CN108152253A - UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法 - Google Patents

UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法 Download PDF

Info

Publication number
CN108152253A
CN108152253A CN201710807478.9A CN201710807478A CN108152253A CN 108152253 A CN108152253 A CN 108152253A CN 201710807478 A CN201710807478 A CN 201710807478A CN 108152253 A CN108152253 A CN 108152253A
Authority
CN
China
Prior art keywords
ucnps
rbh
msio
ion
rhodamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710807478.9A
Other languages
English (en)
Inventor
陈中胜
吴靓
肖双喜
许剑平
黄海清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN201710807478.9A priority Critical patent/CN108152253A/zh
Publication of CN108152253A publication Critical patent/CN108152253A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6495Miscellaneous methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开一种UCNPs@mSiO2‑RBH新型纳米探针合成方法,本方法包括如下步骤:(1)UCNPs@mSiO2样品制备;(2)使用罗丹明B衍生物—罗丹明B酰肼(RBH)与UCNPs@mSiO2样品结合合诚UCNPs@mSiO2‑RBH;本发明还公开了一种Pb2+离子的检测方法,用于检测水溶液中痕量Pb2+离子,本方法使用如上所述的UCNPs@mSiO2‑RBH新型纳米探针检测水溶液中痕量Pb2+离子。

Description

UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测 方法
技术领域
本发明涉及一种水溶液中痕量Pb2+离子检测技术领域,尤其涉及一种UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法。
背景技术
同为重金属之一的铅,也是一种积累性毒物,人们可以通过食物链摄取铅,也能从被污染的空气中摄取。生活中,铅从古代的制酒器、青铜器伴随人们到如今的铅蓄电池。而在众多已知毒性物质中,书中记载最多的就是铅,古书上也有铅管运输饮用水危险性的记录。铅对人体的造血系统、神经系统、肾和胃都不利的影响,进而引发各种疾病。根据已有文献报道,Pb2+离子浓度即使在很低的情况下,也能对人体造成伤害。血铅进入人体后是十分难排出的,同时血铅给人,尤其是儿童,造成的伤害是不可逆的,其浓度大于480nm/L时就能引起铅中毒。因儿童正处在生长发育阶段,许多器官尚不成熟,解毒功能不完善,发生铅中毒的概率是成年人的30多倍,中毒后其智力发育较缓和行为表现异常。我国规定废水中铅含量不得超过0.1mg/L,饮用水中的铅浓度不得高于0.01mg/L。因此,简单快速、可靠的检测Pb2+,对于环境保护、人类健康以及食品安全具有重要意义。
目前,检测金属离子主要还是依靠大型仪器分析,除原子吸收光谱法、等离子体质谱等运用到大型仪器,电化学、荧光传感器和溶出伏安法也是检测Pb2+离子常用的方法。荧光共振能量转移法近些年的发展,已经成功得应用于离子检测,前面绪论介绍的Cu2+、Hg2+、Fe3+等等。稀土上转换纳米材料(UCNPs),由于其生物体毒性低、背景荧光弱、灵敏度高、光穿透能力强、Stokes位移大、化学稳定性高、光稳定性好等优点,成为了新一代能量供体。罗丹明B及其衍生物具有良好的光稳定性和光物理性质,如高摩尔吸光系数和荧光量子产率等,可作为FRET体系中的能量受体。
发明内容
本发明的目的在于克服现有技术的不足,适应现实需要,公开一种CNPs@mSiO2-RBH新型纳米探针合成方法,还公开一种Pb2+离子的检测方法,以用于检测水溶液中痕量Pb2+离子。
为了实现本发明的目的,本发明所采用的技术方案为:
公开一种UCNPs@mSiO2-RBH新型纳米探针合成方法,本方法包括如下步骤:
(1)UCNPs@mSiO2样品制备;
(2)使用罗丹明B衍生物—罗丹明B酰肼(RBH)与UCNPs@mSiO2样品结合合成UCNPs@mSiO2-RBH。
上述罗丹明B酰肼(RBH)的合成路线如图10所示。
所述UCNPs@mSiO2-RBH新型纳米探针的合成路线如图11所示。
本发明还公开了一种Pb2+离子的检测方法,以用于检测水溶液中痕量Pb2+离子:本方法使用如上所述的UCNPs@mSiO2-RBH新型纳米探针检测水溶液中痕量Pb2+离子。
本发明的有益效果在于:
本发明不同于现有技术中检测水溶液中痕量Pb2+离子的方法,本发明是在UCNPs@mSiO2样品制得后,连接一种罗丹明B衍生物——罗丹明B酰肼(RBH)合成为UCNPs@mSiO2-RBH,使用UCNPs@mSiO2-RBH来检测水溶液中痕量Pb2+离子。
附图说明
图1为本发明中的UCNPs、UCNPs@mSiO2、UCNPs@mSiO2-RBH样品的FT-IR图谱;
图1中:(a)UCNPs、(b)UCNPs@mSiO2和(c)UCNPs@mSiO2-RBH;
图2为罗丹明B酰阱对金属离子响应机理图;
图3为UCNPs发射光谱与RBH-Pb2+吸收光谱重叠示意图;
图4为不同Pb2+离子浓度的UCNPs@mSiO2-RBH纳米颗粒上转换荧光光谱图;
图5为UCNPs@mSiO2-RBH纳米颗粒检测Pb2+离子的工作曲线(0~100μM)图;
图6为UCNPs@mSiO2-RBH纳米颗粒检测Pb2+离子的工作曲线(0~60μM)图;
图7为Pb2+离子浓度为0~200μM的UCNPs@mSiO2-RBH纳米颗粒紫外可见吸收光谱图;
图7中插图为溶液中加入Pb2+离子前后的照片;
图8为UCNPs@mSiO2-RBH纳米颗粒检测Pb2+离子的工作曲线(0~100μM)图;
图9为干扰离子对UCNPs@mSiO2-RBH纳米颗粒上转换荧光强度的影响分析图;
图10为本发明中的罗丹明B酰肼(RBH)的合成路线图;
图11为本发明中的UCNPs@mSiO2-RBH新型纳米探针的合成路线图。
具体实施方式
下面结合附图和实施例对本发明进一步说明:
实施例:参见图1至图11;一种UCNPs@mSiO2-RBH新型纳米探针合成方法;
本方法包括如下步骤:
(1)UCNPs@mSiO2样品制备;
(2)使用罗丹明B衍生物—罗丹明B酰肼(RBH)与UCNPs@mSiO2样品结合合成UCNPs@mSiO2-RBH。
上述罗丹明B酰肼(RBH)的合成路线参见图10。
所述UCNPs@mSiO2-RBH新型纳米探针的合成路线参见图11。
进一步的,本发明还公开了一种Pb2+离子的检测方法,以用于检测水溶液中痕量Pb2+离子,本方法使用如上所述的UCNPs@mSiO2-RBH新型纳米探针检测水溶液中痕量Pb2+离子。
针对本发明的可行性验证如下:
1、从图1中得知,最终产物会产生酰胺结构,而酰胺的特征红外吸收峰为:3500~3100cm-1的N-H伸缩振动,1655~1590cm-1的N-H弯曲振动,1680~1630cm-1的C=O伸缩振动以及1420~1400cm-1的C-N伸缩振动。如图1所示,N-H的伸缩振动和弯曲振动较为明显,而C=O伸缩振动和C-N伸缩振动在图谱中,1200~1700cm-1之间为不平整波峰,且强度不大,但也可观察到1617cm-1左右存在波峰,判断该材料合成成功,后面将通过其他光谱进一步证明。
2、Pb2+离子检测原理分析
图2为罗丹明B酰阱对金属离子的响应机理,金属离子诱导内酰肼发生水解反应,导致罗丹明酰肼开环并释放出荧光。如图3所示,在550nm左右的位置,UCNPs上转换荧光光谱和RBH-Pb2+紫外可见吸收光谱的重叠,两着之间发生FRET作用,导致荧光淬灭和吸收光强度增大,这都证明此探针(UCNPs@mSiO2-RBH)能检测到Pb2+离子。综上所述,我们可以通过观察上转换光谱中有无罗丹明荧光判断探针是否合成成功;通过上转换光谱和紫外可见吸收光谱在550nm处的光强度变化反应离子浓度大小,得到各工作曲线,计算检出限。
3、上转换荧光光谱分析
将UCNPs@mSiO2-RBH纳米颗粒配成2.5mg/mL的溶液,溶剂为乙醇/水=8/2的混合溶液。加入2mL上述溶液、1.5mL不同浓度的Pb2+离子(0μM、10μM、20μM、40μM、60μM、80μM、100μM、200μM)至玻璃瓶中,超声反应5min,再转移至比色皿中对各溶液进行光谱分析。
图4则是在功率为1154W的980nm激光仪的照射下,不同浓度Pb2+离子的UCNPs@mSiO2-RBH溶液上转换荧光光谱。如图4所示,各激发光的峰位置无明显偏移,在593nm处出现了络合物RBH-Pb2+的荧光峰,但荧光强度较红绿光非常微弱。545nm处的绿光荧光强度随着Pb2+离子浓度增大而减弱,验证了FRET效应在检测Pb2+离子应用成功。红光强度有所降低,但在强度值一定范围内且较绿光强度变化不大。
将Pb2+离子浓度和绿光荧光强度作图,得到UCNPs@mSiO2-RBH纳米颗粒检测Pb2+离子的工作曲线,如图5所示。图中,Pb2+离子浓度在0~100μM时,两者表现出较好的相关性,其相关系数R2=0.98975,线性方程为FGreen=-2620100[Pb2+]+574.888。因红光荧光强度较绿光荧光强度变化不大,也可将红光作为内参比,作绿光强度比红光强度与Pb2+离子浓度的工作曲线。
如图6所示,Pb2+离子浓度在0~60μM时,两者表现出较好的相关性,其相关系数R2=0.98558,线性方程为U545/U660=-17420[Pb2+]+4.61065。对比两条工作曲线,只绿光强度为纵轴的检测范围较大,且相关性稍微优于另一条曲线。因此,本此实验中采用图6的工作曲线较为合适。这样一个比率型的荧光探针,在980nm激光仪的激发下,可应用于环境和生物样品中的Pb2+离子检测。
4、紫外可见光谱分析
将上述含不同Pb2+离子浓度的UCNPs@mSiO2-RBH溶液,进行紫外可见表征,得到其紫外可见光谱。分析该图谱,考察材料UCNPs@mSiO2-RBH对Pb2+离子的检测性能。图8为不同Pb2+离子浓度的吸光度曲线,插图为加入Pb2+离子前后,UCNPs@mSiO2-RBH溶液的照片。从该插图可知,加入Pb2+离子后,溶液的颜色由白灰色转变为粉红色。图8的吸光度曲线,则表明随着Pb2 +离子浓度的增大,波长为560nm左右的吸光度逐渐增强,但浓度为200μM和100μM时的,其吸光强度基本一致。因此,本次实验中,UCNPs@mSiO2-RBH溶液对Pb2+离子的检测上限在80~100μM之间。560nm处吸光度增强的原因为罗丹明B酰阱的内酰胺螺环打开,同时Pb2+与RBH中的氧原子形成络合物,从而产生吸收光。
在波长为560nm处,以初始吸光度为内参比,各UCNPs@mSiO2-RBH溶液的吸光度与其相比且为纵轴,Pb2+离子浓度为横轴作工作曲线。如图8所示,Pb2+离子浓度在0~100μM范围内,与相对强度A/A0表现出较好的相关性,其相关系数R2=0.96407,线性方程则为A/A0=952.36[Pb2+]+1.00403。再次根据光学分析方法中的检出限计算公式:L=KSb/S,其中K为信噪比一般取3,置信水平为90%、S是吸光度的斜率为952.36、Sb按样本标准偏差计算为0.0013,则材料UCNPs@mSiO2-RBH对Pb2+离子的检出限L为4.0951μM。
5、Pb2+离子选择性分析
对离子的选择性也是评价探针的一个重要指标,因此选择一些环境和生物样品中常见的金属离子作为干扰离子,对探针UCNPs@mSiO2-RBH进行Pb2+离子选择性测试。与前面相似,干扰离子为Mg2+、Cu2+、K+、Zn2+、Fe3+、Ca2+、Al3+和Hg2+,各干扰离子浓度为2.5×10-3M,Pb2+离子浓度为2.5×10-4M。选取545nm的绿光荧光强度作为如图所示,各干扰离子对上转换荧光强度的影响不一,Cu2+和Hg2+离子对绿光荧光强度的干扰性很大,其他干扰离子影响较小。这表明该探针对Pb2+离子的选择性一般,距离实际应用还有一定的距离,因此,要想专门应用于环境和生物样品的Pb2+离子检测,可更换FRET系统中的能量受体,氧化石墨烯、Pb2+的DNA适配体序列都是不错的选择;或者是在检测之前将一些已知的干扰离子沉淀或用其他方式除去等等。
综上,经本发明方法可成功合成UCNPs@mSiO2-RBH纳米颗粒,并首次应用于Pb2+离子检测。根据波长约为550nm时,UCNPs的发射光谱与络合物RBH-Pb2+的吸收光谱重叠而发生FRET效应,导致荧光淬灭,构建了Pb2+探针。对Pb2+离子浓度为0~200μM的UCNPs@mSiO2-RBH溶液进行上转换荧光及紫外可见光表征并分析其光谱。最后,考察了UCNPs@mSiO2-RBH纳米探针对Pb2+离子的选择性。得到结果如下:
(1)上转换光谱中,在980nm激光仪的激发下,络合物RBH-Pb2+在593nm处发出微弱的荧光,545nm的绿光荧光强度逐渐降低,660nm的红光荧光强度变化不大。Pb2+离子浓度为0~100μM时,绿光荧光强度与离子浓度保持着良好的线性关系。
(2)紫外可见光谱表明,随着溶液中Pb2+离子浓度的不断增大,探针在560nm处的吸收峰逐渐增大,在0~100μM范围内,两者呈现出非常好的线性关系,且检出限为4.0951μM。但当Pb2+离子浓度为100μM和200μM时,两者的紫外可见光谱曲线基本相同,因此其检测上限在80~100μM之间。
最后说明的是,本发明的实施例公布的是较佳的实施例,但并不局限于此,本领域的普通技术人员,极易根据上述实施例,领会本发明的精神,并做出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围内。

Claims (5)

1.一种UCNPs@mSiO2-RBH新型纳米探针合成方法,其特征在于:本方法包括如下步骤:
(1)UCNPs@mSiO2样品制备;
(2)使用罗丹明B衍生物与UCNPs@mSiO2样品结合合成UCNPs@mSiO2-RBH。
2.如权利要求1所述的UCNPs@mSiO2-RBH新型纳米探针合成方法,其特征在于:步骤(2)中所述罗丹明B衍生物为罗丹明B酰肼。
3.如权利要求2所述的UCNPs@mSiO2-RBH新型纳米探针合成方法,其特征在于:所述罗丹明B酰肼的合成路线如下:
4.如权利要求3所述的UCNPs@mSiO2-RBH新型纳米探针合成方法,其特征在于:所述UCNPs@mSiO2-RBH的合成路线如下:
5.一种Pb2+离子的检测方法,用于检测水溶液中痕量Pb2+离子,其特征在于:本方法使用如权利要求1至4任一所述的UCNPs@mSiO2-RBH新型纳米探针检测水溶液中痕量Pb2+离子。
CN201710807478.9A 2017-09-08 2017-09-08 UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法 Pending CN108152253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710807478.9A CN108152253A (zh) 2017-09-08 2017-09-08 UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710807478.9A CN108152253A (zh) 2017-09-08 2017-09-08 UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法

Publications (1)

Publication Number Publication Date
CN108152253A true CN108152253A (zh) 2018-06-12

Family

ID=62468174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710807478.9A Pending CN108152253A (zh) 2017-09-08 2017-09-08 UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法

Country Status (1)

Country Link
CN (1) CN108152253A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839359A (zh) * 2018-07-30 2019-06-04 四川大学 一种用于检测Pb2+浓度的试剂盒及检测方法
CN112358866A (zh) * 2020-11-17 2021-02-12 上海大学 一种正交上转换发光纳米探针、制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592996A (zh) * 2015-01-09 2015-05-06 上海大学 用于细胞内铜离子荧光成像的纳米探针及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592996A (zh) * 2015-01-09 2015-05-06 上海大学 用于细胞内铜离子荧光成像的纳米探针及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHUNXIA LI ET AL.: "Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions", 《NANOSCALE》 *
OMPRAKASH SUNNAPU ET AL.: "A rhodamine based "turn-on" fluorescent probe for Pb(II) and live cell imaging", 《RSC ADVANCES》 *
徐艳霞: "基于稀土上转换发光纳米晶的杂化探针的制备及其应用", 《中国优秀硕士论文全文数据库 工程科技Ⅰ辑》 *
郭姣: "基于稀土上转换纳米晶的复合汞离子传感材料的制备及其性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
钟文英 等: "CdTe/CdS-罗丹明荧光共振能量转移猝灭法测定铅(Ⅱ)及相互作用机制的研究", 《分析试验室》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839359A (zh) * 2018-07-30 2019-06-04 四川大学 一种用于检测Pb2+浓度的试剂盒及检测方法
CN112358866A (zh) * 2020-11-17 2021-02-12 上海大学 一种正交上转换发光纳米探针、制备方法及其应用

Similar Documents

Publication Publication Date Title
Chan et al. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications
Lin et al. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer
Abdolmohammad-Zadeh et al. A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanide chemiluminescence system for Hg (II) ion detection
Hu et al. Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine–phenylurea conjugate
Burks et al. Current trends in the detection of peroxide-based explosives
Madrakian et al. Turn-off fluorescence of amino-functionalized carbon quantum dots as effective fluorescent probes for determination of isotretinoin
Goswami et al. Fluorometric and naked-eye detectable dual signaling chemodosimeter for hypochlorite
Gong et al. Carbon dots as fluorescent off–on nanosensors for ascorbic acid detection
Zhang et al. A FRET approach to phosgene detection
Venkatesan et al. Fuel waste to fluorescent carbon dots and its multifarious applications
Wang et al. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4: Yb, Ho nanocrystals and gold nanoparticles
Li et al. Carbon dot-based fluorescent and colorimetric sensor for sensitive and selective visual detection of benzoyl peroxide
Sunartio et al. Correlation between Na* emission and “chemically active” acoustic cavitation bubbles
Herman et al. Emerging technologies for optical spectral detection of reactive oxygen species
Omer et al. Improvement of selectivity via the surface modification of carbon nanodots towards the quantitative detection of mercury ions
Zhou et al. Multi-color fluorescence sensing platform for visual determination of norfloxacin based on a terbium (Ш) functionalized covalent organic framework
Zou et al. A new dibenzothiophene-based dual-channel chemosensor for cyanide with aggregation induced emission
CN113563879A (zh) 一种用于百草枯检测的石墨烯量子点荧光探针的制备方法
Zhao et al. Excellent fluorescence detection of Cu2+ in water system using N-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe
CN108152253A (zh) UCNPs@mSiO2-RBH新型纳米探针合成方法及Pb2+离子的检测方法
Fu et al. Eu doped Ti3C2 quantum dots to form a ratiometric fluorescence platform for visual and quantitative point-of-care testing of tetracycline derivatives
Ortega‐Liebana et al. Upconverting carbon nanodots from ethylenediaminetetraacetic acid (EDTA) as near‐infrared activated phototheranostic agents
Wang et al. Online, continuous, and interference-free monitoring of trace heavy metals in water using plasma spectroscopy driven by actively modulated pulsed power
Guo et al. A novel fluorescent Si/CDs for highly sensitive Hg2+ sensing in water environment
Zhao et al. Carbon dots combined with masking agent for high selectivity detection of Cr (VI) to overcome interference associated challenges

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180612