CN108154525A - A kind of matched bone fragments joining method of feature based - Google Patents

A kind of matched bone fragments joining method of feature based Download PDF

Info

Publication number
CN108154525A
CN108154525A CN201711165008.3A CN201711165008A CN108154525A CN 108154525 A CN108154525 A CN 108154525A CN 201711165008 A CN201711165008 A CN 201711165008A CN 108154525 A CN108154525 A CN 108154525A
Authority
CN
China
Prior art keywords
point
model
feature
models
transformation matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711165008.3A
Other languages
Chinese (zh)
Other versions
CN108154525B (en
Inventor
郭际香
吕建成
汤炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201711165008.3A priority Critical patent/CN108154525B/en
Publication of CN108154525A publication Critical patent/CN108154525A/en
Application granted granted Critical
Publication of CN108154525B publication Critical patent/CN108154525B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Processing Or Creating Images (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

The invention discloses a kind of matched bone fragments joining method of feature based, by the way that being registrated from the three-dimensional bone fragments model of medicine image reconstruction, preoperative guidance is provided for fracture of mandible reparation.This method comprises the following steps:1)Import three-dimensional bone fragments model, the plane of disruption of manual extraction fragment model;2)Based on 3D SIFT algorithms, the key point on the bone fragments model plane of disruption is extracted;3)Point of use feature histogram FPFH algorithms are key point construction feature description of extraction;4)Key point and corresponding description based on extraction establish two bone fragments models(It is referred to as model subject to registration, object module)Initial correspondence;5)Optimize initial correspondence using improved ICP algorithm, obtain final transformation matrix;6)Transformation matrix obtained in the previous step is acted in model subject to registration, obtains the splicing result of two bone fragments models.Method flow is as shown in Figure 1.

Description

一种基于特征匹配的骨骼碎片拼接方法A Skeleton Fragment Assembling Method Based on Feature Matching

技术领域technical field

本发明涉及计算机图形和计算机辅助外科数字化设计技术领域,主要涉及一种基于特征匹配的骨骼碎片拼接方法The invention relates to the technical field of computer graphics and computer-aided surgical digital design, and mainly relates to a bone fragment splicing method based on feature matching

背景技术Background technique

上个世纪90年初,国内外学者开始将计算机技术如计算机图形图像学、虚拟现实技术等应用于颅颌面外科中,使传统的颅颌面外科向数字化、微创化的方向发展,并成为医学领域一项重要的发展方向。颅颌面区域包含很多重要的血管及神经组织,且兼顾着面容美观,这些原因都对颅颌面区域手术的精确度提出了更高的要求。传统的手术方式主要依靠医生的个人外科手术经验,导致手术时间较长,对患者造成的创伤较大。因此针对颅颌面部位的计算机辅助手术规划一直是数字化外科的热门研究领域。In the early 1990s, domestic and foreign scholars began to apply computer technology such as computer graphics and imaging and virtual reality technology to craniofacial surgery, making traditional craniofacial surgery develop in the direction of digitalization and minimal invasiveness, and become An important direction of development in the medical field. The craniofacial region contains many important blood vessels and nerve tissues, and it also takes into account the beauty of the face. These reasons put forward higher requirements for the accuracy of craniofacial surgery. The traditional surgical method mainly relies on the doctor's personal surgical experience, which results in a longer operation time and greater trauma to the patient. Therefore, computer-aided surgical planning for craniomaxillofacial parts has always been a hot research field in digital surgery.

本发明专利针对颅颌面部骨折创伤的复位,设计一种基于三维模型特征提取和三维配准技术的骨骼碎片修复技术,用于辅助医生进行术前手术规划,制定合理的手术方案,从而降低手术过程对患者的二次伤害,提高手术的成功率。Aiming at the reduction of craniofacial fracture trauma, the patent of this invention designs a bone fragment repair technology based on three-dimensional model feature extraction and three-dimensional registration technology, which is used to assist doctors in preoperative surgical planning and formulate reasonable surgical plans, thereby reducing The secondary injury to the patient during the operation improves the success rate of the operation.

据国内外相关的资料统计表明,下颌骨骨折案例占颅颌面损伤案例总数的25%-28%,占颌面骨骨折案例总数的55%-72%。因此,本发明专利对颅颌面区域下颌骨骨折修复有着重要的应用价值和广阔的应用前景。According to relevant statistics at home and abroad, mandibular fractures account for 25%-28% of the total number of craniofacial injuries and 55%-72% of the total number of maxillofacial bone fractures. Therefore, the patent of the present invention has important application value and broad application prospects for mandibular fracture repair in craniomaxillofacial region.

发明内容Contents of the invention

本发明的目的在于:利用相关的计算机技术,为最容易遭受损伤的颅頜面部,提供术前规划设计方法,辅助医生制定术前手术方案。The purpose of the present invention is to provide a preoperative planning and design method for the craniomaxillofacial region, which is most vulnerable to injury, by using relevant computer technology, and assist doctors in formulating a preoperative operation plan.

本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:

一种基于特征匹配的骨骼碎片拼接方法,技术方案如下:A bone fragment splicing method based on feature matching, the technical scheme is as follows:

1)从重建的三维骨骼碎片模型上,手动提取断裂面区域;本发明所用的三维模型,重建于患者的CT图像数据。1) From the reconstructed three-dimensional bone fragment model, manually extract the fracture surface area; the three-dimensional model used in the present invention is reconstructed from the patient's CT image data.

2)对提取断裂面区域,基于3D-SIFT特征提取算法,提取断裂区域的特征点;2) For the extracted fracture surface area, based on the 3D-SIFT feature extraction algorithm, extract the feature points of the fracture area;

传统的3D-SIFT特征提取算法,选取特征点的原则是选取模型中曲率较大的数据点,本发明对传统算法做了进一步的改进,通过设置最小的曲率阈值去除模型中曲率较小的候选关键点,以获得关键部位的特征点,提高配准精度和效率;主要包括三个步骤:In the traditional 3D-SIFT feature extraction algorithm, the principle of selecting feature points is to select data points with larger curvatures in the model. The present invention further improves the traditional algorithm by setting the minimum curvature threshold to remove candidates with smaller curvatures in the model. Key points to obtain feature points of key parts and improve registration accuracy and efficiency; mainly includes three steps:

2.1)为三维模型建立尺度空间及高斯金字塔;2.1) Establish scale space and Gaussian pyramid for 3D model;

2.2)寻找候选的特征点及去除尺度空间内对比度低的特征点;2.2) Find candidate feature points and remove feature points with low contrast in the scale space;

2.3)通过设置最小的曲率阈值,去除模型中曲率较小的候选关键点,剩余候选特征点即为获得的关键特征点。2.3) By setting the minimum curvature threshold, the candidate key points with smaller curvature in the model are removed, and the remaining candidate feature points are the obtained key feature points.

3)为提取到每一个特征点,计算并建立快速点特征直方图FPFH描述子,建立过程如下:3) To extract each feature point, calculate and establish a fast point feature histogram FPFH descriptor, the establishment process is as follows:

3.1)对于每个特征点p,利用公式(1)计算它与它的所有邻近点之间的三元组(f1,f2,f3),然后将所有的三元组以统计方式构建直方图,也即计算点p的简化的特征直方图SPFH;3.1) For each feature point p, use the formula (1) to calculate the triplet (f1, f2, f3) between it and all its neighbors, and then construct a histogram statistically for all triplets, That is, the simplified feature histogram SPFH of the calculation point p;

(1) (1)

3.2)为p的邻域内的每个点pi查询它的邻近点,并计算每个pi点的SPFH值,使用邻近点pi的SPFH值来计算查询点p的FPFH值,具体计算方式见公式(2)3.2) Query its neighboring points for each point p i in the neighborhood of p, and calculate the SPFH value of each p i point, use the SPFH value of the neighboring point p i to calculate the FPFH value of the query point p, the specific calculation method See formula (2)

(2) (2)

4)基于提取的特征点以及特征点对应的FPFH特征描述子,建立两个骨骼碎片模型(分别称为源模型及目标模型)之间的对应关系点对;4) Based on the extracted feature points and the FPFH feature descriptors corresponding to the feature points, establish the corresponding point pairs between the two bone fragment models (referred to as the source model and the target model respectively);

本发明采用两种方式建立特征对应关系,一种是直接查询,一个是循环迭代查最优。直接查询算法精确性高;但时间复杂度也高,导致效率偏低。循环迭代查最优方法的主要思想是通过不断减小模型点集之间的距离差值来寻找最优的对应关系,是以最终配准效果为导向的一个算法。本发明结合这两个算法的优点,建立两个模型之前的初步对应关系。通过直接查询,排除一部分特征较弱的特征点,然后再为剩余特征点基于循环迭代查最优方法建立对应关系,以保证精确性,并提高效率。算法步骤如下所示:The present invention adopts two ways to establish feature correspondences, one is direct query, and the other is circular iterative search for optimality. The direct query algorithm has high accuracy; but the time complexity is also high, resulting in low efficiency. The main idea of the cyclic iterative optimal method is to find the optimal correspondence by continuously reducing the distance difference between the model point sets, and it is an algorithm oriented to the final registration effect. The present invention combines the advantages of these two algorithms to establish the preliminary corresponding relationship before the two models. Through direct query, some feature points with weaker features are excluded, and then the corresponding relationship is established for the remaining feature points based on the optimal method of circular iterative search to ensure accuracy and improve efficiency. The algorithm steps are as follows:

4.1)在待配准模型的特征点中随机选择s个特征点,这s个特征点要保证它们两两之间的距离大于设定的一个阈值;4.1) Randomly select s feature points among the feature points of the model to be registered, and the distance between these s feature points must be greater than a set threshold;

4.2)对于选取的s个特征点中的每一个点Si,在目标模型特征点的特征描述子空间内,选择k个近邻点, k取值为10,从10个点中随机选取一个作为与点Si相对应的关系点,这样就构成了s个对应的关系点对;4.2) For each point S i among the selected s feature points, in the feature description subspace of the target model feature point, select k neighboring points, k is 10, and randomly select one of the 10 points as The relationship points corresponding to point S i , thus forming s corresponding relationship point pairs;

4.3)根据得到的s个对应关系点对,通过SVD的方法计算出变换矩阵T,并使用两个模型间的距离误差函数值来对这次变换进行评估,如果优于上次循环,则替换变换矩阵,否则,保留上次循环中的变换矩阵T;4.3) According to the obtained s corresponding relationship point pairs, calculate the transformation matrix T by the method of SVD, and use the distance error function value between the two models to evaluate this transformation, if it is better than the last cycle, replace Transformation matrix, otherwise, keep the transformation matrix T in the last loop;

4.4)重复以上三个步骤直到达到最大循环次数;在每次循环中,只存储这次循环得到的变换矩阵与上一次循环中所存储的变换矩阵中的最优值,即使得两个模型之间的距离误差函数值更小的变换矩阵T。4.4) Repeat the above three steps until the maximum number of cycles is reached; in each cycle, only the optimal value of the transformation matrix obtained in this cycle and the transformation matrix stored in the previous cycle is stored, that is, the difference between the two models The transformation matrix T with smaller distance error function value.

5)使用改进的ICP算法优化初始对应关系,得到最终变换矩阵;5) Use the improved ICP algorithm to optimize the initial correspondence to obtain the final transformation matrix;

为了进一步优化配准结果,本发明对改进了迭代就近点法(ICP),用于进一步优化配准结果,以得到更优的变换矩阵;步骤如下:In order to further optimize the registration result, the present invention improves the iterative closest point method (ICP) to further optimize the registration result to obtain a better transformation matrix; the steps are as follows:

5.1)根据最近邻选择算法构建点对:为带配准模型Mi中的每个点,在目标输入模型T中搜索出离它最近的点,组成一个对应关系点对,最终找出两个点集中所有的对应点对。本发明为了提高ICP算法的抗噪能力,当最近点与查询点之间的距离小于所设的阈值时,才构成一个对应关系点对;5.1) Construct point pairs according to the nearest neighbor selection algorithm: for each point in the model Mi with registration, search for the nearest point in the target input model T to form a corresponding point pair, and finally find two All corresponding point pairs in the point set. In order to improve the anti-noise capability of the ICP algorithm, the present invention only constitutes a corresponding point pair when the distance between the closest point and the query point is less than the set threshold;

5.2)根据上一步计算得到的对应关系点对集合,计算两个模型之间刚性变换的旋转矩阵R以及平移向量t;5.2) Calculate the rotation matrix R and translation vector t of the rigid transformation between the two models according to the set of corresponding point pairs calculated in the previous step;

5.3)根据得到的旋转矩阵和平移向量R、t,将Mi进行变换得到新的模型Mi+1;之后,传统方法通过计算Mi+1与Mi之间的距离平方和,以连续两次距离平方和之差的绝对值作为是否收敛的依据,来判断是否停止迭代。本发明将终止条件设定为连续两次模型之间的误差变化率的绝对值Epsilon,其中Epsilon=|(Ec-Ec-1)/Ec-1|,Ec是两个模型之间的对应点对误差之和,以此来提高算法的效率;5.3) According to the obtained rotation matrix and translation vector R, t, transform Mi to obtain a new model Mi +1 ; after that, the traditional method calculates the sum of the squares of the distance between Mi +1 and Mi to continuously The absolute value of the difference between the sum of squares of the two distances is used as the basis for convergence to determine whether to stop the iteration. The present invention sets the termination condition as the absolute value Epsilon of the error rate of change between two consecutive models, wherein Epsilon=|( Ec - Ec-1 )/ Ec-1 |, Ec is the difference between the two models The sum of the corresponding point pair errors between them is used to improve the efficiency of the algorithm;

5.4)重复以上步骤,直到收敛或达到设定的最大迭代次数,保存变换矩阵。5.4) Repeat the above steps until convergence or reach the set maximum number of iterations, save the transformation matrix.

6)将变换矩阵作用于待配准模型,得到两个模型拼接后的结果;6) Apply the transformation matrix to the model to be registered to obtain the result of splicing the two models;

通过对上述步骤的重复使用,可以得到多个碎片模型的拼接结果,实现由于骨折创伤导致的碎片模型的正确复位。By repeating the above steps, the splicing results of multiple fragment models can be obtained, and the correct reset of the fragment models caused by fracture trauma can be realized.

综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, owing to adopting above-mentioned technical scheme, the beneficial effect of the present invention is:

1.通过三维特征提取技术和三维配准技术,实现了多个骨骼碎片模型的拼接修复,让医生在术前对骨骼碎片的恢复位置有初步的方案,为医生提供术前指导,以此缩短手术时间,减少手术中对患者的二次伤害,在下颌骨骨折修复中有着十分广阔的应用前景和重要的应用价值。1. Through 3D feature extraction technology and 3D registration technology, the splicing and repairing of multiple bone fragment models is realized, so that doctors can have a preliminary plan for the restoration position of bone fragments before operation, and provide preoperative guidance for doctors, so as to shorten the It has a very broad application prospect and important application value in the repair of mandibular fractures by reducing the operation time and reducing the secondary injury to the patient during the operation.

附图说明Description of drawings

本发明将通过例子并参照附图的方式说明,其中:The invention will be illustrated by way of example with reference to the accompanying drawings, in which:

图1 骨骼碎片模型及提取的断裂面Fig.1 Skeleton fragment model and extracted fracture surface

图2特征点的SPFH特征直方图Figure 2 SPFH feature histogram of feature points

图3一例不同视角的骨骼碎片模型Figure 3 A bone fragment model from different perspectives

图4不同视角的图3碎片模型的拼接模型Figure 4 The splicing model of the fragment model in Figure 3 from different perspectives

图5第一例不同视角的部分下颌骨骼碎片模型Fig.5 Partial mandibular bone fragment model from different perspectives of the first case

图6不同视角的图5碎片模型的拼接修复模型Figure 6 The splicing repair model of the fragment model in Figure 5 from different perspectives

图7第二例不同视角的部分下颌骨骼碎片模型Figure 7 Part of the mandibular bone fragment model from different perspectives in the second case

图8不同视角的图7碎片模型的拼接修复模型Figure 8 The splicing repair model of the fragment model in Figure 7 from different perspectives

图9 第三例不同视角的完整下颌骨骨折模型Fig.9 The complete mandibular fracture model of the third case from different perspectives

图10不同视角的图9碎片模型的拼接修复模型Figure 10 The splicing repair model of the fragment model in Figure 9 from different perspectives

具体实施方式Detailed ways

本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。下面结合图1-图10对本发明作说明:All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps. Below in conjunction with Fig. 1-Fig. 10 the present invention is described:

一种基于特征匹配的骨骼碎片拼接方法,图1为本技术整体流程图;详细步骤如下:A method for splicing bone fragments based on feature matching, Figure 1 is the overall flow chart of the technology; the detailed steps are as follows:

1)从重建的三维骨骼碎片模型上,手动提取断裂面区域。本发明所用的三维模型,重建于患者的CT图像数据。如图2所示,左边为导入的两个下颌骨碎片模型,右边为分别在两个模型上提取的断裂面区域;1) Manually extract the fracture surface area from the reconstructed 3D bone fragment model. The three-dimensional model used in the present invention is reconstructed from CT image data of the patient. As shown in Figure 2, the two imported mandibular fragment models are on the left, and the fracture surface regions extracted from the two models are on the right;

2)对提取断裂面区域,基于3D-SIFT特征提取算法,提取断裂区域的特征点,如图3所示,左边为导入的一个碎片模型,右边为在该碎片模型提取的特征点的显示;2) To extract the fracture surface area, based on the 3D-SIFT feature extraction algorithm, extract the feature points of the fracture area, as shown in Figure 3, the left side is a fragment model imported, and the right side is the display of the feature points extracted in the fragment model;

3) 为提取到每一个特征点,计算并建立快速点特征直方图FPFH描述子;图4所示为一个特征点的SPFH特征直方图;3) To extract each feature point, calculate and establish a fast point feature histogram FPFH descriptor; Figure 4 shows the SPFH feature histogram of a feature point;

4)基于提取的特征点以及特征点对应的FPFH特征描述子,建立两个骨骼碎片模型(分别称为源模型及目标模型)之间的对应关系点对;4) Based on the extracted feature points and the FPFH feature descriptors corresponding to the feature points, establish the corresponding point pairs between the two bone fragment models (referred to as the source model and the target model respectively);

5)为了进一步的优化配准结果,本发明对大家熟知迭代就近点法(ICP)进行了改进,用于进一步优化配准结果,以得到更优的变换矩阵;5) In order to further optimize the registration result, the present invention improves the well-known iterative closest point method (ICP), which is used to further optimize the registration result to obtain a better transformation matrix;

6) 将变换矩阵作用于待配准模型,得到两个模型拼接后的结果;6) Apply the transformation matrix to the model to be registered to obtain the result of splicing the two models;

下面为通过三组数据展示本发明结果:Below is to show the result of the present invention by three groups of data:

图5,图7,图9为实验的三组数据,三组骨骼碎片模型Figure 5, Figure 7, and Figure 9 are three sets of experimental data and three sets of bone fragment models

图6,图8,图10是基于上述步骤得到三组数据的实验结果。三组实验说明基于断裂区域的拼接修复方式对常见的下颌骨骨折案例能够成功地进行修复重建。Figure 6, Figure 8, and Figure 10 are the experimental results of three sets of data obtained based on the above steps. Three groups of experiments show that splicing repair methods based on fractured regions can successfully repair and reconstruct common mandibular fractures.

Claims (5)

1.该发明公开了一种基于特征匹配的骨骼碎片拼接方法,通过在术前对每两个碎片模型之间进行配准,最终实现全部骨折碎片模型的拼接,生成术前骨折修复方案,缩短手术时间,降低手术时间过长给病人带来的二次伤害;其特征在于,所述方法包含如下步骤:1. This invention discloses a bone fragment splicing method based on feature matching. By registering between every two fragment models before operation, the splicing of all fracture fragment models is finally realized, and a preoperative fracture repair plan is generated, shortening Operation time, reduce the secondary injury that operation time is too long to patient; It is characterized in that, described method comprises the following steps: 1)导入三维骨骼碎片模型,手动提取碎片模型的断裂面;1) Import the 3D bone fragment model, and manually extract the fracture surface of the fragment model; 2)基于3D-SIFT算法,提取骨骼碎片模型断裂面上的关键点;2) Based on the 3D-SIFT algorithm, extract the key points on the fracture surface of the bone fragment model; 3)使用点特征直方图FPFH算法为提取的关键点构建特征描述子;3) Use the point feature histogram FPFH algorithm to construct feature descriptors for the extracted key points; 4)基于提取的关键点和相应的描述子建立两个骨骼碎片模型(分别称为待配准模型、目标模型)的初始对应关系;4) Based on the extracted key points and the corresponding descriptors, establish the initial corresponding relationship between the two bone fragment models (referred to as the registration model and the target model); 5)使用改进的ICP算法优化初始对应关系,得到最终变换矩阵;5) Use the improved ICP algorithm to optimize the initial correspondence to obtain the final transformation matrix; 6)作用上一步得到的变换矩阵于待配准模型,得到两个骨骼碎片模型的拼接结果。6) Apply the transformation matrix obtained in the previous step to the model to be registered to obtain the splicing result of the two bone fragment models. 2.根据权利要求1 所述的一种基于特征匹配的骨骼碎片拼接方法,其特在于,所述步骤2)包含如下步骤:2. A method for splicing bone fragments based on feature matching according to claim 1, characterized in that said step 2) includes the following steps: 2.1)为三维模型建立尺度空间及高斯金字塔;2.1) Establish scale space and Gaussian pyramid for 3D model; 2.2)计算候选的特征点及去除尺度空间内对比度低的特征点;2.2) Calculate candidate feature points and remove feature points with low contrast in the scale space; 2.3)通过设置最小的曲率阈值,去除模型中曲率较小的候选关键点,剩余候选特征点即为获得的关键特征点。2.3) By setting the minimum curvature threshold, the candidate key points with smaller curvature in the model are removed, and the remaining candidate feature points are the obtained key feature points. 3.根据权利要求1 所述的一种基于特征匹配的骨骼碎片拼接方法,其特在于,所述步骤3)包含如下步骤:3. A method for splicing bone fragments based on feature matching according to claim 1, wherein said step 3) includes the following steps: 3.1)对于提取的每个特征点p,计算它的简化特征直方图SPFH;3.1) For each feature point p extracted, calculate its simplified feature histogram SPFH; 3.2)为p的邻域内的每个点pi查询它的邻近点,并计算每个pi点的SPFH值,使用邻近点pi的SPFH值来计算查询点p的FPFH值。3.2) Query its neighboring points for each point p i in the neighborhood of p, and calculate the SPFH value of each point p i , and use the SPFH value of the neighboring point p i to calculate the FPFH value of the query point p. 4.根据权利要求1 所述的一种基于特征匹配的骨骼碎片拼接方法,其特在于,所述步骤4)包含如下步骤:4. A method for splicing bone fragments based on feature matching according to claim 1, characterized in that said step 4) includes the following steps: 4.1)在待配准模型的特征点中随机选择s个特征点,这s个特征点要保证它们两两之间的距离大于设定的一个阈值;4.1) Randomly select s feature points among the feature points of the model to be registered, and the distance between these s feature points must be greater than a set threshold; 4.2)对于选取的s个特征点中的每一个点Si,在目标模型特征点的特征描述子空间内,选择k个近邻点, k取值为10,从这10个点中随机选取一个作为与点Si相对应的关系点,这样就构成了s个对应的关系点对;4.2) For each point S i among the selected s feature points, in the feature description subspace of the target model feature point, select k neighboring points, where the value of k is 10, and randomly select one of the 10 points As the relationship point corresponding to the point S i , thus forming s corresponding relationship point pairs; 4.3)根据得到的s个对应关系点对,通过SVD的方法计算出变换矩阵T,并使用两个模型间的距离误差函数值来对这次变换进行评估,如果优于上次循环,则替换变换矩阵,否则,保留上次循环中的变换矩阵T;4.3) According to the obtained s corresponding relationship point pairs, calculate the transformation matrix T by the method of SVD, and use the distance error function value between the two models to evaluate this transformation, if it is better than the last cycle, replace Transformation matrix, otherwise, keep the transformation matrix T in the last loop; 4.4)重复以上三个步骤直到达到最大循环次数;在每次循环中,只存储这次循环得到的变换矩阵与上一次循环中所存储的变换矩阵中的最优值,即使得两个模型之间的距离误差函数值更小的变换矩阵T。4.4) Repeat the above three steps until the maximum number of cycles is reached; in each cycle, only the optimal value of the transformation matrix obtained in this cycle and the transformation matrix stored in the previous cycle is stored, that is, the difference between the two models The transformation matrix T with smaller distance error function value. 5.根据权利要求1 所述的一种基于特征匹配的骨骼碎片拼接方法,其特在于,所述步骤5)包含如下步骤:5. A method for splicing bone fragments based on feature matching according to claim 1, characterized in that said step 5) includes the following steps: 5.1)根据最近邻选择算法构建点对:为待配准模型Mi中的每个点,在目标输入模型T中搜索出离它最近的点,组成一个对应关系点对,最终找出两个点集中所有的对应点对;本发明为了提高ICP算法的抗噪能力,当最近点与查询点之间的距离小于所设的阈值时,才构成一个对应关系点对;5.1) Construct point pairs according to the nearest neighbor selection algorithm: for each point in the model Mi to be registered, search for the nearest point in the target input model T to form a corresponding point pair, and finally find two All corresponding point pairs in the point set; in order to improve the anti-noise ability of the ICP algorithm, the present invention forms a corresponding point pair when the distance between the nearest point and the query point is less than the set threshold; 5.2)根据上一步计算得到的对应关系点对集合,计算两个模型之间刚性变换的旋转矩阵R以及平移向量t;5.2) Calculate the rotation matrix R and translation vector t of the rigid transformation between the two models according to the set of corresponding point pairs calculated in the previous step; 5.3)根据得到的旋转矩阵和平移向量R、t,将Mi进行变换得到新的模型Mi+1;计算连续两次模型之间的误差变化率的绝对值Epsilon,其中Epsilon=|(Ec-Ec-1)/Ec-1|,Ec是两个模型之间的对应点对误差之和,并以此作为是否收敛的依据,来判断是否停止迭代;5.3) According to the obtained rotation matrix and translation vector R, t, transform Mi to obtain a new model Mi +1 ; calculate the absolute value Epsilon of the error change rate between two consecutive models, where Epsilon=|(E c -E c-1 )/E c-1 |, E c is the sum of the corresponding point pair errors between the two models, and use this as the basis for convergence to determine whether to stop iterations; 5.4)重复以上步骤,直到收敛或达到我们所设定的最大迭代次数,保存变换矩阵。5.4) Repeat the above steps until it converges or reaches the maximum number of iterations we set, and save the transformation matrix.
CN201711165008.3A 2017-11-21 2017-11-21 A Feature Matching-Based Bone Fragment Splicing Method Active CN108154525B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711165008.3A CN108154525B (en) 2017-11-21 2017-11-21 A Feature Matching-Based Bone Fragment Splicing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711165008.3A CN108154525B (en) 2017-11-21 2017-11-21 A Feature Matching-Based Bone Fragment Splicing Method

Publications (2)

Publication Number Publication Date
CN108154525A true CN108154525A (en) 2018-06-12
CN108154525B CN108154525B (en) 2022-06-07

Family

ID=62468947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711165008.3A Active CN108154525B (en) 2017-11-21 2017-11-21 A Feature Matching-Based Bone Fragment Splicing Method

Country Status (1)

Country Link
CN (1) CN108154525B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035311A (en) * 2018-07-11 2018-12-18 大连理工大学 A kind of curved bone fracture autoregistration and internal fixation steel plate pre-bending modeling method
CN110009562A (en) * 2019-01-24 2019-07-12 北京航空航天大学 A method of comminuted fracture threedimensional model is spliced using template
CN110415361A (en) * 2019-07-26 2019-11-05 北京罗森博特科技有限公司 It is broken object joining method and device
CN111383353A (en) * 2020-04-01 2020-07-07 大连理工大学 Broken bone model registration method based on Gaussian mixture model and contour descriptor
CN112884653A (en) * 2021-03-01 2021-06-01 西北大学 Broken terracotta warriors fragment splicing method and system based on fracture surface information
CN113409301A (en) * 2021-07-12 2021-09-17 上海精劢医疗科技有限公司 Point cloud segmentation-based femoral neck registration method, system and medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030300A (en) * 2007-02-08 2007-09-05 深圳大学 Method for matching depth image
CN103337065A (en) * 2013-05-22 2013-10-02 西安电子科技大学 Non-rigid registering method of mouse three-dimensional CT image
CN104299260A (en) * 2014-09-10 2015-01-21 西南交通大学 Contact network three-dimensional reconstruction method based on SIFT and LBP point cloud registration
CN104463953A (en) * 2014-11-11 2015-03-25 西北工业大学 Three-dimensional reconstruction method based on inertial measurement unit and RGB-D sensor
CN105447908A (en) * 2015-12-04 2016-03-30 山东山大华天软件有限公司 Dentition model generation method based on oral cavity scanning data and CBCT (Cone Beam Computed Tomography) data
CN105974386A (en) * 2016-05-05 2016-09-28 乐山师范学院 Multistatic radar multi-target imaging positioning method
CN106056053A (en) * 2016-05-23 2016-10-26 西安电子科技大学 Human posture recognition method based on skeleton feature point extraction
CN106296693A (en) * 2016-08-12 2017-01-04 浙江工业大学 Based on 3D point cloud FPFH feature real-time three-dimensional space-location method
CN106407985A (en) * 2016-08-26 2017-02-15 中国电子科技集团公司第三十八研究所 Three-dimensional human head point cloud feature extraction method and device thereof
CN106963489A (en) * 2017-05-12 2017-07-21 常州工程职业技术学院 A kind of individuation femoral fracture reset model construction method
CN107123161A (en) * 2017-06-14 2017-09-01 西南交通大学 A kind of the whole network three-dimensional rebuilding method of contact net zero based on NARF and FPFH

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030300A (en) * 2007-02-08 2007-09-05 深圳大学 Method for matching depth image
CN103337065A (en) * 2013-05-22 2013-10-02 西安电子科技大学 Non-rigid registering method of mouse three-dimensional CT image
CN104299260A (en) * 2014-09-10 2015-01-21 西南交通大学 Contact network three-dimensional reconstruction method based on SIFT and LBP point cloud registration
CN104463953A (en) * 2014-11-11 2015-03-25 西北工业大学 Three-dimensional reconstruction method based on inertial measurement unit and RGB-D sensor
CN105447908A (en) * 2015-12-04 2016-03-30 山东山大华天软件有限公司 Dentition model generation method based on oral cavity scanning data and CBCT (Cone Beam Computed Tomography) data
CN105974386A (en) * 2016-05-05 2016-09-28 乐山师范学院 Multistatic radar multi-target imaging positioning method
CN106056053A (en) * 2016-05-23 2016-10-26 西安电子科技大学 Human posture recognition method based on skeleton feature point extraction
CN106296693A (en) * 2016-08-12 2017-01-04 浙江工业大学 Based on 3D point cloud FPFH feature real-time three-dimensional space-location method
CN106407985A (en) * 2016-08-26 2017-02-15 中国电子科技集团公司第三十八研究所 Three-dimensional human head point cloud feature extraction method and device thereof
CN106963489A (en) * 2017-05-12 2017-07-21 常州工程职业技术学院 A kind of individuation femoral fracture reset model construction method
CN107123161A (en) * 2017-06-14 2017-09-01 西南交通大学 A kind of the whole network three-dimensional rebuilding method of contact net zero based on NARF and FPFH

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
LUWEN QIU 等: "An Automatic Registration Algorithm for 3D Maxillofacial Model", 《3D RESEARCH》 *
刘斌: "股骨头坏死与骨折计算机辅助手术技术研究", 《万方数据》 *
周朗明 等: "旋转平台点云数据的配准方法", 《测绘学报》 *
杨旭静 等: "考虑位移约束的功能梯度结构ICM拓扑优化方法", 《湖南大学学报(自然科学版)》 *
洪菁 等: "基于模糊粗糙集的瓦斯涌出量预测模型的研究", 《微计算机信息》 *
翟优 等: "自适应对比度阈值SIFT算法研究", 《计算机测量与控制》 *
许万林: "大规模层次图集的可视化研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *
谢颖: "基于三维激光扫描的粮仓储量测量中点云数据处理技术的研究", 《中国优秀硕士学位论文全文数据库 农业科技辑》 *
鲁俊: "基于kinect三维人体重建中配准算法的研究与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035311A (en) * 2018-07-11 2018-12-18 大连理工大学 A kind of curved bone fracture autoregistration and internal fixation steel plate pre-bending modeling method
CN109035311B (en) * 2018-07-11 2021-10-01 大连理工大学 A method for automatic registration of curved bone fractures and pre-bending modeling method of internal fixation plate
CN110009562A (en) * 2019-01-24 2019-07-12 北京航空航天大学 A method of comminuted fracture threedimensional model is spliced using template
CN110415361A (en) * 2019-07-26 2019-11-05 北京罗森博特科技有限公司 It is broken object joining method and device
CN110415361B (en) * 2019-07-26 2020-05-15 北京罗森博特科技有限公司 Method and device for splicing broken objects
CN111383353A (en) * 2020-04-01 2020-07-07 大连理工大学 Broken bone model registration method based on Gaussian mixture model and contour descriptor
CN111383353B (en) * 2020-04-01 2023-05-23 大连理工大学 Registration Method of Broken Bone Model Based on Gaussian Mixture Model and Contour Descriptor
CN112884653A (en) * 2021-03-01 2021-06-01 西北大学 Broken terracotta warriors fragment splicing method and system based on fracture surface information
CN113409301A (en) * 2021-07-12 2021-09-17 上海精劢医疗科技有限公司 Point cloud segmentation-based femoral neck registration method, system and medium

Also Published As

Publication number Publication date
CN108154525B (en) 2022-06-07

Similar Documents

Publication Publication Date Title
CN108154525A (en) A kind of matched bone fragments joining method of feature based
CN109984843B (en) Fracture closed reduction navigation system and method
Nithiananthan et al. Demons deformable registration for CBCT‐guided procedures in the head and neck: convergence and accuracy
CN104200524B (en) A kind of three-dimensional grid skeleton model averaging method towards plate design
CN113966204B (en) Method for automatically planning a trajectory for medical interventions
Lin et al. BATFormer: Towards boundary-aware lightweight transformer for efficient medical image segmentation
CN102335033B (en) Individual craniofacial bone piece auxiliary positioning guide plate system and preparation method thereof
Pietruski et al. Supporting fibula free flap harvest with augmented reality: a proof‐of‐concept study
WO2023000560A1 (en) Reduction trajectory automatic planning method for parallel fracture surgical robot
CN109859833A (en) Method and device for evaluating the therapeutic effect of ablation surgery
CN110288638A (en) A method and system for rough registration of broken bone model and method for registration of broken bone model
CN104240298A (en) Three-dimensional finite element constructing method based on medical image data LISS-DF to cure distal femur fracture
WO2023236367A1 (en) Planning method and apparatus for tibia osteotomy intelligent navigation system
CN107874831A (en) A kind of cranium Maxillary region guide plate design method based on implicit function
WO2023197752A1 (en) Margin path generation method and system for tumor surgery, and storage medium
Netherton et al. An automated treatment planning framework for spinal radiation therapy and vertebral-level second check
WO2024065343A1 (en) System and method for registration of preoperative and intraoperative liver point cloud data, and terminal and storage medium
CN103871104A (en) Method for constructing three-dimension finite element model which treats tibial plateau posterior-lateral fracture with different inner fixing manners
CN118037793B (en) A registration method and device for intraoperative X-ray and CT images
Deng et al. A data-driven approach for assembling intertrochanteric fractures by axis-position alignment
Mejía-Rodríguez et al. Elastic registration based on particle filter in radiotherapy images with brain deformations
Guo et al. Comprehensive and clinically accurate head and neck organs at risk delineation via stratified deep learning: a large-scale multi-institutional study
He et al. A robust and automatic CT‐3D ultrasound registration method based on segmentation, context, and edge hybrid metric
Zhong et al. Morphological analysis of tumor regression and its impact on deformable image registration for adaptive radiotherapy of lung cancer patients
CN114820730A (en) CT and CBCT registration method based on pseudo CT

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant