CN108157238B - 一种新的大黄鱼应激的监测方法 - Google Patents

一种新的大黄鱼应激的监测方法 Download PDF

Info

Publication number
CN108157238B
CN108157238B CN201711343423.3A CN201711343423A CN108157238B CN 108157238 B CN108157238 B CN 108157238B CN 201711343423 A CN201711343423 A CN 201711343423A CN 108157238 B CN108157238 B CN 108157238B
Authority
CN
China
Prior art keywords
large yellow
yellow croaker
stress
monitoring
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711343423.3A
Other languages
English (en)
Other versions
CN108157238A (zh
Inventor
郑家浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201711343423.3A priority Critical patent/CN108157238B/zh
Publication of CN108157238A publication Critical patent/CN108157238A/zh
Application granted granted Critical
Publication of CN108157238B publication Critical patent/CN108157238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • A01K29/005Monitoring or measuring activity, e.g. detecting heat or mating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种新的大黄鱼应激的监测方法,方法基于大黄鱼个体左右肝叶对饥饿的不同响应来判断大黄鱼是否处于饥饿应激状态。有益效果为:本发明所用方法无需参考对照组,简单快捷,同时避免了污染组和对照组指示生物个体的差异对结果的影响,大大提高了监测的准确度和可靠性。

Description

一种新的大黄鱼应激的监测方法
技术领域
本发明涉及生物技术领域,尤其是涉及一种新的大黄鱼应激的监测方法。
背景技术
大黄鱼是我国重要的海水养殖鱼类。在养殖过程中,捕捞、分鱼、投喂等操作可能会对大黄鱼造成应激。应激的大黄鱼抗病能力减弱,很容易死亡。因此,时刻监测大黄鱼的应激状态十分重要。传统的监测方法为:比较正常和受应激的大黄鱼氧化应激相关指标,观察这些指标是否异常,指标异常则认定生物处于应激状态。这种方法必须考虑对照组的影响,因此具有很大的局限性。另一方面,污染组和正常组的指示生物来源于不同的个体,个体的差异势必会影响到组间的差异,因此降低了试验的重复性,从而影响评判结果的可靠性。
发明内容
本发明的目的在于提供一种新的大黄鱼应激的监测方法,该方法消除了对照组的背景差异,结果测定准确,使监测更加可靠。
本发明为实现上述目的所采取的技术方案为:一种新的大黄鱼应激的监测方法,方法基于大黄鱼个体左右肝叶对饥饿的不同响应来判断大黄鱼是否处于饥饿应激状态。与传统方法相比,该方法无需参考对照组,简单快捷,同时避免了污染组和对照组指示生物个体的差异对结果的影响,大大提高了监测的准确度和可靠性。
作为优选,监测方法具体过程为:获取大黄鱼的左右肝叶,分别测量谷胱甘肽还原酶的活性,若左右肝叶谷胱甘肽还原酶的活性差异在2.8U/mg以上,则大黄鱼处于饥饿应激状态。当大黄鱼处于非应激状态时,其左右肝叶谷胱甘肽还原酶的活性几乎没有差异,而处于饥饿状态时,其左右肝叶谷胱甘肽还原酶的活性具有显著差异,基于这种差异能够有效地判断大黄鱼是否处于饥饿应激状态。
作为优选,监测方法具体过程为:获取大黄鱼的左右肝叶,分别测量过氧化氢酶的活性,若左右边肝叶过氧化氢酶的活性差异在5.3U/mg以上,则大黄鱼处于饥饿应激状态。大黄鱼肝脏中的过氧化氢酶能专一地将细胞代谢产生的过氧化氢分解成水和氧气,避免过氧化氢在体内的累积,维持体内正常的活性氧水平,而外界环境的刺激具有诱导或抑制过氧化氢酶活性的作用,通过比较左右肝叶中过氧化氢酶的活性差异,能够准确地判断大黄鱼是否处于饥饿应激状态。
作为优选,监测方法具体过程为:获取大黄鱼的左右肝叶,分别测量粗脂肪含量,若左右肝叶粗脂肪含量差异在6%以上,则大黄鱼处于饥饿应激状态。通过比较左右肝叶的粗脂肪含量差异能够快速地监测大黄鱼是否处于应激状态,缩短了监测的时间,降低了成本,具有良好的经济效益。
与现有技术相比,本发明的有益效果为:本发明所用方法无需参考对照组,简单快捷,同时避免了污染组和对照组指示生物个体的差异对结果的影响,大大提高了监测的准确度和可靠性;当大黄鱼处于非应激状态时,其左右肝叶谷胱甘肽还原酶的活性几乎没有差异,而处于饥饿状态时,其左右肝叶谷胱甘肽还原酶的活性具有显著差异,基于这种差异能够有效地判断大黄鱼是否处于饥饿应激状态;通过比较左右肝叶中过氧化氢酶的活性差异,能够准确地判断大黄鱼是否处于饥饿应激状态;通过比较左右肝叶的粗脂肪含量差异能够快速地监测大黄鱼是否处于应激状态,缩短了监测的时间,降低了成本,具有良好的经济效益。
具体实施方式
以下结合实施例作进一步详细描述:
实施例1:一种新的大黄鱼应激的监测方法,包括以下步骤:大黄鱼取自当地渔场,室内维持在500L的塑料桶中,适应2周,每天投喂商业饲料(粗蛋白48%,粗脂肪11%),一天投喂2次(早9点,下午4点),实验开始时,选取体重为110-130g的大黄鱼饥饿4天,对照组正常投喂,其中水温25.9±2.7℃,光周期14L:10D,溶解氧6.43±0.56mg/L,pH值7.49±0.52,盐度32.6±1.5,硬度125mg/LCaCO3;获取大黄鱼的左右肝叶,分别测定其谷胱甘肽还原酶的活性,结果如表1所示,由表可知,当大黄鱼受到饥饿应激4天后,左右肝叶谷胱甘肽还原酶的活性具有显著差异,差异为2.8U/mg。
表1谷胱甘肽还原酶的活性
实施例2:一种新的大黄鱼应激的监测方法,包括以下步骤:大黄鱼取自当地渔场,室内维持在500L的塑料桶中,适应2周,每天投喂商业饲料(粗蛋白48%,粗脂肪11%),一天投喂2次(早9点,下午4点),实验开始时,选取体重为110-130g的大黄鱼饥饿4天,对照组正常投喂,其中水温25.9±2.7℃,光周期14L:10D,溶解氧6.43±0.56mg/L,pH值7.49±0.52,盐度32.6±1.5,硬度125mg/LCaCO3;获取大黄鱼的左右肝叶,分别测定其过氧化氢酶的活性,结果如表2所示,由表可知,当大黄鱼受到饥饿应激4天后,左右肝叶谷过氧化氢酶的活性具有显著差异,差异为5.3U/mg。
表2过氧化氢酶的活性
实施例3:一种新的大黄鱼应激的监测方法,包括以下步骤:大黄鱼取自当地渔场,室内维持在500L的塑料桶中,适应2周,每天投喂商业饲料(粗蛋白48%,粗脂肪11%),一天投喂2次(早9点,下午4点),实验开始时,选取体重为110-130g的大黄鱼饥饿4天,对照组正常投喂,其中水温25.9±2.7℃,光周期14L:10D,溶解氧6.43±0.56mg/L,pH值7.49±0.52,盐度32.6±1.5,硬度125mg/LCaCO3;获取大黄鱼的左右肝叶,测量粗脂肪含量,结果如表3所示,由表3可知,当大黄鱼受到饥饿应激4天后,大黄鱼右肝叶的粗脂肪含量显著低于左肝叶的粗脂肪含量,其差值为6%。
表3左右肝叶粗脂肪含量
实施例4:一种新的大黄鱼应激的监测方法,包括以下步骤:一种新的大黄鱼应激的监测方法,包括以下步骤:大黄鱼取自当地渔场,室内维持在500L的塑料桶中,适应2周,每天投喂商业饲料(粗蛋白48%,粗脂肪11%),一天投喂2次(早9点,下午4点),实验开始时,选取体重为110-130g的大黄鱼饥饿6天,对照组正常投喂,其中水温25.9±2.7℃,光周期14L:10D,溶解氧6.43±0.56mg/L,pH值7.49±0.52,盐度32.6±1.5,硬度125mg/LCaCO3;获取大黄鱼的左右肝叶,分别测定其过氧化氢酶的活性,结果如表4所示,由表可知,当大黄鱼受到饥饿应激6天后,左右肝叶谷过氧化氢酶的活性具有显著差异,差异为5.6U/mg。
表4过氧化氢酶的活性
其中,过氧化氢酶的活性测定方法为:分别称取1g左右肝叶,剪碎,加入9g浓度为0.155mol/L的KCl溶液,用研钵在冰浴中研磨5min,匀浆液在4℃、8000r/min下离心13min,取其上清液,最后用生理盐水稀释10倍,制得粗酶液,反应过程中按表5要求依次加入各试剂,加入基质液后置于25℃水浴5min,加入酶液后将所加过试剂的试管在25℃水浴60s,反应结束,立即向测定管中加入2.3g钼酸铵摇匀,再加入0.4μg绿原酸和0.63μg二苯基甲醇摇匀,10min后在405nm处以去离子水调零比色,记录各组吸光度,并计算酶活,所加入的绿原酸、二苯基甲醇与钾离子具有协同作用,增强了体系中残留的过氧化氢与钼酸铵所生成的黄色络合物的稳定性,提高了该络合物在405nm处所测的吸光度的精确度,从而使酶活性的测定结果更加准确,使监测方法更具可靠性。
表5可见分光光度法测定所需试剂的加样量
试剂 测定管 标准管 对照管
缓冲液(mL) / 0.2 1
基质液(mL) 1 1 1
粗酶液(mL) 0.2 / 0.2
以上实施方式仅用于说明本发明,而并非对本发明的限制,本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此,所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (7)

1.一种大黄鱼应激的监测方法,其特征在于:所述方法基于大黄鱼个体左右肝叶对饥饿的不同响应来判断大黄鱼是否处于饥饿应激状态。
2.根据权利要求1所述的一种大黄鱼应激的监测方法,其特征在于:所述响应为肝叶的谷胱甘肽还原酶的活性。
3. 根据权利要求2所述的一种大黄鱼应激的监测方法,其特征在于:所述方法具体过程为:获取大黄鱼的左右肝叶,分别测量谷胱甘肽还原酶的活性,若左右肝叶谷胱甘肽还原酶的活性差异在2.8 U/mg以上,则大黄鱼处于饥饿应激状态。
4.根据权利要求1所述的一种大黄鱼应激的监测方法,其特征在于:所述响应为过氧化氢酶的活性。
5. 根据权利要求4所述的一种大黄鱼应激的监测方法,其特征在于:所述方法具体过程为:获取大黄鱼的左右肝叶,分别测量过氧化氢酶的活性,若左右边肝叶过氧化氢酶的活性差异在5.3 U/mg以上,则大黄鱼处于饥饿应激状态。
6.根据权利要求1所述的一种大黄鱼应激的监测方法,其特征在于:所述响应为肝叶的脂肪含量。
7.根据权利要求6所述的一种大黄鱼应激的监测方法,其特征在于:所述方法具体过程为:获取大黄鱼的左右肝叶,分别测量粗脂肪含量,若左右肝叶粗脂肪含量差异在6%以上,则大黄鱼处于饥饿应激状态。
CN201711343423.3A 2017-12-14 2017-12-14 一种新的大黄鱼应激的监测方法 Active CN108157238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711343423.3A CN108157238B (zh) 2017-12-14 2017-12-14 一种新的大黄鱼应激的监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711343423.3A CN108157238B (zh) 2017-12-14 2017-12-14 一种新的大黄鱼应激的监测方法

Publications (2)

Publication Number Publication Date
CN108157238A CN108157238A (zh) 2018-06-15
CN108157238B true CN108157238B (zh) 2019-12-17

Family

ID=62525377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711343423.3A Active CN108157238B (zh) 2017-12-14 2017-12-14 一种新的大黄鱼应激的监测方法

Country Status (1)

Country Link
CN (1) CN108157238B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179970B (zh) * 2021-04-09 2022-03-22 中国农业大学 一种鱼类应激状态判别的方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564747B2 (en) * 2000-10-12 2003-05-20 Marical, Llc Methods for raising pre-adult anadromous fish
JP2012095558A (ja) * 2010-10-29 2012-05-24 Kanmonkai:Kk 養殖支援方法及び養殖方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992981A (zh) * 2013-12-19 2014-08-20 集美大学 一种大黄鱼肝脏细胞系及其建立方法
CN104642806A (zh) * 2015-02-06 2015-05-27 中国海洋大学 一种提高大黄鱼抗应激能力的饲料
CN104770619A (zh) * 2015-04-23 2015-07-15 中国海洋大学 一种提高大黄鱼抗应激能力的营养方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564747B2 (en) * 2000-10-12 2003-05-20 Marical, Llc Methods for raising pre-adult anadromous fish
JP2012095558A (ja) * 2010-10-29 2012-05-24 Kanmonkai:Kk 養殖支援方法及び養殖方法

Also Published As

Publication number Publication date
CN108157238A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
Peskin et al. Assay of superoxide dismutase activity in a plate assay using WST-1
Bates et al. A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose
Thuesen et al. Oxygen consumption rates and metabolic enzyme activities of oceanic California medusae in relation to body size and habitat depth
Greaney et al. Time course of changes in enzyme activities and blood respiratory properties of killifish during long-term acclimation to hypoxia
Geer et al. The biological basis of ethanol tolerance in Drosophila
Knuppertz et al. Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina
Dagsgaard et al. Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: evidence for a signaling pathway from the mitochondrial genome to the nucleus
Davis et al. A STRESS‐INDUCED PROTEIN ASSOCIATED WITH THE GIRDLE BAND REGION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYTA) 1
Serrano et al. Salinity-stimulated changes in expression and activity of two carbonic anhydrase isoforms in the blue crab Callinectes sapidus
Wang et al. Identification and functional characterization of the ZmCOPT copper transporter family in maize
Gibson et al. Selection for ethanol tolerance in two populations of Drosophila melanogaster segregating alcohol dehydrogenase allozymes
CN108157238B (zh) 一种新的大黄鱼应激的监测方法
Dalziel et al. Do differences in the activities of carbohydrate metabolism enzymes between Lake Whitefish ecotypes match predictions from transcriptomic studies?
CN111566199A (zh) 一种发光细菌冻干保护剂、冻干粉及其在水质综合毒性在线监测中的应用
Kopp et al. Assessment of ranges plasma indices in rainbow trout (Oncorhynchus mykiss) reared under conditions of intensive aquaculture
Olsen Rapid food microbiology: application of bioluminescence in the dairy and food industry—a review
Williams et al. Automated analysis of mitochondrial enzymes in cultured skin fibroblasts
Joseph et al. A high sensitivity nitrate reductase assay and its application to vertically migrating Rhizosolenia mats
Tesnière et al. Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells
Smaragdov et al. Genome-wide analysis of across herd F st heterogeneity in holsteinized cattle
Chakraborty et al. Drosophila lacking a homologue of mammalian ALDH2 have multiple fitness defects
Takahashi et al. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis
Jandorf et al. STUDIES ON CELL METABOLISM AND CELL DIVISION: VIII. THE DIPHOSPHOPYRIDINE NUCLEOTIDE (COZYMASE) CONTENT OF EGGS OF ARBACIA PUNCTULATA
Saiapina et al. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis
CN112280847A (zh) Mst1基因在检测和/或调控心肌细胞过度凋亡中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant