CN108140142A - 选择性反向传播 - Google Patents
选择性反向传播 Download PDFInfo
- Publication number
- CN108140142A CN108140142A CN201680056229.4A CN201680056229A CN108140142A CN 108140142 A CN108140142 A CN 108140142A CN 201680056229 A CN201680056229 A CN 201680056229A CN 108140142 A CN108140142 A CN 108140142A
- Authority
- CN
- China
- Prior art keywords
- class
- examples
- gradient
- training
- modifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
- Feedback Control In General (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562234559P | 2015-09-29 | 2015-09-29 | |
| US62/234,559 | 2015-09-29 | ||
| US15/081,780 US20170091619A1 (en) | 2015-09-29 | 2016-03-25 | Selective backpropagation |
| US15/081,780 | 2016-03-25 | ||
| PCT/US2016/050539 WO2017058479A1 (en) | 2015-09-29 | 2016-09-07 | Selective backpropagation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108140142A true CN108140142A (zh) | 2018-06-08 |
Family
ID=58407414
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201680056229.4A Pending CN108140142A (zh) | 2015-09-29 | 2016-09-07 | 选择性反向传播 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20170091619A1 (enExample) |
| EP (1) | EP3357003A1 (enExample) |
| JP (1) | JP6859332B2 (enExample) |
| KR (1) | KR102582194B1 (enExample) |
| CN (1) | CN108140142A (enExample) |
| BR (1) | BR112018006288A2 (enExample) |
| WO (1) | WO2017058479A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111950580A (zh) * | 2019-05-14 | 2020-11-17 | 国际商业机器公司 | 使用平衡训练集的分类器的预测准确性 |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11250335B2 (en) * | 2015-10-26 | 2022-02-15 | NetraDyne, Inc. | Joint processing for embedded data inference |
| US11995554B2 (en) * | 2016-04-15 | 2024-05-28 | Cambricon Technologies Corporation Limited | Apparatus and methods for backward propagation in neural networks supporting discrete data |
| US10970605B2 (en) * | 2017-01-03 | 2021-04-06 | Samsung Electronics Co., Ltd. | Electronic apparatus and method of operating the same |
| US11003989B2 (en) | 2017-04-27 | 2021-05-11 | Futurewei Technologies, Inc. | Non-convex optimization by gradient-accelerated simulated annealing |
| CN107229968B (zh) * | 2017-05-24 | 2021-06-29 | 北京小米移动软件有限公司 | 梯度参数确定方法、装置及计算机可读存储介质 |
| US11517768B2 (en) * | 2017-07-25 | 2022-12-06 | Elekta, Inc. | Systems and methods for determining radiation therapy machine parameter settings |
| US11556794B2 (en) * | 2017-08-31 | 2023-01-17 | International Business Machines Corporation | Facilitating neural networks |
| WO2019070300A1 (en) * | 2017-10-06 | 2019-04-11 | Google Llc | SYSTEMS AND METHODS FOR IMAGE SWITCHING |
| US11615129B2 (en) * | 2017-11-28 | 2023-03-28 | International Business Machines Corporation | Electronic message text classification framework selection |
| US11475306B2 (en) | 2018-03-22 | 2022-10-18 | Amazon Technologies, Inc. | Processing for multiple input data sets |
| US11461631B2 (en) * | 2018-03-22 | 2022-10-04 | Amazon Technologies, Inc. | Scheduling neural network computations based on memory capacity |
| US20190303176A1 (en) * | 2018-03-29 | 2019-10-03 | Qualcomm Incorporated | Using Machine Learning to Optimize Memory Usage |
| JP7295710B2 (ja) * | 2019-06-07 | 2023-06-21 | ジオテクノロジーズ株式会社 | 学習用画像データ生成装置 |
| US12226657B2 (en) | 2019-06-20 | 2025-02-18 | Elekta, Inc. | Predicting radiotherapy control points using projection images |
| WO2021040944A1 (en) | 2019-08-26 | 2021-03-04 | D5Ai Llc | Deep learning with judgment |
| US20210065054A1 (en) * | 2019-09-03 | 2021-03-04 | Koninklijke Philips N.V. | Prioritizing tasks of domain experts for machine learning model training |
| US20210089924A1 (en) * | 2019-09-24 | 2021-03-25 | Nec Laboratories America, Inc | Learning weighted-average neighbor embeddings |
| JP7268924B2 (ja) * | 2019-11-14 | 2023-05-08 | 株式会社アクセル | 推論システム、推論装置、推論方法及び推論プログラム |
| US11077320B1 (en) | 2020-02-07 | 2021-08-03 | Elekta, Inc. | Adversarial prediction of radiotherapy treatment plans |
| DE102020207004A1 (de) * | 2020-06-04 | 2021-12-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Regularisiertes Training neuronaler Netzwerke |
| WO2023069973A1 (en) * | 2021-10-19 | 2023-04-27 | Emory University | Selective backpropagation through time |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090125463A1 (en) * | 2007-11-13 | 2009-05-14 | Shohei Hido | Technique for classifying data |
| CN103763350A (zh) * | 2014-01-02 | 2014-04-30 | 北京邮电大学 | 基于误差反向传播神经网络的web服务选择方法 |
-
2016
- 2016-03-25 US US15/081,780 patent/US20170091619A1/en not_active Abandoned
- 2016-09-07 JP JP2018515936A patent/JP6859332B2/ja active Active
- 2016-09-07 CN CN201680056229.4A patent/CN108140142A/zh active Pending
- 2016-09-07 KR KR1020187012033A patent/KR102582194B1/ko active Active
- 2016-09-07 WO PCT/US2016/050539 patent/WO2017058479A1/en not_active Ceased
- 2016-09-07 EP EP16766774.0A patent/EP3357003A1/en not_active Ceased
- 2016-09-07 BR BR112018006288A patent/BR112018006288A2/pt not_active Application Discontinuation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090125463A1 (en) * | 2007-11-13 | 2009-05-14 | Shohei Hido | Technique for classifying data |
| CN103763350A (zh) * | 2014-01-02 | 2014-04-30 | 北京邮电大学 | 基于误差反向传播神经网络的web服务选择方法 |
Non-Patent Citations (1)
| Title |
|---|
| SANG-HOON OH: "Error back-propagation algorithm for classification of imbalanced data", 《NEUROCOMPUTING》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111950580A (zh) * | 2019-05-14 | 2020-11-17 | 国际商业机器公司 | 使用平衡训练集的分类器的预测准确性 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102582194B1 (ko) | 2023-09-22 |
| WO2017058479A1 (en) | 2017-04-06 |
| JP2018533138A (ja) | 2018-11-08 |
| JP6859332B2 (ja) | 2021-04-14 |
| BR112018006288A2 (pt) | 2018-10-16 |
| KR20180063189A (ko) | 2018-06-11 |
| EP3357003A1 (en) | 2018-08-08 |
| US20170091619A1 (en) | 2017-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108027899B (zh) | 用于提高经训练的机器学习模型的性能的方法 | |
| CN108140142A (zh) | 选择性反向传播 | |
| KR102595399B1 (ko) | 미지의 클래스들의 검출 및 미지의 클래스들에 대한 분류기들의 초기화 | |
| KR102806514B1 (ko) | 뉴럴 네트워크들에서의 러닝을 트랜스퍼하기 위한 장치들 및 방법들 | |
| US11334789B2 (en) | Feature selection for retraining classifiers | |
| CN108431826B (zh) | 自动检测视频图像中的对象 | |
| US10275719B2 (en) | Hyper-parameter selection for deep convolutional networks | |
| KR102570706B1 (ko) | 분류를 위한 강제된 희소성 | |
| CN107851198A (zh) | 媒体分类 | |
| CN107430703A (zh) | 对细调特征的顺序图像采样和存储 | |
| CN107533669A (zh) | 滤波器特异性作为用于神经网络的训练准则 | |
| CN107533665A (zh) | 经由偏置项在深度神经网络中纳入自顶向下信息 | |
| KR20250125352A (ko) | 기계 학습 컴파일러 최적화의 노드 대칭 | |
| US20230419087A1 (en) | Adapters for quantization | |
| CN120917459A (zh) | 无遗忘的动态类增量学习 | |
| CN116368501A (zh) | 个性化神经网络修剪 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |