CN108132220A - 林区机载推扫式高光谱影像的brdf归一化校正方法 - Google Patents

林区机载推扫式高光谱影像的brdf归一化校正方法 Download PDF

Info

Publication number
CN108132220A
CN108132220A CN201711429219.3A CN201711429219A CN108132220A CN 108132220 A CN108132220 A CN 108132220A CN 201711429219 A CN201711429219 A CN 201711429219A CN 108132220 A CN108132220 A CN 108132220A
Authority
CN
China
Prior art keywords
pixel
coordinate system
sun
brdf
airborne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711429219.3A
Other languages
English (en)
Other versions
CN108132220B (zh
Inventor
荚文
庞勇
鞠洪波
李增元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUTE OF SOURCE INFORMATION CHINESE ACADEMY OF FORESTRY
Original Assignee
INSTITUTE OF SOURCE INFORMATION CHINESE ACADEMY OF FORESTRY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUTE OF SOURCE INFORMATION CHINESE ACADEMY OF FORESTRY filed Critical INSTITUTE OF SOURCE INFORMATION CHINESE ACADEMY OF FORESTRY
Priority to CN201711429219.3A priority Critical patent/CN108132220B/zh
Publication of CN108132220A publication Critical patent/CN108132220A/zh
Application granted granted Critical
Publication of CN108132220B publication Critical patent/CN108132220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)

Abstract

本发明提供了一种针对起伏地形的林区机载推扫式高光谱影像的BRDF归一化校正方法,利用机载推扫式高光谱设备观测视场和飞行姿态信息以及数据采集时刻的太阳位置计算出影像像元基于平面的太阳‑观测几何,再基于高精度DEM数据提取对应像元的坡度和坡向信息,将像元的基于平面的太阳‑观测几何旋转到真实太阳‑观测几何,对分类后的影像数据提取各地物类型的像元构成多角度观测反射率数据集并依据真实太阳‑观测几何构建BRDF模型。最后采用乘法归一化因子,将影像内多个角度的方向反射率归一化到指定的某个观测‑太阳角度的反射率。本发明能有效校正起伏地形的林区机载推扫式高光谱影像的BRDF效应,对后续影像的定量研究具有重要意义。

Description

林区机载推扫式高光谱影像的BRDF归一化校正方法
技术领域
本发明涉及林业信息化领域,具体而言,涉及一种针对起伏地形的林区机载推扫式高光谱影像的二项反射分布函数(BRDF)归一化校正方法。
背景技术
自20世纪70年代以来,遥感技术的应用巨幅提升了人们对地物的探测能力并有条件对其开展深入的定量分析。地物的各项异性反射是自然界的宏观现象之一,具体表现为其表面反射随着入射辐射方向以及观测角度的改变而发生变化。地物的多角度观测现象会引起辐射失真,制约着对地物固有的反射属性的准确描述。对地物的反射特性展开二向反射分布函数(Bidirectional Reflectance Distribution Function,BRDF)研究,是定量遥感领域中重要的组成部分。
遥感影像中常见的同一地物表现出不同反射率的现象,主要由于宽传感器观测视场角以及观测区域的地形起伏等原因造成的对该地物进行了多角度地观测。观测视场角越大,观测区地形起伏变化越大,影像中地物的二项反射特性越明显,即影像中地物的反射率随着不断变化的观测角度而产生相应变化。星载MODIS遥感影像采用AMBRALS(algorithmfor MODIS bidirectional reflectance anisotropies of the land surface)算法对宽视场角带来的地物二项反射问题进行校正。而对于起伏地形的林区影像,由于坡度、坡向引起的像元太阳-观测几何等输入参数的变化,主要适用于平坦地形BRDF校正的AMBRALS算法已无法满足实际需求。对于起伏地形的林区影像的辐射校正,通常采用基于经验统计模型的方式。然而统计模型的参数是依据单景影像内地物分布情况而确定,模型参数极大依赖于输入影像的统计信息并非基于地物真实的物理辐射特性,因此基于经验统计模型的技术方法极大地制约了模型的应用拓展性。
机载推扫式高光谱影像具有高空间分辨率(<5m)和高光谱分辨率(<10nm)的特性,能对地物信息进行更详细和精准地刻画。机载数据的采集平台高度一般高于当地平均海拔500-2000m,远低于星载传感器的采集高度,由于其宽视场角观测导致的影像多角度效应也将更加明显;再加上起伏地形的干扰,极大地增加了准确描述地物反射特性的难度。目前的机载推扫式影像的BRDF校正方法大多利用传感器本身多角度观测的特性,构建多角度数据集,从而提取地物的BRDF特性进行校正。但该方法无法对起伏地形的区域的影像获取像元的真实太阳-观测几何,所以仍局限于平坦地形。因此如何对起伏地形的林区机载遥感图像进行BRDF校正是一个亟待解决的问题。
发明内容
本发明的目的是解决现有的BRDF校正算法暂时无法依据机载推扫式高光谱设备的成像特点以及在起伏地形的林区的复杂成像环境下的辐射校正问题。充分利用机载推扫式高光谱设备的宽视场角多角度观测和地形起伏带来的太阳-观测几何变化等信息,重新计算影像中像元的真实太阳-观测几何,构建新型多角度影像数据集。新型多角度数据集将满足现有的BRDF校正算法,由此可以解决起伏地形的林区机载推扫式高光谱影像的二项反射分布函数(BRDF)校正问题。
为达到上述目的,本发明提供了一种针对起伏地形的林区机载推扫式高光谱影像的二项反射分布函数(BRDF)归一化校正方法,包括以下步骤:
(1)针对几何校正和大气校正后的机载高光谱影像,根据机载推扫式高光谱成像仪设备观测视场和数据采集时飞行姿态以及太阳几何位置信息,计算影像中每个像元基于平面的太阳-观测几何,包括观测方位角、观测天顶角、太阳方位角和太阳天顶角;
(2)利用机载高光谱数据采集范围内的高精度数字高程模型(Digital FlevationModel,DEM)数据计算影像中每个像元的坡度、坡向信息;
(3)根据上述(2)所提供信息将每个像元的观测几何由全局坐标系变换到局部坐标系,获得像元基于起伏地形的真实的太阳-观测几何;
(4)依据坡度分层抽样提取同一树种像元的各个波段反射率以及该像元局部坐标系的太阳-观测几何数据,构建该树种各个波段的BRDF模型,并提取模型参数;
(5)利用乘法归一化因子,对机载高光谱影像中各个像元的不同角度的方向反射率归一化到指定太阳角度以及传感器观测方向的反射率值;
(6)验证并评估BRDF归一化校正结果。
进一步地,在计算影像像元的太阳-观测几何时,应结合机载推扫式高光谱成像仪设备观测视场信息和数据采集时飞行姿态数据。在传感器扫描过程中,原始影像的每个像素都具有特有的观测天顶角与观测方位角,因此需要对影像中的每个像元进行观测天顶角和观测方位角的计算。依据摄影测量共线方程,若将地面坐标系的原点位置平移到传感器扫描线中心位置,此时像框标坐标系坐标到地面空间坐标系坐标的转换过程为:
式(1)中,(x,y)和(x0,y0)分别为像素点坐标和像主点S在框标坐标系下的坐标;推扫式成像传感器对地表进行逐行的扫描成像,因此在同一行上的不同像素在像空间坐标系中(y-y0)坐标均为0;传感器扫描行宽度范围内的像素数目为nb,像素尺寸大小为p mm,则像主点坐标为f为摄影中心到成像影像的垂距,即焦距。(x-x0,y-y0,-f)为像素点在像空间坐标系的三维坐标。(u,v,w)为像素点在地面空间坐标系中的三维坐标。(2)式中,ω和k为外方位元素,确定了像空间坐标系三轴在地面坐标系中的方向,上述信息由机载POS数据提供,航向方位角为αaz。像素点的观测天顶角θv与方位角计算公式如下式所示:
进一步地,将影像像元的太阳-观测几何根据其对应的地形坡度、坡向信息,由全局坐标系变换为局部坐标系,以此获得像元真实的太阳-观测几何。所描述的像元的太阳-观测几何仅针对于影像覆盖范围为平坦地形的地区。对于地形起伏的林区,由于每个像元对应的坡度和坡向角的不同,其太阳-观测几何也随之变化。为了获得像元的真实太阳-观测几何,需要将基于地球平面坐标系(全局坐标系)的像元按照其对应的坡度(α)和坡向(β)信息,转换到该像元对应坡面的局部坐标系中。利用太阳及传感器在像元的局部坐标系中的坐标,即可计算出该像元对应坡面的真实太阳入射及观测几何。全局坐标系到局部坐标系的转换方式包括:首先将全局坐标系绕w轴旋转(π/2-β),再将旋转后的坐标系绕v轴旋转α,即得到基于坡面的局部坐标系。假设(x′,y′,z′)为通过坐标系转换将传感器在全局坐标系中的位置(u′,v′,w′)转换到局部坐标系中的新坐标换,则转换公式可表示为:
其中,r为传感器到像元的直线距离,在后续的角度计算中作为共有项将忽略,亦可将r看作单位距离1带入公式(5)计算。
在局部坐标系中,像元的真实观测天顶角θ′v和方位角分别由式(6)、(7)计算获得:
同理,坡面像元的真实太阳天顶角和方位角亦可通过上述方式计算。
进一步地,高光谱影像可根据像元的真实太阳-观测几何视为新型多角度观测数据集。在假设影像范围区域具有均匀的森林结构,并且不随坡度和坡向变化的前提下,本发明对新型多角度数据集采用半经验线性核驱动二项反射模型对不同树种的BRDF效应进行模拟,核的组合为体散射Ross-Thick核和几何光学Li-Sparse核。BRDF模型及核的具体计算公式如下:
其中是二项反射分布函数,它是太阳天顶角θ′s,观测天顶角θ′v,太阳和传感器的相对方位角不同地物类型c以及波长λ的函数;Kvol和Kgeo分别代表体散射Ross-Thick核和几何光学Li-Sparse核,fiso(c,λ)、fvol(c,λ)和fgeo分别代表某一地物类型在某一波段反射率的BRDF模型中各核函数项所对应的系数。fiso(c,λ)、fvol(c,λ)和fgeo分别与地物类型和波段有关,因此在括号中添加了(c,λ)。
进一步地,由于机载推扫式高光谱影像的高空间分辨率的缘故,单条单波段航带影像通常包含几千万至几亿个像元数。为了快速及相对准确地求解BRDF模型参数,本发明依据坡度和坡向信息对影像分层抽样,抽样比例根据实际情况而定。抽样后获得m(m为正整数)个像元子集,再根据地物树种分类数据提取m个像元子集中同一植被类型n(n为正整数)个像元的各个波段的反射率值以及局部坐标系的太阳-观测几何数据,并利用最小二乘法对该地物某一波段反射率的BRDF模型参数进行解算,建模过程如式(9)所示。
求解X·B=Y,则XT·X·B=XT·Y,可求的B=(XT·X)-1XT·Y,即求解出某一地物类型在某一波段反射率的BRDF模型中各核函数项所对应的系数fiso,fvol和fgeo
本发明的针对起伏地形的林区机载推扫式高光谱影像的二项反射分布函数(BRDF)归一化校正方法,通过利用机载推扫式高光谱设备的宽视场角多角度观测和地形起伏带来的太阳-观测几何变化等信息,重新计算影像中像元的真实太阳-观测几何,准确提取地物的BRDF特性,从而对起伏地形的林区的机载推扫式高光谱影像进行辐射校正。本发明方法适应于大多数推扫式影像数据集,逻辑清楚,适应性强,综合考虑了地表实际情况,充分利用因地形起伏带来的多角度观测效应,弥补了原本传感器稀疏采样多角度观测的不足,能较为准确地提取地物的真实的二项反射分布函数(BRDF)特性,对影像的辐射校正以及后期的遥感定量分析具有理论和应用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例的针对起伏地形的林区机载推扫式高光谱影像的二项反射分布函数(BRDF)归一化校正方法流程图;
图2a-图2d为影像像元基于平面的太阳观测几何和真实观测几何对比图,其中,图2a为基于平面的像元观测天顶角图像,图2b为像元真实观测天顶角图像,图2c为基于平面的像元观测方位角图像,图2d为像元真实观测方位角图像。
图3a、图3b分别为典型树种思茅松和刺栲的近红外波段反射率的BRDF特性图;
图4a、图4b分别为BRDF归一化校正影像前后对比图,图4c、图4d分别为图4a、图4b局部细节图;
图5a、图5b分别为BRDF归一化校正前后思茅松光谱曲线对比图,图中A、B、C和D代表图4c、图4d中不同位置的思茅松光谱数据。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种针对起伏地形的林区机载推扫式高光谱影像的二项反射分布函数(BRDF)归一化校正方法,具体实施步骤如下:
步骤一:计算像元的太阳-观测几何
相对于影像,太阳天顶角是指太阳直射光线与地平面垂线间的夹角。太阳方位角是指太阳相对于像元所处的方位,通常正北方向为0°,正东方向为90°。太阳的天顶角、方位角可以利用地理坐标位置以及影像的拍摄时间计算获得。由于机载设备采集单条航带的影像通常在10至20分钟内,太阳的位置变化不大,故可简化利用影像航带中心位置及该位置采集时间对应的固定太阳天顶角和方位角作为该航带影像所有像元对应的太阳几何信息。若单条航带影像采集时间过长,则可按照上述方法分段计算影像像元对应的太阳几何信息。
本实例根据机载推AISA Eagle II扫式高光谱成像传感器的特性,在传感器扫描过程中,原始影像的每个像素都具有特有的观测天顶角与观测方位角,因此需要对影像中的每个像元进行观测天顶角和观测方位角的计算。依据摄影测量共线方程,若将地面坐标系的原点位置平移到传感器扫描线中心位置,此时像框标坐标系坐标到地面空间坐标系坐标的转换过程为:
式(1)中,(x,y)和(x0,y0)分别为像素点坐标和像主点S在框标坐标系下的坐标;推扫式成像传感器对地表进行逐行的扫描成像,因此在同一行上的不同像素在像空间坐标系中(y-y0)坐标均为0。传感器扫描行宽度范围内的像素数目为1024,像素尺寸大小为0.012mm,则像主点坐标为传感器摄影中心到成像影像的垂距,即焦距f=18.50mm。(x-x0,y-y0,-f)为像素点在像空间坐标系的三维坐标,本实例中表示为(0,-18.5)。(u,v,w)为像素点在地面空间坐标系中的三维坐标。
(2)式中,ω和k分别为偏角、倾角和旋角,确定了像空间坐标系三轴在地面坐标系中的方向,上述信息由机载POS数据提供,航向方位角为αaz。像素点的观测天顶角θv与方位角计算公式如下式所示:
步骤二:数据准备
(1)高光谱影像几何校正与大气校正:根据步骤一所述,构建对应原始影像行列号的每个像元的太阳-观测几何查找表影像数据。将原始高光谱影像和查找表数据同时进行几何校正。几何校正后的高光谱影像原始行列号将根据POS数据中的航迹信息和高分辨率DEM数据重行排列,但同样经过几何级校正后的查找表数据依旧可将太阳-观测几何信息对应到几何校正后的高光谱影像中的像元。
依据机载定标参数文件对上述几何校正后的高光谱影像进行辐射定标并利用ATCOR4机载大气校正软件或模型(进行影像大气校正,最终得到经过几何校正和大气校正后的地物反射率高光谱影像数据。
(2)像元的坡度和坡向信息:利用上述航带影像覆盖范围内的高分辨率DEM数据计算像元的坡度α,坡向β信息。对计算所得的坡度和坡向影像进行空间重采样到,获得与高光谱影像一致的空间分辨率。
(3)地物类型分类:针对林区影像特点,利用上述地物反射率高光谱影像数据进行地物分类,主要分为:针叶林,阔叶林,草地,裸土,水体,道路,建筑物等,其中针叶林和阔叶林可进一步细分至树种。由此,获得该段航带影像范围内的地物分类图。
步骤三:计算像元的真实太阳-观测几何
步骤一中所描述的像元的太阳-观测几何仅针对于影像覆盖范围为平坦地形的地区。对于地形起伏的林区,由于每个像元对应的坡度和坡向角的不同,其太阳-观测几何也随之变化。为了获得像元的真实太阳-观测几何,需要将基于地球平面坐标系(全局坐标系)的像元按照其对应的坡度(α)和坡向(β)信息,转换到该像元对应坡面的局部坐标系中。利用太阳及传感器在像元的局部坐标系中的坐标,即可计算出该像元对应坡面的真实太阳入射及观测几何。全局坐标系到局部坐标系的转换方式包括:首先将全局坐标系绕w轴旋转(π/2-β),再将旋转后的坐标系绕v轴旋转α,即得到基于坡面的局部坐标系。假设(x′,y′,z′)为通过坐标系转换将传感器在全局坐标系中的位置(u′,v′,w′)转换到局部坐标系中的新坐标换,则转换公式可表示为:
其中,r为传感器到像元的直线距离,在后续的角度计算中作为共有项将忽略,亦可将r看作单位距离1带入公式(5)计算。
在局部坐标系中,像元的真实观测天顶角θ′v和方位角分别由式(6)、(7)计算获得:
同理,坡面像元的真实太阳天顶角和方位角亦可通过上述方式计算。
步骤四:提取地物BRDF特性
(1)BRDF模型
高光谱影像可根据像元的真实太阳-观测几何视为新型多角度观测数据集。在假设影像范围区域具有均匀的森林结构和地物结构,并且不随坡度和坡向变化的前提下,本发明对新型多角度数据集采用半经验线性核驱动二项反射模型对不同树种的BRDF效应进行模拟,核的组合为体散射Ross-Thick核和几何光学Li-Sparse核。BRDF模型及核的具体计算公式如下:
其中是二项反射分布函数,它是太阳天顶角θ′s,观测天顶角θ′v,太阳和传感器的相对方位角不同地物类型c以及波长λ的函数;
Kvol和Kgeo分别代表体散射Ross-Thick核和几何光学Li-Sparse核,其计算过程如下:
本发明依照MODIS BRDF/Albedo产品算法参数,设置模型中的 fiso(c,λ)、fvol(c,λ)和fgeo分别代表某一地物类型在某一波段反射率的BRDF模型中各核函数项所对应的系数。
(2)BRDF模型核参数求解
由于机载推扫式高光谱影像的高空间分辨率的缘故,单条单波段航带影像通常包含几千万至几亿个像元数,为了快速及相对准确地求解BRDF模型参数,本发明依据坡度和坡向信息对新型多角度观测数据集分层抽样,获得m(m为正整数)个像元子集,再根据地物树种分类数据提取m个像元子集中同一植被类型的n(n为正整数)个像元的各个波段的反射率值以及局部坐标系的太阳-观测几何数据,并利用最小二乘法对该地物单一波段反射率的BRDF模型参数进行解算,建模过程如式(18所示。
求解X·B=Y,则XT·X·B=XT·Y,可求的B=(XT·X)-1XT·Y,即求解出某一地物类型在某一波段反射率的BRDF模型中各核函数项所对应的系数fiso,fvol和fgeo
步骤五:高光谱影像BRDF校正
计算整条航带高光谱影像每个像元在各个波段的各项异性因子(AnisotropyFactor,ANIF)参数,生成影像对应的ANIF图。ANIF可以反映某一波段的任意方向反射率与指定方向反射率之间的关系,其表达式如下:
是某一地物在某一波段的任意太阳-观测条件下的拟合反射率,是某一地物在某一波段的固定太阳天顶角观测天顶角以及太阳-传感器相对方位条件下的拟合反射率,通常选择天底方向观测,即
利用上述ANIF参数对高光谱影像进行逐BRDF归一化校正,校正方式为:
其中,ρBRDF_Cor是经过BRDF归一化校正后的高光谱反射率影像,ρimage是步骤二中,经过几何校正和大气校正后的地物反射率高光谱影像数据。
最后,通过目视比较影像以及对比地面实测地物反射率验证算法精度。
以下1以思茅松为例进行案例说明。
在一台配置有Intel(R)Xeon(R)1.70GHz的双核处理器,32GB内存的工作站计算机上进行实施,以云南起伏地形林区的机载推扫式AISA Eagle II高光谱影像数据为例,采用本发明方法,对影像数据进行BRDF归一化校正(图1)。对比未添加地形因素的像元观测几何(图2a、图2c)和像元真实观测几何(图2b、图2d),可以看出结合地形因素的像元真实观测几何包含更加丰富的地物多角度观测信息,避免了因稀疏的多角度观测而造成BRDF核驱动模型反演时无约束所带来的BRDF形状剧烈变化的问题。图3a、图3b表示影像中典型植被类型在红波段和近红外波段反射率的BRDF形状,可以看出反演结果合理,当太阳天顶角为30°时,在热点方向上地物表现出较高的反射率。图4a、图4b反映了BRDF归一化校正后的影像较相比于原始反射率影像在一定程度上消除了地形因素对植被反射率的影响,图4c、图4d局部细节展示出影像中同一植被类型表现出相似的光谱反射特性。由图5b可得,BRDF归一化校正后影像中,在阴坡和阳坡的思茅松表现出相似的光谱反射特性,改善了地形因素和机载推扫式传感器观测造成的植被光谱反射差异(图5a)。
上述实施例首先根据机载推扫式高光谱成像仪的特点对影像中每个像元计算其基于平面的太阳-观测几何;再根据DEM数据获取像元对应的坡度和坡向的信息,将像元的太阳-观测几何由全局坐标系转换为局部坐标系,即依据该像元的依据坡度和坡向将像元在平面上的太阳-观测几何旋转到坡面上,从而得到各个像元真实的太阳-观测几何,构建新型多角度数据集;通过半经验核驱动模型模型拟合新型多角度数据集提取不同树种在可见光到近红外波段的BRDF特征;最后采用乘法归一化因子,将影像内各像元的多个角度的方向反射率归一化到指定的某个观测-太阳角度的反射率。本发明能有效校正起伏地形的林区机载推扫式高光谱影像的BRDF效应,对后续影像的定量研究具有重要意义。
以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离以下所附权利要求所限定的精神和范围的情况下,可做出许多修改、变化或等效,但都将落入本发明的保护范围内。

Claims (5)

1.一种林区机载推扫式高光谱影像的BRDF归一化校正方法,所述林区机载推扫式高光谱影像为针对起伏地形的林区机载推扫式高光谱影像,其特征在于,包括以下步骤:
(1)针对几何校正和大气校正后的机载高光谱影像,根据机载推扫式高光谱成像仪设备观测视场和数据采集时飞行姿态以及太阳几何位置信息,计算影像中每个像元基于平面的太阳-观测几何信息,基于平面的太阳-观测几何信息包括观测方位角、观测天顶角、太阳方位角和太阳天顶角;
(2)利用机载高光谱数据采集范围内的高精度数字高程模型数据计算影像中每个像元的坡度、坡向信息;
(3)根据步骤(2)中得到的像元的坡度、坡向信息将每个像元的观测几何由全局坐标系变换到局部坐标系,获得像元基于起伏地形的真实的太阳-观测几何信息;
(4)依据坡度分层抽样提取同一树种像元的各个波段反射率以及该像元局部坐标系的太阳-观测几何信息,构建该树种各个波段的BRDF模型,并提取模型参数;
(5)利用乘法归一化因子,对机载高光谱影像中各个像元的不同角度的方向反射率归一化到指定太阳角度以及传感器观测方向的反射率值;
(6)验证并评估BRDF归一化校正结果。
2.根据权利要求1所述的林区机载推扫式高光谱影像的BRDF归一化校正方法,其特征在于:在计算影像像元的太阳-观测几何时,应结合机载推扫式高光谱成像仪设备观测视场信息和数据采集时飞行姿态数据;依据摄影测量共线方程,若将地面坐标系的原点位置平移到传感器扫描线中心位置,此时像框标坐标系坐标到地面空间坐标系坐标的转换过程为:
式(1)中,(x,y)和(x0,y0)分别为像素点坐标和像主点S在框标坐标系下的坐标;推扫式成像传感器对地表进行逐行的扫描成像,因此在同一行上的不同像素在像空间坐标系中(y-y0)坐标均为0;传感器扫描行宽度范围内的像素数目为nb,像素尺寸大小为p mm,则像主点坐标为f为摄影中心到成像影像的垂距,即焦距。(x-x0,y-y0,-f)为像素点在像空间坐标系的三维坐标。(u,v,w)为像素点在地面空间坐标系中的三维坐标。(2)式中,ω和k为外方位元素,确定了像空间坐标系三轴在地面坐标系中的方向,上述信息由机载POS数据提供,航向方位角为αaz。像素点的观测天顶角θv与方位角计算公式如下式所示:
3.根据权利要求1所述的林区机载推扫式高光谱影像的BRDF归一化校正方法,其特征在于:将影像像元的太阳-观测几何根据其对应的地形坡度、坡向信息,由全局坐标系变换为局部坐标系,以此获得像元真实的太阳-观测几何;为了获得像元的真实太阳-观测几何,需要将基于地球平面坐标系(全局坐标系)的像元按照其对应的坡度(α)和坡向(β)信息,转换到该像元对应坡面的局部坐标系中。利用太阳及传感器在像元的局部坐标系中的坐标,即可计算出该像元对应坡面的真实太阳入射及观测几何;全局坐标系到局部坐标系的转换方式包括:首先将全局坐标系绕w轴旋转(π/2-β),再将旋转后的坐标系绕v轴旋转α,即得到基于坡面的局部坐标系;假设(x′,y′,z′)为通过坐标系转换将传感器在全局坐标系中的位置(u′,v′,w′)转换到局部坐标系中的新坐标换,则转换公式可表示为:
其中,r为传感器到像元的直线距离,在后续的角度计算中作为共有项将忽略,亦可将r看作单位距离1带入公式(5)计算;
在局部坐标系中,像元的真实观测天顶角θ′v和方位角分别由式(6)、(7)计算获得:
同理,坡面像元的真实太阳天顶角和方位角亦可通过上述方式计算。
4.根据权利要求1所述的林区机载推扫式高光谱影像的BRDF归一化校正方法,其特征在于:高光谱影像可根据像元的真实太阳-观测几何视为新型多角度观测数据集;在假设影像范围区域具有均匀的森林结构和地物结构,并且不随坡度和坡向变化的前提下,对新型多角度数据集采用半经验线性核驱动二项反射模型对不同树种的BRDF效应进行模拟,核的组合为体散射Ross-Thick核和几何光学Li-Sparse核;BRDF模型及核的具体计算公式如下:
其中是二项反射分布函数,它是太阳天顶角θ′s,观测天顶角θ′v,太阳和传感器的相对方位角不同地物类型c以及波长λ的函数;Kvol和Kgeo分别代表体散射Ross-Thick核和几何光学Li-Sparse核,fiso(c,λ)、fvol(c,λ)和fgeo分别代表某一地物类型在某一波段反射率的BRDF模型中各核函数项所对应的系数。
5.根据权利要求1所述的林区机载推扫式高光谱影像的BRDF归一化校正方法,其特征在于:依据坡度和坡向信息对影像分层抽样,抽样比例根据实际情况而定,抽样后获得m(m为正整数)个像元子集,再根据地物树种分类数据提取m个像元子集中同一植被类型的n(n为正整数)个像元的各个波段的反射率值以及局部坐标系的太阳-观测几何数据,并利用最小二乘法对该地物某一波段反射率的BRDF模型参数进行解算,建模过程如式(9)所示。
求解X·B=Y,则XT·X·B=XT·Y,可求的B=(XT·X)-1XT·Y,即求解出某一地物类型在某一波段反射率的BRDF模型中各核函数项所对应的系数fiso,fvol和fgeo
CN201711429219.3A 2017-12-25 2017-12-25 林区机载推扫式高光谱影像的brdf归一化校正方法 Active CN108132220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711429219.3A CN108132220B (zh) 2017-12-25 2017-12-25 林区机载推扫式高光谱影像的brdf归一化校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711429219.3A CN108132220B (zh) 2017-12-25 2017-12-25 林区机载推扫式高光谱影像的brdf归一化校正方法

Publications (2)

Publication Number Publication Date
CN108132220A true CN108132220A (zh) 2018-06-08
CN108132220B CN108132220B (zh) 2021-03-05

Family

ID=62393019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711429219.3A Active CN108132220B (zh) 2017-12-25 2017-12-25 林区机载推扫式高光谱影像的brdf归一化校正方法

Country Status (1)

Country Link
CN (1) CN108132220B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932341A (zh) * 2019-03-11 2019-06-25 北京环境特性研究所 野外环境下典型目标的双向反射分布函数测量方法
CN109974854A (zh) * 2019-03-18 2019-07-05 石河子大学 一种框幅式fpi高光谱图像的辐射校正方法
CN110083176A (zh) * 2019-05-05 2019-08-02 宁夏大学 一种基于无人机载高光谱成像的brdf数据采集系统和方法
CN110702228A (zh) * 2019-09-25 2020-01-17 华东师范大学 一种航空高光谱影像的边缘辐射校正方法
CN112504998A (zh) * 2020-09-18 2021-03-16 南京大学 一种泡沫材料的大视场太赫兹无损检测方法
CN113008834A (zh) * 2021-02-09 2021-06-22 中国农业大学 基于遥感影像的地表反射率校正方法及装置
CN113029977A (zh) * 2021-03-11 2021-06-25 武汉大学 一种针对宽视场角多光谱传感器的自动交叉辐射定标方法
CN113155740A (zh) * 2020-01-07 2021-07-23 国家卫星气象中心(国家空间天气监测预警中心) 一种定标基准场brdf特性分析方法及系统
CN113870147A (zh) * 2021-10-19 2021-12-31 北京航空航天大学 一种考虑阴影区域的遥感图像brdf校正方法
CN114581784A (zh) * 2022-05-07 2022-06-03 自然资源部第二海洋研究所 一种长时序逐年红树林遥感监测产品的构建方法
CN118193767A (zh) * 2024-03-25 2024-06-14 自然资源部国土卫星遥感应用中心 一种基于数据驱动的高光谱影像像元光谱智能化采集方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073038A (zh) * 2010-11-29 2011-05-25 上海大学 基于微小地形的遥感影像的地形校正的方法
CN102902883A (zh) * 2012-09-24 2013-01-30 北京师范大学 一种基于多角度测量构建二向性反射分布函数(brdf)原型库的方法
CN103324827A (zh) * 2013-04-09 2013-09-25 北京师范大学 一种改善业务化核驱动二向性反射分布函数(brdf)模型热点的方法
CN103413014A (zh) * 2013-03-11 2013-11-27 北京师范大学 一种基于二向性反射分布函数(brdf)原型反演地表反照率的方法
CN104156567A (zh) * 2014-07-23 2014-11-19 中国科学院遥感与数字地球研究所 一种耦合卫星遥感影像大气校正和地形校正过程的地表反射率获取技术
CN104834814A (zh) * 2015-04-29 2015-08-12 西北师范大学 遥感影像地形标准化方法
CN105716583A (zh) * 2016-01-26 2016-06-29 河海大学 一种基于平行摄影的勘探洞地质编录底图生成方法
WO2017048674A1 (en) * 2015-09-14 2017-03-23 University Of Florida Research Foundation, Inc. Method for measuring bi-directional reflectance distribution function (brdf) and associated device
CN106663332A (zh) * 2014-06-30 2017-05-10 微软技术许可有限责任公司 用于各向同性双向反射分布函数的非参数微面元因子模型
CN106971156A (zh) * 2017-03-22 2017-07-21 中国地质科学院矿产资源研究所 一种基于面向对象分类的稀土开采区遥感信息提取方法
CN107330473A (zh) * 2017-07-06 2017-11-07 常州市星图测绘科技有限公司 一种基于空间邻接指数的遥感分类野外调查样方抽选方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073038A (zh) * 2010-11-29 2011-05-25 上海大学 基于微小地形的遥感影像的地形校正的方法
CN102902883A (zh) * 2012-09-24 2013-01-30 北京师范大学 一种基于多角度测量构建二向性反射分布函数(brdf)原型库的方法
CN103413014A (zh) * 2013-03-11 2013-11-27 北京师范大学 一种基于二向性反射分布函数(brdf)原型反演地表反照率的方法
CN103324827A (zh) * 2013-04-09 2013-09-25 北京师范大学 一种改善业务化核驱动二向性反射分布函数(brdf)模型热点的方法
CN106663332A (zh) * 2014-06-30 2017-05-10 微软技术许可有限责任公司 用于各向同性双向反射分布函数的非参数微面元因子模型
CN104156567A (zh) * 2014-07-23 2014-11-19 中国科学院遥感与数字地球研究所 一种耦合卫星遥感影像大气校正和地形校正过程的地表反射率获取技术
CN104834814A (zh) * 2015-04-29 2015-08-12 西北师范大学 遥感影像地形标准化方法
WO2017048674A1 (en) * 2015-09-14 2017-03-23 University Of Florida Research Foundation, Inc. Method for measuring bi-directional reflectance distribution function (brdf) and associated device
CN105716583A (zh) * 2016-01-26 2016-06-29 河海大学 一种基于平行摄影的勘探洞地质编录底图生成方法
CN106971156A (zh) * 2017-03-22 2017-07-21 中国地质科学院矿产资源研究所 一种基于面向对象分类的稀土开采区遥感信息提取方法
CN107330473A (zh) * 2017-07-06 2017-11-07 常州市星图测绘科技有限公司 一种基于空间邻接指数的遥感分类野外调查样方抽选方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGCHENG CUI,SHIZHI YANG,YANLI QIAO ET AL: "Adaptive regularized filtering for BRDF model inversion and land surface albedo retrieval based on spectrum cutoff technique", 《OPTIK》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932341B (zh) * 2019-03-11 2021-03-23 北京环境特性研究所 野外环境下典型目标的双向反射分布函数测量方法
CN109932341A (zh) * 2019-03-11 2019-06-25 北京环境特性研究所 野外环境下典型目标的双向反射分布函数测量方法
CN109974854A (zh) * 2019-03-18 2019-07-05 石河子大学 一种框幅式fpi高光谱图像的辐射校正方法
CN110083176A (zh) * 2019-05-05 2019-08-02 宁夏大学 一种基于无人机载高光谱成像的brdf数据采集系统和方法
CN110083176B (zh) * 2019-05-05 2020-07-24 宁夏大学 一种基于无人机载高光谱成像的brdf数据采集系统和方法
CN110702228B (zh) * 2019-09-25 2021-06-25 华东师范大学 一种航空高光谱影像的边缘辐射校正方法
CN110702228A (zh) * 2019-09-25 2020-01-17 华东师范大学 一种航空高光谱影像的边缘辐射校正方法
CN113155740A (zh) * 2020-01-07 2021-07-23 国家卫星气象中心(国家空间天气监测预警中心) 一种定标基准场brdf特性分析方法及系统
CN112504998A (zh) * 2020-09-18 2021-03-16 南京大学 一种泡沫材料的大视场太赫兹无损检测方法
CN112504998B (zh) * 2020-09-18 2021-12-17 南京大学 一种泡沫材料的大视场太赫兹无损检测方法
CN113008834A (zh) * 2021-02-09 2021-06-22 中国农业大学 基于遥感影像的地表反射率校正方法及装置
CN113029977A (zh) * 2021-03-11 2021-06-25 武汉大学 一种针对宽视场角多光谱传感器的自动交叉辐射定标方法
CN113029977B (zh) * 2021-03-11 2022-03-15 武汉大学 一种针对宽视场角多光谱传感器的自动交叉辐射定标方法
CN113870147A (zh) * 2021-10-19 2021-12-31 北京航空航天大学 一种考虑阴影区域的遥感图像brdf校正方法
CN113870147B (zh) * 2021-10-19 2024-07-12 北京航空航天大学 一种考虑阴影区域的遥感图像brdf校正方法
CN114581784A (zh) * 2022-05-07 2022-06-03 自然资源部第二海洋研究所 一种长时序逐年红树林遥感监测产品的构建方法
CN114581784B (zh) * 2022-05-07 2022-08-12 自然资源部第二海洋研究所 一种长时序逐年红树林遥感监测产品的构建方法
CN118193767A (zh) * 2024-03-25 2024-06-14 自然资源部国土卫星遥感应用中心 一种基于数据驱动的高光谱影像像元光谱智能化采集方法

Also Published As

Publication number Publication date
CN108132220B (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN108132220A (zh) 林区机载推扫式高光谱影像的brdf归一化校正方法
Smith et al. High spatial resolution data acquisition for the geosciences: kite aerial photography
Li et al. An evaluation of the use of atmospheric and BRDF correction to standardize Landsat data
Nurminen et al. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables
Ni et al. Mapping three-dimensional structures of forest canopy using UAV stereo imagery: Evaluating impacts of forward overlaps and image resolutions with LiDAR data as reference
Toutin Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird
Salum et al. Improving mangrove above-ground biomass estimates using LiDAR
Raggam et al. Assessment of the stereo-radargrammetric mapping potential of TerraSAR-X multibeam spotlight data
Pisek et al. Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution
CN104299228B (zh) 一种基于精确点位预测模型的遥感影像密集匹配方法
Zhang et al. Efficient registration of terrestrial LiDAR scans using a coarse-to-fine strategy for forestry applications
Bian et al. Modeling the directional anisotropy of fine-scale TIR emissions over tree and crop canopies based on UAV measurements
Jiang et al. Assessment of different kernel-driven models for daytime urban thermal radiation directionality simulation
Wang et al. Evaluation of footprint horizontal geolocation accuracy of spaceborne full-waveform LiDAR based on digital surface model
Qiao et al. Assessment of geo-positioning capability of high resolution satellite imagery for densely populated high buildings in metropolitan areas
Gastellu-Etchegorry et al. Recent improvements in the dart model for atmosphere, topography, large landscape, chlorophyll fluorescence, satellite image inversion
Cao et al. Optimizing the protocol of near-surface remote sensing experiments over heterogeneous canopy using DART simulated images
Gastellu-Etchegorry et al. Why to model remote sensing measurements in 3D? Recent advances in dart: Atmosphere, topography, large landscape, chlorophyll fluorescence and satellite image inversion
Barnsley et al. Estimating land surface albedo in the HAPEX-Sahel southern super-site: Inversion of two BRDF models against multiple angle ASAS images
Näsi et al. Optimizing radiometric processing and feature extraction of drone based hyperspectral frame format imagery for estimation of yield quantity and quality of a grass sward
CN110516588A (zh) 一种遥感卫星系统
CN113870147A (zh) 一种考虑阴影区域的遥感图像brdf校正方法
Trisakti et al. DEM generation from stereo ALOS PRISM and its quality improvement
CN115524763B (zh) 一种多时相高分辨率山地卫星影像地形辐射校正方法
CN117554300B (zh) 山地地表反照率站点观测遥感空间降尺度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant