基于系统误差的参数自整定方法
CN108345213A (zh) Mimo紧格式无模型控制器基于系统误差的参数自整定方法
CN108073072A (zh) Siso紧格式无模型控制器基于偏导信息的参数自整定方法
CN108153151A (zh) Mimo全格式无模型控制器基于系统误差的参数自整定方法
CN108062021A (zh) Siso全格式无模型控制器基于偏导信息的参数自整定方法
CN107942654A (zh) Siso偏格式无模型控制器基于偏导信息的参数自整定方法
CN117195747B (zh) 一种磁性材料烘干用均匀热分布优化方法
CN108181808A (zh) Miso偏格式无模型控制器基于系统误差的参数自整定方法
CN109782586A (zh) 参数自整定的miso异因子紧格式无模型控制方法
CN108107715A (zh) Miso全格式无模型控制器基于偏导信息的参数自整定方法
CN108008634A (zh) Miso偏格式无模型控制器基于偏导信息的参数自整定方法
CN108052006A (zh) Mimo基于siso全格式无模型控制器与偏导信息的解耦控制方法
CN108287470A (zh) Mimo偏格式无模型控制器基于偏导信息的参数自整定方法
CN108132600A (zh) Mimo紧格式无模型控制器基于偏导信息的参数自整定方法
CN108107727A (zh) Miso紧格式无模型控制器基于偏导信息的参数自整定方法
CN107942656A (zh) Siso偏格式无模型控制器基于系统误差的参数自整定方法
CN108107722A (zh) Mimo基于siso偏格式无模型控制器与系统误差的解耦控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant