CN108154525A - A kind of matched bone fragments joining method of feature based - Google Patents
A kind of matched bone fragments joining method of feature based Download PDFInfo
- Publication number
- CN108154525A CN108154525A CN201711165008.3A CN201711165008A CN108154525A CN 108154525 A CN108154525 A CN 108154525A CN 201711165008 A CN201711165008 A CN 201711165008A CN 108154525 A CN108154525 A CN 108154525A
- Authority
- CN
- China
- Prior art keywords
- point
- model
- feature
- models
- transformation matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012634 fragment Substances 0.000 title claims abstract description 44
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000011159 matrix material Substances 0.000 claims abstract description 27
- 230000009466 transformation Effects 0.000 claims abstract description 27
- 230000008676 import Effects 0.000 claims abstract 2
- 230000008439 repair process Effects 0.000 claims description 9
- 208000014674 injury Diseases 0.000 claims description 8
- 208000027418 Wounds and injury Diseases 0.000 claims description 5
- 230000006378 damage Effects 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 2
- 238000004904 shortening Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract description 8
- 238000010276 construction Methods 0.000 abstract 1
- 239000003814 drug Substances 0.000 abstract 1
- 210000004373 mandible Anatomy 0.000 abstract 1
- 208000010392 Bone Fractures Diseases 0.000 description 11
- 206010017076 Fracture Diseases 0.000 description 10
- 208000006153 Mandibular Fractures Diseases 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003796 beauty Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30008—Bone
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Processing Or Creating Images (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机图形和计算机辅助外科数字化设计技术领域,主要涉及一种基于特征匹配的骨骼碎片拼接方法The invention relates to the technical field of computer graphics and computer-aided surgical digital design, and mainly relates to a bone fragment splicing method based on feature matching
背景技术Background technique
上个世纪90年初,国内外学者开始将计算机技术如计算机图形图像学、虚拟现实技术等应用于颅颌面外科中,使传统的颅颌面外科向数字化、微创化的方向发展,并成为医学领域一项重要的发展方向。颅颌面区域包含很多重要的血管及神经组织,且兼顾着面容美观,这些原因都对颅颌面区域手术的精确度提出了更高的要求。传统的手术方式主要依靠医生的个人外科手术经验,导致手术时间较长,对患者造成的创伤较大。因此针对颅颌面部位的计算机辅助手术规划一直是数字化外科的热门研究领域。In the early 1990s, domestic and foreign scholars began to apply computer technology such as computer graphics and imaging and virtual reality technology to craniofacial surgery, making traditional craniofacial surgery develop in the direction of digitalization and minimal invasiveness, and become An important direction of development in the medical field. The craniofacial region contains many important blood vessels and nerve tissues, and it also takes into account the beauty of the face. These reasons put forward higher requirements for the accuracy of craniofacial surgery. The traditional surgical method mainly relies on the doctor's personal surgical experience, which results in a longer operation time and greater trauma to the patient. Therefore, computer-aided surgical planning for craniomaxillofacial parts has always been a hot research field in digital surgery.
本发明专利针对颅颌面部骨折创伤的复位,设计一种基于三维模型特征提取和三维配准技术的骨骼碎片修复技术,用于辅助医生进行术前手术规划,制定合理的手术方案,从而降低手术过程对患者的二次伤害,提高手术的成功率。Aiming at the reduction of craniofacial fracture trauma, the patent of this invention designs a bone fragment repair technology based on three-dimensional model feature extraction and three-dimensional registration technology, which is used to assist doctors in preoperative surgical planning and formulate reasonable surgical plans, thereby reducing The secondary injury to the patient during the operation improves the success rate of the operation.
据国内外相关的资料统计表明,下颌骨骨折案例占颅颌面损伤案例总数的25%-28%,占颌面骨骨折案例总数的55%-72%。因此,本发明专利对颅颌面区域下颌骨骨折修复有着重要的应用价值和广阔的应用前景。According to relevant statistics at home and abroad, mandibular fractures account for 25%-28% of the total number of craniofacial injuries and 55%-72% of the total number of maxillofacial bone fractures. Therefore, the patent of the present invention has important application value and broad application prospects for mandibular fracture repair in craniomaxillofacial region.
发明内容Contents of the invention
本发明的目的在于:利用相关的计算机技术,为最容易遭受损伤的颅頜面部,提供术前规划设计方法,辅助医生制定术前手术方案。The purpose of the present invention is to provide a preoperative planning and design method for the craniomaxillofacial region, which is most vulnerable to injury, by using relevant computer technology, and assist doctors in formulating a preoperative operation plan.
本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:
一种基于特征匹配的骨骼碎片拼接方法,技术方案如下:A bone fragment splicing method based on feature matching, the technical scheme is as follows:
1)从重建的三维骨骼碎片模型上,手动提取断裂面区域;本发明所用的三维模型,重建于患者的CT图像数据。1) From the reconstructed three-dimensional bone fragment model, manually extract the fracture surface area; the three-dimensional model used in the present invention is reconstructed from the patient's CT image data.
2)对提取断裂面区域,基于3D-SIFT特征提取算法,提取断裂区域的特征点;2) For the extracted fracture surface area, based on the 3D-SIFT feature extraction algorithm, extract the feature points of the fracture area;
传统的3D-SIFT特征提取算法,选取特征点的原则是选取模型中曲率较大的数据点,本发明对传统算法做了进一步的改进,通过设置最小的曲率阈值去除模型中曲率较小的候选关键点,以获得关键部位的特征点,提高配准精度和效率;主要包括三个步骤:In the traditional 3D-SIFT feature extraction algorithm, the principle of selecting feature points is to select data points with larger curvatures in the model. The present invention further improves the traditional algorithm by setting the minimum curvature threshold to remove candidates with smaller curvatures in the model. Key points to obtain feature points of key parts and improve registration accuracy and efficiency; mainly includes three steps:
2.1)为三维模型建立尺度空间及高斯金字塔;2.1) Establish scale space and Gaussian pyramid for 3D model;
2.2)寻找候选的特征点及去除尺度空间内对比度低的特征点;2.2) Find candidate feature points and remove feature points with low contrast in the scale space;
2.3)通过设置最小的曲率阈值,去除模型中曲率较小的候选关键点,剩余候选特征点即为获得的关键特征点。2.3) By setting the minimum curvature threshold, the candidate key points with smaller curvature in the model are removed, and the remaining candidate feature points are the obtained key feature points.
3)为提取到每一个特征点,计算并建立快速点特征直方图FPFH描述子,建立过程如下:3) To extract each feature point, calculate and establish a fast point feature histogram FPFH descriptor, the establishment process is as follows:
3.1)对于每个特征点p,利用公式(1)计算它与它的所有邻近点之间的三元组(f1,f2,f3),然后将所有的三元组以统计方式构建直方图,也即计算点p的简化的特征直方图SPFH;3.1) For each feature point p, use the formula (1) to calculate the triplet (f1, f2, f3) between it and all its neighbors, and then construct a histogram statistically for all triplets, That is, the simplified feature histogram SPFH of the calculation point p;
(1) (1)
3.2)为p的邻域内的每个点pi查询它的邻近点,并计算每个pi点的SPFH值,使用邻近点pi的SPFH值来计算查询点p的FPFH值,具体计算方式见公式(2)3.2) Query its neighboring points for each point p i in the neighborhood of p, and calculate the SPFH value of each p i point, use the SPFH value of the neighboring point p i to calculate the FPFH value of the query point p, the specific calculation method See formula (2)
(2) (2)
4)基于提取的特征点以及特征点对应的FPFH特征描述子,建立两个骨骼碎片模型(分别称为源模型及目标模型)之间的对应关系点对;4) Based on the extracted feature points and the FPFH feature descriptors corresponding to the feature points, establish the corresponding point pairs between the two bone fragment models (referred to as the source model and the target model respectively);
本发明采用两种方式建立特征对应关系,一种是直接查询,一个是循环迭代查最优。直接查询算法精确性高;但时间复杂度也高,导致效率偏低。循环迭代查最优方法的主要思想是通过不断减小模型点集之间的距离差值来寻找最优的对应关系,是以最终配准效果为导向的一个算法。本发明结合这两个算法的优点,建立两个模型之前的初步对应关系。通过直接查询,排除一部分特征较弱的特征点,然后再为剩余特征点基于循环迭代查最优方法建立对应关系,以保证精确性,并提高效率。算法步骤如下所示:The present invention adopts two ways to establish feature correspondences, one is direct query, and the other is circular iterative search for optimality. The direct query algorithm has high accuracy; but the time complexity is also high, resulting in low efficiency. The main idea of the cyclic iterative optimal method is to find the optimal correspondence by continuously reducing the distance difference between the model point sets, and it is an algorithm oriented to the final registration effect. The present invention combines the advantages of these two algorithms to establish the preliminary corresponding relationship before the two models. Through direct query, some feature points with weaker features are excluded, and then the corresponding relationship is established for the remaining feature points based on the optimal method of circular iterative search to ensure accuracy and improve efficiency. The algorithm steps are as follows:
4.1)在待配准模型的特征点中随机选择s个特征点,这s个特征点要保证它们两两之间的距离大于设定的一个阈值;4.1) Randomly select s feature points among the feature points of the model to be registered, and the distance between these s feature points must be greater than a set threshold;
4.2)对于选取的s个特征点中的每一个点Si,在目标模型特征点的特征描述子空间内,选择k个近邻点, k取值为10,从10个点中随机选取一个作为与点Si相对应的关系点,这样就构成了s个对应的关系点对;4.2) For each point S i among the selected s feature points, in the feature description subspace of the target model feature point, select k neighboring points, k is 10, and randomly select one of the 10 points as The relationship points corresponding to point S i , thus forming s corresponding relationship point pairs;
4.3)根据得到的s个对应关系点对,通过SVD的方法计算出变换矩阵T,并使用两个模型间的距离误差函数值来对这次变换进行评估,如果优于上次循环,则替换变换矩阵,否则,保留上次循环中的变换矩阵T;4.3) According to the obtained s corresponding relationship point pairs, calculate the transformation matrix T by the method of SVD, and use the distance error function value between the two models to evaluate this transformation, if it is better than the last cycle, replace Transformation matrix, otherwise, keep the transformation matrix T in the last loop;
4.4)重复以上三个步骤直到达到最大循环次数;在每次循环中,只存储这次循环得到的变换矩阵与上一次循环中所存储的变换矩阵中的最优值,即使得两个模型之间的距离误差函数值更小的变换矩阵T。4.4) Repeat the above three steps until the maximum number of cycles is reached; in each cycle, only the optimal value of the transformation matrix obtained in this cycle and the transformation matrix stored in the previous cycle is stored, that is, the difference between the two models The transformation matrix T with smaller distance error function value.
5)使用改进的ICP算法优化初始对应关系,得到最终变换矩阵;5) Use the improved ICP algorithm to optimize the initial correspondence to obtain the final transformation matrix;
为了进一步优化配准结果,本发明对改进了迭代就近点法(ICP),用于进一步优化配准结果,以得到更优的变换矩阵;步骤如下:In order to further optimize the registration result, the present invention improves the iterative closest point method (ICP) to further optimize the registration result to obtain a better transformation matrix; the steps are as follows:
5.1)根据最近邻选择算法构建点对:为带配准模型Mi中的每个点,在目标输入模型T中搜索出离它最近的点,组成一个对应关系点对,最终找出两个点集中所有的对应点对。本发明为了提高ICP算法的抗噪能力,当最近点与查询点之间的距离小于所设的阈值时,才构成一个对应关系点对;5.1) Construct point pairs according to the nearest neighbor selection algorithm: for each point in the model Mi with registration, search for the nearest point in the target input model T to form a corresponding point pair, and finally find two All corresponding point pairs in the point set. In order to improve the anti-noise capability of the ICP algorithm, the present invention only constitutes a corresponding point pair when the distance between the closest point and the query point is less than the set threshold;
5.2)根据上一步计算得到的对应关系点对集合,计算两个模型之间刚性变换的旋转矩阵R以及平移向量t;5.2) Calculate the rotation matrix R and translation vector t of the rigid transformation between the two models according to the set of corresponding point pairs calculated in the previous step;
5.3)根据得到的旋转矩阵和平移向量R、t,将Mi进行变换得到新的模型Mi+1;之后,传统方法通过计算Mi+1与Mi之间的距离平方和,以连续两次距离平方和之差的绝对值作为是否收敛的依据,来判断是否停止迭代。本发明将终止条件设定为连续两次模型之间的误差变化率的绝对值Epsilon,其中Epsilon=|(Ec-Ec-1)/Ec-1|,Ec是两个模型之间的对应点对误差之和,以此来提高算法的效率;5.3) According to the obtained rotation matrix and translation vector R, t, transform Mi to obtain a new model Mi +1 ; after that, the traditional method calculates the sum of the squares of the distance between Mi +1 and Mi to continuously The absolute value of the difference between the sum of squares of the two distances is used as the basis for convergence to determine whether to stop the iteration. The present invention sets the termination condition as the absolute value Epsilon of the error rate of change between two consecutive models, wherein Epsilon=|( Ec - Ec-1 )/ Ec-1 |, Ec is the difference between the two models The sum of the corresponding point pair errors between them is used to improve the efficiency of the algorithm;
5.4)重复以上步骤,直到收敛或达到设定的最大迭代次数,保存变换矩阵。5.4) Repeat the above steps until convergence or reach the set maximum number of iterations, save the transformation matrix.
6)将变换矩阵作用于待配准模型,得到两个模型拼接后的结果;6) Apply the transformation matrix to the model to be registered to obtain the result of splicing the two models;
通过对上述步骤的重复使用,可以得到多个碎片模型的拼接结果,实现由于骨折创伤导致的碎片模型的正确复位。By repeating the above steps, the splicing results of multiple fragment models can be obtained, and the correct reset of the fragment models caused by fracture trauma can be realized.
综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, owing to adopting above-mentioned technical scheme, the beneficial effect of the present invention is:
1.通过三维特征提取技术和三维配准技术,实现了多个骨骼碎片模型的拼接修复,让医生在术前对骨骼碎片的恢复位置有初步的方案,为医生提供术前指导,以此缩短手术时间,减少手术中对患者的二次伤害,在下颌骨骨折修复中有着十分广阔的应用前景和重要的应用价值。1. Through 3D feature extraction technology and 3D registration technology, the splicing and repairing of multiple bone fragment models is realized, so that doctors can have a preliminary plan for the restoration position of bone fragments before operation, and provide preoperative guidance for doctors, so as to shorten the It has a very broad application prospect and important application value in the repair of mandibular fractures by reducing the operation time and reducing the secondary injury to the patient during the operation.
附图说明Description of drawings
本发明将通过例子并参照附图的方式说明,其中:The invention will be illustrated by way of example with reference to the accompanying drawings, in which:
图1 骨骼碎片模型及提取的断裂面Fig.1 Skeleton fragment model and extracted fracture surface
图2特征点的SPFH特征直方图Figure 2 SPFH feature histogram of feature points
图3一例不同视角的骨骼碎片模型Figure 3 A bone fragment model from different perspectives
图4不同视角的图3碎片模型的拼接模型Figure 4 The splicing model of the fragment model in Figure 3 from different perspectives
图5第一例不同视角的部分下颌骨骼碎片模型Fig.5 Partial mandibular bone fragment model from different perspectives of the first case
图6不同视角的图5碎片模型的拼接修复模型Figure 6 The splicing repair model of the fragment model in Figure 5 from different perspectives
图7第二例不同视角的部分下颌骨骼碎片模型Figure 7 Part of the mandibular bone fragment model from different perspectives in the second case
图8不同视角的图7碎片模型的拼接修复模型Figure 8 The splicing repair model of the fragment model in Figure 7 from different perspectives
图9 第三例不同视角的完整下颌骨骨折模型Fig.9 The complete mandibular fracture model of the third case from different perspectives
图10不同视角的图9碎片模型的拼接修复模型Figure 10 The splicing repair model of the fragment model in Figure 9 from different perspectives
具体实施方式Detailed ways
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。下面结合图1-图10对本发明作说明:All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps. Below in conjunction with Fig. 1-Fig. 10 the present invention is described:
一种基于特征匹配的骨骼碎片拼接方法,图1为本技术整体流程图;详细步骤如下:A method for splicing bone fragments based on feature matching, Figure 1 is the overall flow chart of the technology; the detailed steps are as follows:
1)从重建的三维骨骼碎片模型上,手动提取断裂面区域。本发明所用的三维模型,重建于患者的CT图像数据。如图2所示,左边为导入的两个下颌骨碎片模型,右边为分别在两个模型上提取的断裂面区域;1) Manually extract the fracture surface area from the reconstructed 3D bone fragment model. The three-dimensional model used in the present invention is reconstructed from CT image data of the patient. As shown in Figure 2, the two imported mandibular fragment models are on the left, and the fracture surface regions extracted from the two models are on the right;
2)对提取断裂面区域,基于3D-SIFT特征提取算法,提取断裂区域的特征点,如图3所示,左边为导入的一个碎片模型,右边为在该碎片模型提取的特征点的显示;2) To extract the fracture surface area, based on the 3D-SIFT feature extraction algorithm, extract the feature points of the fracture area, as shown in Figure 3, the left side is a fragment model imported, and the right side is the display of the feature points extracted in the fragment model;
3) 为提取到每一个特征点,计算并建立快速点特征直方图FPFH描述子;图4所示为一个特征点的SPFH特征直方图;3) To extract each feature point, calculate and establish a fast point feature histogram FPFH descriptor; Figure 4 shows the SPFH feature histogram of a feature point;
4)基于提取的特征点以及特征点对应的FPFH特征描述子,建立两个骨骼碎片模型(分别称为源模型及目标模型)之间的对应关系点对;4) Based on the extracted feature points and the FPFH feature descriptors corresponding to the feature points, establish the corresponding point pairs between the two bone fragment models (referred to as the source model and the target model respectively);
5)为了进一步的优化配准结果,本发明对大家熟知迭代就近点法(ICP)进行了改进,用于进一步优化配准结果,以得到更优的变换矩阵;5) In order to further optimize the registration result, the present invention improves the well-known iterative closest point method (ICP), which is used to further optimize the registration result to obtain a better transformation matrix;
6) 将变换矩阵作用于待配准模型,得到两个模型拼接后的结果;6) Apply the transformation matrix to the model to be registered to obtain the result of splicing the two models;
下面为通过三组数据展示本发明结果:Below is to show the result of the present invention by three groups of data:
图5,图7,图9为实验的三组数据,三组骨骼碎片模型Figure 5, Figure 7, and Figure 9 are three sets of experimental data and three sets of bone fragment models
图6,图8,图10是基于上述步骤得到三组数据的实验结果。三组实验说明基于断裂区域的拼接修复方式对常见的下颌骨骨折案例能够成功地进行修复重建。Figure 6, Figure 8, and Figure 10 are the experimental results of three sets of data obtained based on the above steps. Three groups of experiments show that splicing repair methods based on fractured regions can successfully repair and reconstruct common mandibular fractures.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711165008.3A CN108154525B (en) | 2017-11-21 | 2017-11-21 | A Feature Matching-Based Bone Fragment Splicing Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711165008.3A CN108154525B (en) | 2017-11-21 | 2017-11-21 | A Feature Matching-Based Bone Fragment Splicing Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108154525A true CN108154525A (en) | 2018-06-12 |
CN108154525B CN108154525B (en) | 2022-06-07 |
Family
ID=62468947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711165008.3A Active CN108154525B (en) | 2017-11-21 | 2017-11-21 | A Feature Matching-Based Bone Fragment Splicing Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108154525B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109035311A (en) * | 2018-07-11 | 2018-12-18 | 大连理工大学 | A kind of curved bone fracture autoregistration and internal fixation steel plate pre-bending modeling method |
CN110009562A (en) * | 2019-01-24 | 2019-07-12 | 北京航空航天大学 | A method of comminuted fracture threedimensional model is spliced using template |
CN110415361A (en) * | 2019-07-26 | 2019-11-05 | 北京罗森博特科技有限公司 | It is broken object joining method and device |
CN111383353A (en) * | 2020-04-01 | 2020-07-07 | 大连理工大学 | Broken bone model registration method based on Gaussian mixture model and contour descriptor |
CN112884653A (en) * | 2021-03-01 | 2021-06-01 | 西北大学 | Broken terracotta warriors fragment splicing method and system based on fracture surface information |
CN113409301A (en) * | 2021-07-12 | 2021-09-17 | 上海精劢医疗科技有限公司 | Point cloud segmentation-based femoral neck registration method, system and medium |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101030300A (en) * | 2007-02-08 | 2007-09-05 | 深圳大学 | Method for matching depth image |
CN103337065A (en) * | 2013-05-22 | 2013-10-02 | 西安电子科技大学 | Non-rigid registering method of mouse three-dimensional CT image |
CN104299260A (en) * | 2014-09-10 | 2015-01-21 | 西南交通大学 | Contact network three-dimensional reconstruction method based on SIFT and LBP point cloud registration |
CN104463953A (en) * | 2014-11-11 | 2015-03-25 | 西北工业大学 | Three-dimensional reconstruction method based on inertial measurement unit and RGB-D sensor |
CN105447908A (en) * | 2015-12-04 | 2016-03-30 | 山东山大华天软件有限公司 | Dentition model generation method based on oral cavity scanning data and CBCT (Cone Beam Computed Tomography) data |
CN105974386A (en) * | 2016-05-05 | 2016-09-28 | 乐山师范学院 | Multistatic radar multi-target imaging positioning method |
CN106056053A (en) * | 2016-05-23 | 2016-10-26 | 西安电子科技大学 | Human posture recognition method based on skeleton feature point extraction |
CN106296693A (en) * | 2016-08-12 | 2017-01-04 | 浙江工业大学 | Based on 3D point cloud FPFH feature real-time three-dimensional space-location method |
CN106407985A (en) * | 2016-08-26 | 2017-02-15 | 中国电子科技集团公司第三十八研究所 | Three-dimensional human head point cloud feature extraction method and device thereof |
CN106963489A (en) * | 2017-05-12 | 2017-07-21 | 常州工程职业技术学院 | A kind of individuation femoral fracture reset model construction method |
CN107123161A (en) * | 2017-06-14 | 2017-09-01 | 西南交通大学 | A kind of the whole network three-dimensional rebuilding method of contact net zero based on NARF and FPFH |
-
2017
- 2017-11-21 CN CN201711165008.3A patent/CN108154525B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101030300A (en) * | 2007-02-08 | 2007-09-05 | 深圳大学 | Method for matching depth image |
CN103337065A (en) * | 2013-05-22 | 2013-10-02 | 西安电子科技大学 | Non-rigid registering method of mouse three-dimensional CT image |
CN104299260A (en) * | 2014-09-10 | 2015-01-21 | 西南交通大学 | Contact network three-dimensional reconstruction method based on SIFT and LBP point cloud registration |
CN104463953A (en) * | 2014-11-11 | 2015-03-25 | 西北工业大学 | Three-dimensional reconstruction method based on inertial measurement unit and RGB-D sensor |
CN105447908A (en) * | 2015-12-04 | 2016-03-30 | 山东山大华天软件有限公司 | Dentition model generation method based on oral cavity scanning data and CBCT (Cone Beam Computed Tomography) data |
CN105974386A (en) * | 2016-05-05 | 2016-09-28 | 乐山师范学院 | Multistatic radar multi-target imaging positioning method |
CN106056053A (en) * | 2016-05-23 | 2016-10-26 | 西安电子科技大学 | Human posture recognition method based on skeleton feature point extraction |
CN106296693A (en) * | 2016-08-12 | 2017-01-04 | 浙江工业大学 | Based on 3D point cloud FPFH feature real-time three-dimensional space-location method |
CN106407985A (en) * | 2016-08-26 | 2017-02-15 | 中国电子科技集团公司第三十八研究所 | Three-dimensional human head point cloud feature extraction method and device thereof |
CN106963489A (en) * | 2017-05-12 | 2017-07-21 | 常州工程职业技术学院 | A kind of individuation femoral fracture reset model construction method |
CN107123161A (en) * | 2017-06-14 | 2017-09-01 | 西南交通大学 | A kind of the whole network three-dimensional rebuilding method of contact net zero based on NARF and FPFH |
Non-Patent Citations (9)
Title |
---|
LUWEN QIU 等: "An Automatic Registration Algorithm for 3D Maxillofacial Model", 《3D RESEARCH》 * |
刘斌: "股骨头坏死与骨折计算机辅助手术技术研究", 《万方数据》 * |
周朗明 等: "旋转平台点云数据的配准方法", 《测绘学报》 * |
杨旭静 等: "考虑位移约束的功能梯度结构ICM拓扑优化方法", 《湖南大学学报(自然科学版)》 * |
洪菁 等: "基于模糊粗糙集的瓦斯涌出量预测模型的研究", 《微计算机信息》 * |
翟优 等: "自适应对比度阈值SIFT算法研究", 《计算机测量与控制》 * |
许万林: "大规模层次图集的可视化研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 * |
谢颖: "基于三维激光扫描的粮仓储量测量中点云数据处理技术的研究", 《中国优秀硕士学位论文全文数据库 农业科技辑》 * |
鲁俊: "基于kinect三维人体重建中配准算法的研究与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109035311A (en) * | 2018-07-11 | 2018-12-18 | 大连理工大学 | A kind of curved bone fracture autoregistration and internal fixation steel plate pre-bending modeling method |
CN109035311B (en) * | 2018-07-11 | 2021-10-01 | 大连理工大学 | A method for automatic registration of curved bone fractures and pre-bending modeling method of internal fixation plate |
CN110009562A (en) * | 2019-01-24 | 2019-07-12 | 北京航空航天大学 | A method of comminuted fracture threedimensional model is spliced using template |
CN110415361A (en) * | 2019-07-26 | 2019-11-05 | 北京罗森博特科技有限公司 | It is broken object joining method and device |
CN110415361B (en) * | 2019-07-26 | 2020-05-15 | 北京罗森博特科技有限公司 | Method and device for splicing broken objects |
CN111383353A (en) * | 2020-04-01 | 2020-07-07 | 大连理工大学 | Broken bone model registration method based on Gaussian mixture model and contour descriptor |
CN111383353B (en) * | 2020-04-01 | 2023-05-23 | 大连理工大学 | Registration Method of Broken Bone Model Based on Gaussian Mixture Model and Contour Descriptor |
CN112884653A (en) * | 2021-03-01 | 2021-06-01 | 西北大学 | Broken terracotta warriors fragment splicing method and system based on fracture surface information |
CN113409301A (en) * | 2021-07-12 | 2021-09-17 | 上海精劢医疗科技有限公司 | Point cloud segmentation-based femoral neck registration method, system and medium |
Also Published As
Publication number | Publication date |
---|---|
CN108154525B (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108154525A (en) | A kind of matched bone fragments joining method of feature based | |
CN109984843B (en) | Fracture closed reduction navigation system and method | |
Nithiananthan et al. | Demons deformable registration for CBCT‐guided procedures in the head and neck: convergence and accuracy | |
CN104200524B (en) | A kind of three-dimensional grid skeleton model averaging method towards plate design | |
CN113966204B (en) | Method for automatically planning a trajectory for medical interventions | |
Lin et al. | BATFormer: Towards boundary-aware lightweight transformer for efficient medical image segmentation | |
CN102335033B (en) | Individual craniofacial bone piece auxiliary positioning guide plate system and preparation method thereof | |
Pietruski et al. | Supporting fibula free flap harvest with augmented reality: a proof‐of‐concept study | |
WO2023000560A1 (en) | Reduction trajectory automatic planning method for parallel fracture surgical robot | |
CN109859833A (en) | Method and device for evaluating the therapeutic effect of ablation surgery | |
CN110288638A (en) | A method and system for rough registration of broken bone model and method for registration of broken bone model | |
CN104240298A (en) | Three-dimensional finite element constructing method based on medical image data LISS-DF to cure distal femur fracture | |
WO2023236367A1 (en) | Planning method and apparatus for tibia osteotomy intelligent navigation system | |
CN107874831A (en) | A kind of cranium Maxillary region guide plate design method based on implicit function | |
WO2023197752A1 (en) | Margin path generation method and system for tumor surgery, and storage medium | |
Netherton et al. | An automated treatment planning framework for spinal radiation therapy and vertebral-level second check | |
WO2024065343A1 (en) | System and method for registration of preoperative and intraoperative liver point cloud data, and terminal and storage medium | |
CN103871104A (en) | Method for constructing three-dimension finite element model which treats tibial plateau posterior-lateral fracture with different inner fixing manners | |
CN118037793B (en) | A registration method and device for intraoperative X-ray and CT images | |
Deng et al. | A data-driven approach for assembling intertrochanteric fractures by axis-position alignment | |
Mejía-Rodríguez et al. | Elastic registration based on particle filter in radiotherapy images with brain deformations | |
Guo et al. | Comprehensive and clinically accurate head and neck organs at risk delineation via stratified deep learning: a large-scale multi-institutional study | |
He et al. | A robust and automatic CT‐3D ultrasound registration method based on segmentation, context, and edge hybrid metric | |
Zhong et al. | Morphological analysis of tumor regression and its impact on deformable image registration for adaptive radiotherapy of lung cancer patients | |
CN114820730A (en) | CT and CBCT registration method based on pseudo CT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |