CN108170136A - More unmanned boat formation control system and methods based on wireless sensor network - Google Patents
More unmanned boat formation control system and methods based on wireless sensor network Download PDFInfo
- Publication number
- CN108170136A CN108170136A CN201711345108.4A CN201711345108A CN108170136A CN 108170136 A CN108170136 A CN 108170136A CN 201711345108 A CN201711345108 A CN 201711345108A CN 108170136 A CN108170136 A CN 108170136A
- Authority
- CN
- China
- Prior art keywords
- unmanned boat
- module
- shore
- control module
- navigation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/0206—Control of position or course in two dimensions specially adapted to water vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及一种基于无线传感网络的多无人艇编队控制系统,它包括UWB导航模块、无人艇控制模块、无人艇通信模块、岸基通信模块和无人艇岸基控制模块,其中,无人艇编队中每个无人艇内均设有UWB导航模块、无人艇控制模块和无人艇通信模块,每个UWB导航模块的导航数据输出端连接对应的无人艇控制模块的导航数据输入端,每个无人艇控制模块岸基通信接口依次通过对应的无人艇通信模块和岸基通信模块连接无人艇岸基控制模块的岸基通信接口。该系统和方法实现了无人艇的定位与队形的评估,实现了对多无人艇编队的控制。
The invention relates to a multi-unmanned boat formation control system based on a wireless sensor network, which includes a UWB navigation module, an unmanned boat control module, an unmanned boat communication module, a shore-based communication module and an unmanned boat shore-based control module, Among them, each unmanned boat in the unmanned boat formation is equipped with a UWB navigation module, an unmanned boat control module and an unmanned boat communication module, and the navigation data output end of each UWB navigation module is connected to the corresponding unmanned boat control module The navigation data input terminal of each unmanned boat control module is connected to the shore-based communication interface of the unmanned boat shore-based control module through the corresponding unmanned boat communication module and the shore-based communication module in turn. The system and method realize the positioning and formation evaluation of the unmanned boat, and realize the control of the multi-unmanned boat formation.
Description
技术领域technical field
本发明涉及无人艇导航技术领域,具体涉及一种基于无线传感网络的多无人艇编队控制系统及方法。The invention relates to the technical field of unmanned boat navigation, in particular to a multi-unmanned boat formation control system and method based on a wireless sensor network.
背景技术Background technique
近年来,无人艇作为一种必不可少的探索工具,其优势逐渐凸显。然而,随着探索的复杂度和多样性的增加,仅仅通过单一无人艇提供的一些参数数据不能满足对当前探索的需要。现有技术中没有多无人艇编队控制的相关方案。In recent years, as an indispensable exploration tool, the advantages of unmanned vehicles have gradually become prominent. However, with the increasing complexity and diversity of exploration, some parameter data provided by a single unmanned vehicle cannot meet the needs of current exploration. There is no relevant scheme for multi-unmanned boat formation control in the prior art.
发明内容Contents of the invention
本发明的目的在于提供一种基于无线传感网络的多无人艇编队控制系统及方法,该系统和方法实现了无人艇的定位与队形的评估,实现了对多无人艇编队的控制。The object of the present invention is to provide a multi-unmanned boat formation control system and method based on a wireless sensor network. control.
为解决上述技术问题,本发明公开的一种基于无线传感网络的多无人艇编队控制系统,其特征在于:它包括UWB(Ultra Wideband)导航模块、无人艇控制模块、无人艇通信模块、岸基通信模块和无人艇岸基控制模块,其中,无人艇编队中每个无人艇内均设有UWB导航模块、无人艇控制模块和无人艇通信模块,每个UWB导航模块的导航数据输出端连接对应的无人艇控制模块的导航数据输入端,每个无人艇控制模块岸基通信接口依次通过对应的无人艇通信模块和岸基通信模块连接无人艇岸基控制模块的岸基通信接口;In order to solve the above technical problems, the present invention discloses a multi-unmanned boat formation control system based on a wireless sensor network, which is characterized in that it includes a UWB (Ultra Wideband) navigation module, an unmanned boat control module, and an unmanned boat communication module. Module, shore-based communication module and unmanned boat shore-based control module, wherein, each unmanned boat in the unmanned boat formation is equipped with a UWB navigation module, an unmanned boat control module and an unmanned boat communication module, and each UWB The navigation data output end of the navigation module is connected to the navigation data input end of the corresponding unmanned boat control module, and the shore-based communication interface of each unmanned boat control module is connected to the unmanned boat through the corresponding unmanned boat communication module and the shore-based communication module. The shore-based communication interface of the shore-based control module;
所述UWB导航模块用于向无人艇控制模块提供无人挺导航数据;The UWB navigation module is used to provide unmanned navigation data to the unmanned boat control module;
所述无人艇控制模块用于将无人挺导航数据通过无人艇通信模块和岸基通信模块转发给无人艇岸基控制模块;The unmanned boat control module is used to forward the unmanned boat navigation data to the unmanned boat shore-based control module through the unmanned boat communication module and the shore-based communication module;
所述无人艇岸基控制模块用于根据接收到的无人挺导航数据,并根据预设定好的队形和路径作进行导航路径匹配处理,然后输出对应无人艇的控制指令;The shore-based control module of the unmanned boat is used to perform navigation path matching processing according to the received unmanned platform navigation data, and according to the preset formation and path, and then output the control command corresponding to the unmanned boat;
所述无人艇控制模块还用于通过无人艇通信模块和岸基通信模块接收来自无人艇岸基控制模块的无人艇的控制指令,并按该无人艇的控制指令控制无人艇运动。The unmanned boat control module is also used to receive the control instruction of the unmanned boat from the unmanned boat shore-based control module through the unmanned boat communication module and the shore-based communication module, and control the unmanned boat according to the control instruction of the unmanned boat. boat sport.
一种利用上述系统的无人艇编队控制方法,其特征在于,它包括如下步骤:A kind of unmanned ship formation control method utilizing above-mentioned system, it is characterized in that, it comprises the steps:
步骤1:每个无人艇岸基控制模块根据地图信息规划出无人艇编队的航行路径和编队队形,得到各无人艇每个航行数据采样周期内的规划航行坐标和航向角;Step 1: Each unmanned boat shore-based control module plans the navigation path and formation formation of the unmanned boat formation according to the map information, and obtains the planned navigation coordinates and heading angles of each unmanned boat in each navigation data sampling cycle;
步骤2:将无人艇当前实际航行坐标Xi,Yi和航向角θi与下个航行数据采样周期内规划的航行坐标Xii,Yii和航向角θii利用以下步骤2.1~步骤2.4的方法计算得到无人艇期望航向和航速,来使得无人艇编队按规划队形航行;Step 2: Use the following steps 2.1 to 2.4 to combine the current actual navigation coordinates X i , Y i and heading angle θ i of the unmanned vehicle with the planned navigation coordinates X ii , Y ii and heading angle θ ii in the next navigation data sampling cycle The method is used to calculate the expected course and speed of the unmanned boat, so that the unmanned boat formation can sail according to the planned formation;
步骤2.1:各个UWB导航模块将当前相应无人艇的位置信息数据包发送给无人艇岸基控制模块;Step 2.1: Each UWB navigation module sends the position information data packet of the current corresponding unmanned boat to the shore-based control module of the unmanned boat;
步骤2.2:各个无人艇岸基控制模块将得到的无人艇的位置信息数据包解压,得到各个无人艇当前实际航行坐标Xi,Yi和航向角θi,将解压出来的各个无人艇当前实际航行坐标Xi,Yi和航向角θi与下个航行数据采样周期内规划的航行坐标Xii,Yii和航向角θii进行计算,得到下个航行数据采样周期内对应的无人艇期望航速Vi和舵角βi,计算公式如下:Step 2.2: Each unmanned boat shore-based control module decompresses the obtained unmanned boat position information data packet, and obtains each unmanned boat's current actual navigation coordinates X i , Y i and heading angle θ i , and decompresses each unmanned boat The current actual navigation coordinates X i , Y i and course angle θ i of the human boat are calculated with the planned navigation coordinates X ii , Y ii and course angle θ ii in the next navigation data sampling period to obtain the corresponding The expected speed V i and rudder angle β i of the unmanned boat, the calculation formula is as follows:
βi=θii-θi β i = θ ii - θ i
其中,Ti为航行数据采样周期;Among them, T i is the sampling period of navigation data;
通过电机无人艇电机转速和无人艇期望航速的如下关系:The relationship between the motor speed of the motor unmanned boat and the expected speed of the unmanned boat is as follows:
ωi=k*Vi ω i =k*V i
其中,k为转换参数,为预设值;Wherein, k is a conversion parameter, which is a preset value;
得到下个航行数据采样周期内的对应的无人艇电机转速ωi和舵角βi;Get the corresponding unmanned boat motor speed ω i and rudder angle β i in the next voyage data sampling period;
步骤2.3:无人艇岸基控制模块根据下个航行数据采样周期内各个无人艇的无人艇电机转速ωi和舵角βi生成各个无人艇的控制命令,并将各个无人艇的控制命令分别发送给无人艇编队中的对应无人艇控制模块;Step 2.3: The shore-based control module of the unmanned boat generates the control commands of each unmanned boat according to the unmanned boat motor speed ω i and the rudder angle β i of each unmanned boat in the next navigation data sampling period, and sends each unmanned boat The control commands are sent to the corresponding unmanned boat control modules in the unmanned boat formation;
步骤2.4:各个无人艇控制模块根据得到的控制命令,控制无人艇运动。Step 2.4: Each unmanned boat control module controls the movement of the unmanned boat according to the received control command.
本发明的有益效果:Beneficial effects of the present invention:
本发明基于无线传感网络的多无人艇编队控制系统方案,UWB模块,实现了无人艇的定位与队形的评估,实现了对多无人艇编队的控制,本方案对无人艇编队控制位置精确。采用基于弹性网格的改进遗传算法能快速进行路径规划。本发明成本低,稳定性好,适用于多无人艇编队的研究领域,具有良好的发展潜力。The present invention is based on the multi-unmanned boat formation control system scheme of the wireless sensor network, and the UWB module realizes the positioning and formation evaluation of the unmanned boat, and realizes the control of the multi-unmanned boat formation. The formation control position is precise. The improved genetic algorithm based on the elastic grid can quickly carry out path planning. The invention has low cost and good stability, is suitable for the research field of multi-unmanned boat formation, and has good development potential.
本发明的无人艇编队控制方法还具有如下有益效果:The unmanned boat formation control method of the present invention also has the following beneficial effects:
(1)充分获取当前环境信息。单个无人艇传感器获取信息的能力是有限的,如果多无人艇保持一定的队形,每个无人艇负责获取自身周围的环境信息,就可以保证比较完整地获得无人艇编队当前作业区域的环境信息,对实现探索、安全巡逻及侦查任务是有利的;(1) Fully obtain current environmental information. The ability of a single unmanned boat sensor to obtain information is limited. If multiple unmanned boats maintain a certain formation and each unmanned boat is responsible for obtaining the environmental information around itself, it can ensure a relatively complete acquisition of the current operation of the unmanned boat formation. The environmental information of the area is beneficial to the realization of exploration, security patrol and reconnaissance tasks;
(2)多无人艇保持一定的队形可以增强抵御外界入侵的防御能力;(2) Multiple unmanned boats maintain a certain formation to enhance the defense against external invasion;
(3)能提高工作效率,在特定的任务中,保持特定的队形能事半功倍;(3) It can improve work efficiency, and in a specific task, maintaining a specific formation can get twice the result with half the effort;
(4)可以提高系统的鲁棒性。(4) The robustness of the system can be improved.
附图说明Description of drawings
图1为本发明中的原理框图。Fig. 1 is a functional block diagram in the present invention.
其中,1—UWB导航模块、2—无人艇控制模块、3—无人艇通信模块、4—岸基通信模块、5—无人艇岸基控制模块。Among them, 1—UWB navigation module, 2—unmanned boat control module, 3—unmanned boat communication module, 4—shore-based communication module, 5—unmanned boat shore-based control module.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作进一步的详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
本发明的基于无线传感网络的多无人艇编队控制系统,如图1所述,它包括UWB导航模块1、无人艇控制模块2、无人艇通信模块3、岸基通信模块4和无人艇岸基控制模块5,其中,无人艇编队中每个无人艇内均设有UWB导航模块1、无人艇控制模块2和无人艇通信模块3,每个UWB导航模块1的导航数据输出端连接对应的无人艇控制模块2的导航数据输入端,每个无人艇控制模块2岸基通信接口依次通过对应的无人艇通信模块3和岸基通信模块4连接无人艇岸基控制模块5的岸基通信接口;The multi-unmanned boat formation control system based on wireless sensor network of the present invention, as shown in Figure 1, it includes UWB navigation module 1, unmanned boat control module 2, unmanned boat communication module 3, shore-based communication module 4 and The unmanned boat shore-based control module 5, wherein, each unmanned boat in the unmanned boat formation is equipped with a UWB navigation module 1, an unmanned boat control module 2 and an unmanned boat communication module 3, and each UWB navigation module 1 The navigation data output end of the corresponding unmanned boat control module 2 is connected to the navigation data input end of the corresponding unmanned boat control module 2. The shore-based communication interface of the man-ship shore-based control module 5;
所述UWB导航模块1用于向无人艇控制模块2提供无人挺导航数据(UWB导航模块1的导航精度较高,且能测得航向角);The UWB navigation module 1 is used to provide unmanned navigation data to the unmanned boat control module 2 (the navigation accuracy of the UWB navigation module 1 is relatively high, and the heading angle can be measured);
所述无人艇控制模块2用于将无人挺导航数据通过无人艇通信模块3和岸基通信模块4转发给无人艇岸基控制模块5;The unmanned boat control module 2 is used to forward the unmanned boat navigation data to the unmanned boat shore-based control module 5 through the unmanned boat communication module 3 and the shore-based communication module 4;
所述无人艇岸基控制模块5用于根据接收到的无人挺导航数据,并根据预设定好的队形和路径作进行导航路径匹配处理,然后输出对应无人艇的控制指令;The shore-based control module 5 of the unmanned boat is used to perform navigation path matching processing according to the received unmanned lift navigation data, and according to the preset formation and path, and then output the control instructions corresponding to the unmanned boat;
所述无人艇控制模块2还用于通过无人艇通信模块3和岸基通信模块4接收来自无人艇岸基控制模块5的无人艇的控制指令,并按该无人艇的控制指令控制无人艇运动。The unmanned boat control module 2 is also used to receive the control instruction of the unmanned boat from the unmanned boat shore-based control module 5 through the unmanned boat communication module 3 and the shore-based communication module 4, and follow the control instructions of the unmanned boat Instructions control the movement of the unmanned boat.
无人艇控制模块2包括ARM模块和DSP驱动模块,用于控制所属无人艇前进方向。船舶机构包括螺旋桨、驱动船舶的舵机,所述螺旋桨和舵机接受无人艇控制模块所发出指令,驱动无人艇前进。所述无人艇控制模块2以ARM cortex-A9i.MX6Q处理器作为主控芯片。所述无人艇的DSP驱动模块均采用TMS320F28335DSP处理器作为控制芯片。The unmanned boat control module 2 includes an ARM module and a DSP drive module, which are used to control the forward direction of the unmanned boat. The ship mechanism includes a propeller and a steering gear that drives the ship. The propeller and the steering gear receive instructions from the control module of the unmanned boat to drive the unmanned boat forward. The unmanned boat control module 2 uses an ARM cortex-A9i.MX6Q processor as a main control chip. The DSP driver modules of the unmanned boat all use TMS320F28335DSP processor as the control chip.
上述技术方案中,所述无人挺导航数据包括无人艇的位置坐标和航向角信息。In the above technical solution, the unmanned vehicle navigation data includes position coordinates and course angle information of the unmanned vessel.
上述技术方案中,所述无人艇通信模块3与岸基通信模块4之间采用2.4G射频通信。In the above technical solution, 2.4G radio frequency communication is adopted between the unmanned boat communication module 3 and the shore-based communication module 4 .
一种利用上述系统的无人艇编队控制方法,它包括如下步骤:A kind of unmanned ship formation control method utilizing above-mentioned system, it comprises the steps:
步骤1:每个无人艇岸基控制模块5根据地图信息规划出无人艇编队的航行路径和编队队形,得到各无人艇每个航行数据采样周期(0.5秒为一个周期)内的规划航行坐标和航向角;Step 1: Each unmanned boat shore-based control module 5 plans the navigation path and formation formation of the unmanned boat formation according to the map information, and obtains each unmanned boat within each navigation data sampling cycle (0.5 seconds is a cycle). Plan navigation coordinates and heading angles;
步骤2:将无人艇当前实际航行坐标Xi,Yi和航向角θi与下个航行数据采样周期内规划的航行坐标Xii,Yii和航向角θii利用以下步骤2.1~步骤2.4的方法计算得到无人艇期望航向和航速,来使得无人艇编队按规划队形航行;Step 2: Use the following steps 2.1 to 2.4 to combine the current actual navigation coordinates X i , Y i and heading angle θ i of the unmanned vehicle with the planned navigation coordinates X ii , Y ii and heading angle θ ii in the next navigation data sampling cycle The method is used to calculate the expected course and speed of the unmanned boat, so that the unmanned boat formation can sail according to the planned formation;
步骤2.1:各个UWB导航模块1将当前相应无人艇的位置信息数据包发送给无人艇岸基控制模块5;Step 2.1: each UWB navigation module 1 sends the position information data packet of the current corresponding unmanned boat to the shore-based control module 5 of the unmanned boat;
步骤2.2:各个无人艇岸基控制模块5将得到的无人艇的位置信息数据包解压,得到各个无人艇当前实际航行坐标Xi,Yi和航向角θi,将解压出来的各个无人艇当前实际航行坐标Xi,Yi和航向角θi与下个航行数据采样周期内规划的航行坐标Xii,Yii和航向角θii进行计算,得到下个航行数据采样周期内对应的无人艇期望航速Vi和舵角βi,计算公式如下:Step 2.2: each unmanned boat shore-based control module 5 decompresses the obtained unmanned boat position information data package, and obtains the current actual navigation coordinates X i , Y i and heading angle θ i of each unmanned boat, and decompresses each The current actual navigation coordinates X i , Y i and heading angle θ i of the unmanned boat are calculated with the planned navigation coordinates X ii , Y ii and heading angle θ ii in the next navigation data sampling period to obtain The corresponding unmanned boat expected speed V i and rudder angle β i are calculated as follows:
βi=θii-θi β i = θ ii - θ i
其中,通过电机无人艇电机转速和无人艇期望航速的如下关系:Among them, the relationship between the motor speed of the motor unmanned boat and the expected speed of the unmanned boat is as follows:
ωi=k*Vi ω i =k*V i
其中,Ti为航行数据采样周期;Among them, T i is the sampling period of navigation data;
k为转换参数,为预设值(一般根据无人艇的推进效率来决定的,k值约为千分之一,转速单位为转每分钟(rpm),航速为米每秒(m/s));k is the conversion parameter, which is the preset value (generally determined according to the propulsion efficiency of the unmanned boat, the value of k is about one thousandth, the unit of speed is revolution per minute (rpm), and the speed is meter per second (m/s ));
得到下个航行数据采样周期内的对应的无人艇电机转速ωi和舵角βi;Get the corresponding unmanned boat motor speed ω i and rudder angle β i in the next voyage data sampling period;
步骤2.3:无人艇岸基控制模块5根据下个航行数据采样周期内各个无人艇的无人艇电机转速ωi和舵角βi生成各个无人艇的控制命令,并将各个无人艇的控制命令分别发送给无人艇编队中的对应无人艇控制模块2;Step 2.3: the shore-based control module 5 of the unmanned boat generates the control commands of each unmanned boat according to the unmanned boat motor speed ω i and the rudder angle β i of each unmanned boat in the next navigation data sampling cycle, and sends each unmanned boat The control commands of the boat are sent to the corresponding unmanned boat control module 2 in the unmanned boat formation;
步骤2.4:各个无人艇控制模块2根据得到的控制命令,控制无人艇运动。Step 2.4: Each unmanned boat control module 2 controls the movement of the unmanned boat according to the obtained control command.
上述技术方案的步骤2.1中,各个UWB导航模块1将当前相应无人艇的位置信息数据包发送给无人艇岸基控制模块5的具体方法为:In step 2.1 of the above-mentioned technical solution, each UWB navigation module 1 sends the position information data packet of the current corresponding unmanned boat to the shore-based control module 5 of the unmanned boat. The specific method is as follows:
步骤2.1.1:各个UWB导航模块1中的UWB标签通过测量与四个UWB基站的距离实现定位,得到无人艇当前实际航行坐标Xi,Yi和航向角θi;Step 2.1.1: The UWB tags in each UWB navigation module 1 are positioned by measuring the distance from the four UWB base stations, and the current actual navigation coordinates X i , Y i and heading angle θ i of the unmanned boat are obtained;
步骤2.1.2:各个UWB导航模块1将得到的位置信息传送给对应的无人艇控制模块2,无人艇控制模块2将得到的数据打包;其中位置信息数据包以30个字节ASCII字符串表示,具体格式如下:Step 2.1.2: Each UWB navigation module 1 transmits the obtained location information to the corresponding unmanned boat control module 2, and the unmanned boat control module 2 packs the obtained data; the location information data packet is in 30 bytes of ASCII characters String representation, the specific format is as follows:
步骤2.1.3:无人艇通信模块3将从无人艇控制模块2得到的位置信息数据包发送至岸基通信模块4;Step 2.1.3: The unmanned boat communication module 3 sends the position information data packet obtained from the unmanned boat control module 2 to the shore-based communication module 4;
步骤2.1.4:岸基通信模块4将获得的位置信息数据包通过岸基系统串口模块传送至对应的无人艇岸基控制模块5。Step 2.1.4: The shore-based communication module 4 transmits the obtained position information data packet to the corresponding shore-based control module 5 of the unmanned boat through the serial port module of the shore-based system.
上述技术方案的步骤2.3中将各个无人艇的控制命令分别发送给无人艇编队中的对应无人艇控制模块2的具体方法为:In step 2.3 of the above technical solution, the specific method for sending the control commands of each unmanned boat to the corresponding unmanned boat control module 2 in the unmanned boat formation is as follows:
步骤2.3.1:将步骤2.2求出的下个航行数据采样周期内的对应的无人艇电机转速ωi和舵角βi写入命令数据包,通过岸基通信模块4发送给各无人艇控制模块2;其中命令数据包以30个字节ASCII字符串表示,具体格式如下:Step 2.3.1: Write the corresponding unmanned boat motor speed ω i and rudder angle β i in the next voyage data sampling period obtained in step 2.2 into the command data packet, and send it to each unmanned boat through the shore-based communication module 4. Boat control module 2; where the command data packet is represented by a 30-byte ASCII character string, and the specific format is as follows:
步骤2.3.2:无人艇通信模块将命令数据包通过无人艇通信串口传送给对应的无人艇控制模块2。Step 2.3.2: The unmanned boat communication module transmits the command data packet to the corresponding unmanned boat control module 2 through the unmanned boat communication serial port.
上述技术方案的步骤2.4中,各个无人艇控制模块2根据得到的控制命令,控制无人艇运动的具体方法为:In step 2.4 of the above technical solution, each unmanned boat control module 2 controls the motion of the unmanned boat according to the obtained control command. The specific method is:
步骤2.4.1:无人艇控制模块2中,ARM模块将从无人艇通信串口接收到的命令数据包发送至DSP驱动模块;Step 2.4.1: In the UAV control module 2, the ARM module sends the command data packet received from the UAV communication serial port to the DSP driver module;
步骤2.4.2:DSP驱动模块再将收到的命令数据包进行解包并对其进行分析计算,得出无人艇运动所需的电机转速与舵角,并将转速与舵角指令分别发送相应无人挺控制执行模块;Step 2.4.2: The DSP drive module unpacks the received command data packet and analyzes and calculates it to obtain the motor speed and rudder angle required for the motion of the unmanned boat, and sends the speed and rudder angle commands separately The corresponding unmanned control execution module;
步骤2.4.3:相应无人挺控制执行模块驱动电机与舵机,通过改变电机转速和舵机舵角以使无人艇编队按照规划的队形和路径航行。Step 2.4.3: The corresponding unmanned lift control execution module drives the motor and steering gear, and changes the speed of the motor and the rudder angle of the steering gear to make the unmanned boat formation sail according to the planned formation and path.
所述步骤1中,每个无人艇岸基控制模块(5)根据地图信息规划出无人艇编队的航行路径和编队队形的路径规划的方法采用基于弹性网格的改进遗传算法(该算法为常规算法,见参考文献:唐琳,蔡德荣,黄猛.基于改进遗传算法的舰船路径规划[J].计算机工程与设计,2009,30(6):1452-1457.;范云生,赵永生,石林龙,张月.基于电子海图栅格化的无人水面艇全局路径规划[J].中国航海,2017,40(1):47-52.;王雷,李明,蔡劲草,刘志虎.改进遗传算法在移动机器人路径规划中的应用研究[J].机械科学与技术,2017,36(5):711-716.),在低密度的网格地图下求解当前最优路径,然后针对转向点局部增加网格密度,进一步路径寻优,如此重复,以减小算法搜索空间,提高路径规划效率。In the step 1, each unmanned boat shore-based control module (5) plans out the navigation path of the unmanned boat formation and the path planning method of the formation formation according to the map information and adopts an improved genetic algorithm based on elastic grid (the The algorithm is a conventional algorithm, see references: Tang Lin, Cai Derong, Huang Meng. Ship path planning based on improved genetic algorithm [J]. Computer Engineering and Design, 2009, 30(6): 1452-1457.; Fan Yunsheng, Zhao Yongsheng, Shi Linlong, Zhang Yue. Global Path Planning for Unmanned Surface Vehicles Based on Electronic Chart Rasterization [J]. China Navigation, 2017, 40(1):47-52.; Wang Lei, Li Ming, Cai Jin Cao, Liu Zhihu. Application Research of Improved Genetic Algorithms in Path Planning of Mobile Robots [J]. Mechanical Science and Technology, 2017, 36(5):711-716.), Solving the current optimal The path, and then locally increase the grid density for the turning point, further path optimization, and so on, so as to reduce the algorithm search space and improve the efficiency of path planning.
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。The content not described in detail in this specification belongs to the prior art known to those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711345108.4A CN108170136A (en) | 2017-12-15 | 2017-12-15 | More unmanned boat formation control system and methods based on wireless sensor network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711345108.4A CN108170136A (en) | 2017-12-15 | 2017-12-15 | More unmanned boat formation control system and methods based on wireless sensor network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108170136A true CN108170136A (en) | 2018-06-15 |
Family
ID=62525496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711345108.4A Pending CN108170136A (en) | 2017-12-15 | 2017-12-15 | More unmanned boat formation control system and methods based on wireless sensor network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108170136A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110333723A (en) * | 2019-07-17 | 2019-10-15 | 广东华中科技大学工业技术研究院 | Unmanned ship collaborative formation method based on dual communication equipment |
CN111309010A (en) * | 2020-02-21 | 2020-06-19 | 上海大学 | Unmanned ship seabed terrain surveying and mapping control system based on bionic robot and control method thereof |
CN111523771A (en) * | 2020-03-31 | 2020-08-11 | 中国人民解放军92942部队 | Unmanned ship evaluation system |
CN112130549A (en) * | 2019-06-24 | 2020-12-25 | 上海大学 | Unmanned ship formation control system with variable working modes and control method |
CN112612212A (en) * | 2020-12-30 | 2021-04-06 | 上海大学 | Heterogeneous multi-unmanned system formation and cooperative target driving-away method |
CN115129040A (en) * | 2022-03-11 | 2022-09-30 | 中国船舶重工集团公司第七0七研究所 | Unmanned ship formation control system and control method thereof |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102692924A (en) * | 2012-05-10 | 2012-09-26 | 西北工业大学 | Experimental control structure of unmanned surface vessel |
CN103092204A (en) * | 2013-01-18 | 2013-05-08 | 浙江大学 | Mixed robot dynamic path planning method |
CN104714418A (en) * | 2015-04-01 | 2015-06-17 | 大连海事大学 | A hardware-in-the-loop simulation system for unmanned surface vehicle control performance test |
CN105584599A (en) * | 2016-01-25 | 2016-05-18 | 大连海事大学 | A marine environment monitoring system based on unmanned boat formation movement |
CN105676844A (en) * | 2016-01-19 | 2016-06-15 | 武汉理工大学 | Under-actuated unmanned ship formation structure based on model ships |
CN105676871A (en) * | 2016-01-19 | 2016-06-15 | 武汉理工大学 | Model ship based autonomous navigation control simulation system and method of under-actuated unmanned ship |
CN106774331A (en) * | 2016-12-30 | 2017-05-31 | 广东华中科技大学工业技术研究院 | A method for distributed control of unmanned boat swarm formation |
CN106908759A (en) * | 2017-01-23 | 2017-06-30 | 南京航空航天大学 | A kind of indoor pedestrian navigation method based on UWB technology |
CN106950955A (en) * | 2017-03-17 | 2017-07-14 | 武汉理工大学 | Based on the ship's track-keepping control method for improving LOS bootstrap algorithms |
CN106961725A (en) * | 2017-03-31 | 2017-07-18 | 深圳大学 | Indoor equipotential method and system based on UWB Yu Wifi combined high precisions |
CN107037816A (en) * | 2017-06-15 | 2017-08-11 | 华中科技大学 | A kind of many unmanned boat fleet systems |
CN107040583A (en) * | 2017-02-20 | 2017-08-11 | 中国船舶重工集团公司第七0七研究所 | A kind of unmanned boat information interaction system |
CN107071899A (en) * | 2017-04-27 | 2017-08-18 | 贵州大学 | Real-time positioning system in a kind of quick high accuracy room |
CN107064757A (en) * | 2017-04-17 | 2017-08-18 | 国网江苏省电力公司电力科学研究院 | Partial discharge of transformer intellectualized detection device and method based on multisensor |
CN107229278A (en) * | 2017-06-02 | 2017-10-03 | 华中科技大学 | A kind of unmanned boat monitoring system based on cloud network |
CN107241217A (en) * | 2017-05-23 | 2017-10-10 | 四方继保(武汉)软件有限公司 | A kind of unmanned boat group multilayer centralized control system |
CN107247465A (en) * | 2017-05-11 | 2017-10-13 | 西安电子科技大学 | A kind of self-driving travel control system and method based on unmanned plane |
CN206743405U (en) * | 2016-11-03 | 2017-12-12 | 北京爱特顿精控科技有限责任公司 | A kind of automatic following system |
-
2017
- 2017-12-15 CN CN201711345108.4A patent/CN108170136A/en active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102692924A (en) * | 2012-05-10 | 2012-09-26 | 西北工业大学 | Experimental control structure of unmanned surface vessel |
CN103092204A (en) * | 2013-01-18 | 2013-05-08 | 浙江大学 | Mixed robot dynamic path planning method |
CN104714418A (en) * | 2015-04-01 | 2015-06-17 | 大连海事大学 | A hardware-in-the-loop simulation system for unmanned surface vehicle control performance test |
CN105676844A (en) * | 2016-01-19 | 2016-06-15 | 武汉理工大学 | Under-actuated unmanned ship formation structure based on model ships |
CN105676871A (en) * | 2016-01-19 | 2016-06-15 | 武汉理工大学 | Model ship based autonomous navigation control simulation system and method of under-actuated unmanned ship |
CN105584599A (en) * | 2016-01-25 | 2016-05-18 | 大连海事大学 | A marine environment monitoring system based on unmanned boat formation movement |
CN206743405U (en) * | 2016-11-03 | 2017-12-12 | 北京爱特顿精控科技有限责任公司 | A kind of automatic following system |
CN106774331A (en) * | 2016-12-30 | 2017-05-31 | 广东华中科技大学工业技术研究院 | A method for distributed control of unmanned boat swarm formation |
CN106908759A (en) * | 2017-01-23 | 2017-06-30 | 南京航空航天大学 | A kind of indoor pedestrian navigation method based on UWB technology |
CN107040583A (en) * | 2017-02-20 | 2017-08-11 | 中国船舶重工集团公司第七0七研究所 | A kind of unmanned boat information interaction system |
CN106950955A (en) * | 2017-03-17 | 2017-07-14 | 武汉理工大学 | Based on the ship's track-keepping control method for improving LOS bootstrap algorithms |
CN106961725A (en) * | 2017-03-31 | 2017-07-18 | 深圳大学 | Indoor equipotential method and system based on UWB Yu Wifi combined high precisions |
CN107064757A (en) * | 2017-04-17 | 2017-08-18 | 国网江苏省电力公司电力科学研究院 | Partial discharge of transformer intellectualized detection device and method based on multisensor |
CN107071899A (en) * | 2017-04-27 | 2017-08-18 | 贵州大学 | Real-time positioning system in a kind of quick high accuracy room |
CN107247465A (en) * | 2017-05-11 | 2017-10-13 | 西安电子科技大学 | A kind of self-driving travel control system and method based on unmanned plane |
CN107241217A (en) * | 2017-05-23 | 2017-10-10 | 四方继保(武汉)软件有限公司 | A kind of unmanned boat group multilayer centralized control system |
CN107229278A (en) * | 2017-06-02 | 2017-10-03 | 华中科技大学 | A kind of unmanned boat monitoring system based on cloud network |
CN107037816A (en) * | 2017-06-15 | 2017-08-11 | 华中科技大学 | A kind of many unmanned boat fleet systems |
Non-Patent Citations (2)
Title |
---|
周志杰等: "水面无人艇自主跟踪系统设计", 《江苏船舶》 * |
王薇等: "基于二次栅格划分的移动sink最小路径构建算法", 《西北工业大学学报》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112130549A (en) * | 2019-06-24 | 2020-12-25 | 上海大学 | Unmanned ship formation control system with variable working modes and control method |
CN110333723A (en) * | 2019-07-17 | 2019-10-15 | 广东华中科技大学工业技术研究院 | Unmanned ship collaborative formation method based on dual communication equipment |
CN110333723B (en) * | 2019-07-17 | 2022-03-22 | 广东华中科技大学工业技术研究院 | A collaborative formation method of unmanned boats based on dual communication equipment |
CN111309010A (en) * | 2020-02-21 | 2020-06-19 | 上海大学 | Unmanned ship seabed terrain surveying and mapping control system based on bionic robot and control method thereof |
CN111309010B (en) * | 2020-02-21 | 2021-05-04 | 上海大学 | A control method implemented by a bionic robot-based unmanned submarine topographic mapping control system |
CN111523771A (en) * | 2020-03-31 | 2020-08-11 | 中国人民解放军92942部队 | Unmanned ship evaluation system |
CN111523771B (en) * | 2020-03-31 | 2024-03-15 | 中国人民解放军92942部队 | Unmanned ship assessment system |
CN112612212A (en) * | 2020-12-30 | 2021-04-06 | 上海大学 | Heterogeneous multi-unmanned system formation and cooperative target driving-away method |
CN112612212B (en) * | 2020-12-30 | 2021-11-23 | 上海大学 | Heterogeneous multi-unmanned system formation and cooperative target driving-away method |
CN115129040A (en) * | 2022-03-11 | 2022-09-30 | 中国船舶重工集团公司第七0七研究所 | Unmanned ship formation control system and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108170136A (en) | More unmanned boat formation control system and methods based on wireless sensor network | |
CN104808675B (en) | Body-sensing flight control system and terminal device based on intelligent terminal | |
CN103176451B (en) | Ship sailing aiding and formation commanding method | |
CN112928799B (en) | Automatic butt-joint charging method of mobile robot based on laser measurement | |
CN102999050B (en) | Automatic obstacle avoidance method for intelligent underwater robots | |
CN101872195B (en) | Path deviation generation analysis method for ship at sea | |
CN104850134A (en) | High-precision autonomous obstacle-avoiding flying method for unmanned plane | |
CN107576328A (en) | A kind of automatic Tracking monitoring system of water surface for submarine navigation device | |
CN204010276U (en) | The integrated monitor control system of unmanned boat ship bank based on 3G network | |
CN111746736A (en) | Ship navigation system and navigation method thereof | |
CN106970624A (en) | A kind of autonomous unmanned boat | |
CN107528627A (en) | A master-slave cooperation system of unmanned boat and robot fish | |
CN103786838A (en) | Multifunctional rudder-free aquaculture workboat | |
CN104965502A (en) | Unmanned surface vessel sailing monitoring system based on internet of things | |
CN208569400U (en) | Nobody Cooperative Mode control system peculiar to vessel | |
CN101561681B (en) | Anti-jamming real-time data sampling system of unmanned aerial vehicle | |
CN108153311A (en) | The intelligence control system and control method formed into columns towards unmanned boat | |
CN112130575A (en) | Unmanned ship control system based on OneNET platform and autonomous obstacle avoidance method thereof | |
CN206639376U (en) | A kind of unmanned boat group automatic monitoring system | |
CN102692924A (en) | Experimental control structure of unmanned surface vessel | |
CN114281083A (en) | Unmanned ship water quality monitoring Internet of things control system and method based on hybrid path planning autonomous navigation | |
CN205581642U (en) | Unmanned ship self -adaptation steering engine control system based on STM32 | |
CN112558642B (en) | A sea-air joint round-up method suitable for heterogeneous multi-unmanned systems | |
CN105676844A (en) | Under-actuated unmanned ship formation structure based on model ships | |
CN107797554A (en) | A kind of high-precision intelligent setting-out dolly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180615 |