CN108123548B - 无线充电方法和支持该方法的电子设备 - Google Patents

无线充电方法和支持该方法的电子设备 Download PDF

Info

Publication number
CN108123548B
CN108123548B CN201711223405.1A CN201711223405A CN108123548B CN 108123548 B CN108123548 B CN 108123548B CN 201711223405 A CN201711223405 A CN 201711223405A CN 108123548 B CN108123548 B CN 108123548B
Authority
CN
China
Prior art keywords
power
frequency
control signal
amount
transmission power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711223405.1A
Other languages
English (en)
Other versions
CN108123548A (zh
Inventor
李优兰
金炅垣
朴世镐
吴彰学
金庆准
金起铉
卢润侹
朴宰完
郑亨九
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN108123548A publication Critical patent/CN108123548A/zh
Application granted granted Critical
Publication of CN108123548B publication Critical patent/CN108123548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

根据本公开的一个实施例的电子设备包括:导电线圈;电力产生电路;以及一个或多个处理器,可操作地连接到电力产生电路并且被配置为:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率,当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位,将具有指定频率和相位的控制信号发送到电力产生电路以至少部分地基于控制信号来产生与传输功率的量对应的传输功率,以及经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。

Description

无线充电方法和支持该方法的电子设备
技术领域
本公开涉及一种无线充电方法及支持该方法的电子设备。
背景技术
最近,无线充电技术得到了发展。一种无线充电类型可以使用电磁感应,而另一种类型可以使用磁共振。这些充电方法已经越来越多地用于智能电话等电子设备。在这样的系统中,当电力传输单元(PTU)(例如,无线充电板)和电力接收单元(PRU)(例如,智能电话)彼此接触或者在彼此的一定距离内时,可以通过电力传输设备的传输线圈和电力接收设备的接收线圈之间的电磁感应或电磁共振对电力接收设备的电池进行充电。
发明内容
但是,在从电力传输设备向电力接收设备进行无线电力传输的过程中有可能发生电磁干扰(EMI)。这样的EMI可能引起诸如电力传输设备和/或电力接收设备的故障等问题,可能对人体等产生不利影响。
本公开的各种实施例涉及通过调整用于控制电力产生电路设备的控制信号的频率、相位和/或占空比来减少由于EMI而导致的劣化的无线充电方法,以及支持该方法的电子设备。
本公开的技术目的不限于以上,并且在阅读以下描述之后,即使没有明确公开,其它目的对于本领域技术人员而言也是显而易见的。
根据本公开的一个实施例的电子设备可以包括:一种电子设备,包括:导电线圈;电力产生电路;以及一个或多个处理器,可操作地连接到所述电力产生电路并且被配置为:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率,当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位,将具有指定频率和相位的控制信号发送到电力产生电路以至少部分地基于控制信号来产生与传输功率的量对应的传输功率,以及经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。
根据本公开的一个实施例的无线充电方法可以包括:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率,当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位,将具有指定频率和相位的控制信号发送到电力产生电路以至少部分地基于控制信号来产生与传输功率的量对应的传输功率,以及经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。
根据本公开的一个实施例的电子设备可以包括:导电线圈;电力产生电路;以及一个或多个处理器,可操作地连接到电力产生电路并且可以被配置为:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,当传输功率的量等于或小于指定阈值功率量时,在指定频率范围内改变用于控制电力产生电路的控制信号的频率,至少部分地基于传输功率的量和/或改变后的频率来确定控制信号的相位和占空比中的至少一个,发送具有改变后的频率、所确定的相位和所确定的占空比中的至少一个的控制信号到电力产生电路,以至少部分地基于控制信号来产生与传输功率的量对应的传输功率,以及经由导电线圈向功率接收设备提供由功率产生电路产生的传输功率。
附图说明
根据结合附图给出的以下具体实施方式,将更清楚本公开的上述和其他方面、特征和优点,在附图中:
图1是示出了根据本公开的一个实施例的无线充电系统的框图;
图2是示出了根据本公开的一个实施例的无线充电系统的电力传输设备的组件的框图;
图3A和3B是示出了根据本公开的一个实施例的无线充电方法的曲线图;
图4是示出了根据本公开的一个实施例的无线充电方法的流程图;
图5A至图6C是示出了根据本公开各种实施例的无线充电方法的示例的曲线图;
图7是示出了根据本公开的一个实施例的无线充电方法的流程图;
图8A和图8B是示出了根据本公开各种实施例的无线充电方法的示例的曲线图;
图9是示出了根据本公开的一个实施例的无线充电方法的流程图;以及
图10至图15B是示出了根据本公开各种实施例的无线充电方法的示例的各种曲线图。
具体实施方式
在下文中,将参考附图来描述本公开的各种实施例。然而,应当理解:并非意在将本公开限制为公开的实施例,并且本公开应当被解释为涵盖落入本公开的精神和范围内的所有修改、等同物和/或备选。在描述附图的过程中,可以将相似的附图标记用于表示相似的组成元件。
如本文所用,表述“具有”、“可以具有”、“包括”或“可以包括”表示存在对应特征(例如,功能、操作或诸如组件的组成要素),而不排除一个或更多个附加特征。
在本公开中,表述“A或B”、“A或/和B中的至少一项”或“A或/和B中的一个或多个”可以包括所列出项目的所有可能组合。例如,表达方式“A或B”、“A和B中至少一项”或“A或B中至少一项”可以表示:(1)至少一个A,(2)至少一个B,或(3)至少一个A和至少一个B二者。
在本公开的各种实施例中使用的表述“第一”或“第二”可以修饰各种组件,而不管顺序和/或重要性如何,但不限制对应组件。例如,第一用户设备和第二用户设备指示不同的用户设备,但它们都是用户设备。例如,可以将第一元件称为第二元件,以及类似地可以将第二元件称为第一元件,而不脱离本公开的范围。
应当理解:当将一元件(例如,第一元件)称为(可操作或可通信地)“连接”或“耦接”到另一元件(例如,第二元件)时,该元件可以直接连接或直接耦接到该另一元件,或者任何另一元件(例如,第三元件)可以在它们之间。相反,可以理解:在将一元件(例如,第一元件)称为“直接连接”或“直接耦接”到另一元件(例如,第二元件)时,则不存在在它们之间的元件(例如,第三元件)。
如本文中所用,表述“被配置为”可与表述“适用于”、“具有......的能力”、“设计为”、“用于”、“制造为”或“能够......”互换使用。术语“被构造为...”可能不一定意味着在硬件方面“被专门设计为...”。备选地,在一些情况下,表述“被配置为...的设备”可以意味着该设备与其它设备或组件一起“能够...”。例如,短语“适于(或(被)配置为)执行A、B和C的处理器”可以意味着仅用于执行对应操作的专用处理器(例如,内置式处理器),或可以通过执行存储在存储器设备中的一个或多个软件程序来执行对应操作的通用处理器(例如,中央处理单元(CPU)或应用处理器(AP))。
本公开中使用的术语仅用于描述具体实施例,并不旨在限制本公开。除非上下文另外清楚地指示,否则单数形式也意在包括相应复数形式。除非另行定义,否则本文所用的所有术语(包括技术术语和科学术语)具有与本公开所属技术领域的技术人员通常理解的含义相同的含义。除非本公开中清楚地定义,否则这样的术语(如在常用词典中定义的术语)可以被解释为具有与相关技术领域中的上下文含义等同的含义,而不应被解释为具有过分正式的含义。在一些情况下,即使本公开中明确地定义的术语也不应被解释为排除本公开的实施例。
根据本公开的各种实施例的电子设备可以是例如智能电话,平板个人计算机(PC)、移动电话、视频电话、电子书阅读器(电子书阅读器)、台式PC、膝上型PC、上网本计算机、工作站、服务器、个人数字助理(PDA)、便携式多媒体播放器(PMP)、MPEG-1音频层-3(MP3)播放器、移动医疗设备、相机、可穿戴设备等。可穿戴设备可以是配件(例如,手表、戒指、手镯、脚链、项链、眼镜、隐形眼镜或头戴式设备(HMD))、与织物或衣服集成的设备(例如,电子衣服)、身体安装设备(例如,皮肤垫或纹身)或生物可植入设备(例如,可植入电路)。
根据一些实施例,电子设备可以是家用电器。智能家庭设备是例如电视、数字视频盘(DVD)播放器、音频设备、冰箱、空调、吸尘器、烤箱、微波炉、洗衣机、空气净化器、机顶盒、家庭自动控制面板、安全控制面板、TV盒(例如,Samsung HomeSyncTM、Apple TVTM或GoogleTVTM)、游戏机(例如,XBOXTM和PLAYSTATIONTM)、电子词典、电子钥匙、摄像机和电子相框中的至少一个。
根据另一实施例,电子设备可以是:各种医疗设备(例如,各种便携式医疗测试设备(血糖监控设备、心率监控设备、血压测量设备、体温测量设备等)、核磁共振血管造影(MRA)、核磁共振成像(MRI)、断层扫描(CT)机或超声波扫描机)、导航设备、全球定位系统(GPS)接收机、时间数据记录仪(EDR)、飞行数据记录仪(FDR)、车辆信息娱乐设备、船用电子设备(例如,航海导航设备和罗盘)、航空电子设备、安全设备、车辆头端单元、工业或家用机器人、银行的自动柜员机(ATM)、商店的销售点或物联网(例如,灯泡、多种传感器、电表或燃气表、自动喷水设备、火警、恒温器、路灯、烤面包机、运动器材、热水箱、加热器、锅炉等)。
根据一些实施例,电子设备可以是家具或建筑物/结构的一部分、电子板、电子签名接收设备、投影仪、以及各种测量仪器(例如水表、电表、气表、和无线电波表)。根据本公开的各种实施例的电子设备可以是上述各种设备之一或多个的组合。根据本公开一些实施例的电子设备可以是柔性设备。此外,根据本公开实施例的电子设备不限于上述设备,并可以包括在技术上发展的其他设备。
下文中将参考附图描述根据各种实施例的电子设备。在本公开中,术语“用户”可指示使用电子设备的人或者使用电子设备的设备(例如,人工智能电子设备)。
图1是示出了根据本公开的一个实施例的无线充电系统的框图。
参考图1,在一个实施例中,电力传输设备10可以包括电力产生电路11、控制电路12、通信电路13以及感测电路14。
在一个实施例中,电力产生电路11可以包括接收外部电力并且适当地转换所接收的电力的电压的电力适配器11a。电力产生电路11还可以包括产生电力的电力产生电路11b和使传输线圈11L和接收线圈21L之间的效率最大化的匹配电路11c。
控制电路12可以执行电力传输设备10的整体控制,并且可以产生无线电力传输所需的各种消息。这些消息可以由通信电路13传输。在一个实施例中,控制电路12可以基于从通信电路13接收的信息来计算要向电力接收设备20传输的电量。一旦确定了电量,控制电路12就可以控制电力产生电路11,使得由传输线圈11L向电力接收设备20传输所计算的电量。
通信电路13可以包括第一通信电路13a和第二通信电路13b中的至少一个。第一通信电路13a可以使用例如与用于传输线圈11L中的电力传输的频率相同的频率与电力接收设备20的第一通信电路23a进行通信。这可以被称为使用带内方案的通信。第二通信电路13b可以使用例如与用于传输线圈11L中的电力传输的频率不同的频率来与电力接收设备20的第二通信电路23b进行通信。这可以被称为使用带外方案的通信。例如,第二通信电路13b可以使用各种短距离通信方法(诸如,蓝牙、BLE、Wi-Fi、NFC等)从第二通信电路23b获取与电力接收设备20的充电状态有关的信息(例如,由电力接收设备20接收的电压,由接收线圈21L输出的电流等)。
另外,电力传输设备10还可以包括用于感测电力传输设备的温度或移动的感测电路14。
在一个实施例中,电力接收设备20可以包括电力接收电路21、控制电路22、通信电路23、至少一个传感器24以及显示器25。在电力接收设备20中,可以部分地省略与电力传输设备10对应的配置的描述。
在一个实施例中,电力接收电路21可以包括:无线地从电力传输设备10接收电力的接收线圈21L;匹配电路21a;将接收的交流(AC)电整流为直流(DC)电的整流电路21b;调整充电电压的调整电路21c;开关电路21d和电池21e。
控制电路22可以执行电力接收设备20的整体控制,并且可以产生无线电力传输所需的各种消息。这些消息可以由通信电路23传输。
通信电路23可以包括第一通信电路23a和第二通信电路23b中的至少一个。第一通信电路23a可以经由接收线圈21L与电力传输设备10进行通信。第二通信电路23b可以使用诸如蓝牙、BLE、Wi-Fi、NFC等的各种短距离通信方法与电力传输设备10进行通信。
另外,电力接收设备20还可以包括传感器24,其可以包括电流/电压传感器、温度传感器、照度传感器、声音传感器等。
图2是示出了根据本公开的一个实施例的无线充电系统的电力传输设备10的组件的框图。
在一个实施例中,电力传输设备10可以包括接口210、电力产生电路220、匹配电路230、传输线圈240和处理器250。
接口210可以连接到电源设备(例如,旅行适配器或电源),并且可以从电源设备接收电力。在一个实施例中,接口210可以包括电源线和数据线。接口210可以将来自电源设备的电力传输到处理器250和电力产生电路220。在一个实施例中,接口210可以被包括在图1的电力适配器11a中。
在图2中,电力传输设备10不包括电源设备,但是本公开不限于此。因此,在替代实施例中,电力传输设备10可以包括电源设备。在一个实施例中,电源设备可以将交流电(AC)转换成直流电(DC),并且可以向接口210传输所获得的直流电。
电力产生电路220可以包括DC-AC转换电路。如图2所示,电力产生电路220可以被配置为包括四个开关的全桥电路。然而,电力产生电路220不限于此。
电力产生电路220可以从处理器250接收控制信号,并且可以至少部分地基于所接收的控制信号将直流电转换为交流电。例如,当具有高电平的控制信号被施加到开关S1的栅极AH和开关S4的栅极BL,并且具有低电平的控制信号被施加到开关S2的栅极BH和开关S3的栅极AL时,开关S1和开关S4接通,开关S2和开关S3断开。当开关S1和开关S4接通并且开关S2和开关S3断开时,电力产生电路220可以向电力产生电路220输出符号与从接口210输入的与交流电相同的电力。例如,当从接口210输入到电力产生电路220的直流电具有正号时,可以在开关S1(或开关S3的漏极)的源极和开关S4的漏极(或开关S2的源极)之间输出正电压。当具有低电平的控制信号被施加到开关S1的栅极AH和开关S4的栅极BL,并且具有高电平的控制信号被施加到开关S2的栅极BH和开关S3的栅极AL时,开关S1和开关S4可以断开,开关S2和开关S3可以接通。当开关S1和开关S4可以断开并且开关S2和开关S3可以接通时,电力产生电路220可以向电力产生电路220输出符号与从接口210输入的与直流电相反的电力。因此,电力产生电路220可以通过周期性地将开关S1、S2、S3和S4切换成接通和断开来将直流电转换为交流电。
在图2中,开关被示出为n沟道金属氧化物半导体场效应晶体管(NMOS FET),但是开关不限于此。例如,开关可以是其他FET、双极结型晶体管(BJT)、二极管等。
图2的电力产生电路220与图1的电力产生电路11b相对应。
在一个实施例中,匹配电路230可以使传输线圈240和接收线圈21L之间的效率最大化,并且可以包括匹配元件。在图2中,匹配电路230被示为包括电容器C1,但是匹配电路230不限于此。因此,在其他实施例中,除了电容器C1之外,匹配电路230可以包括诸如电感器或电阻器的元件。
传输线圈240可以向电力接收设备20的接收线圈21L传输电力。传输线圈240可以由导电材料制成。
处理器250可以执行电力传输设备10的整体控制。例如,处理器250可以执行与图1中的控制电路12所执行的功能相同或相似的功能。处理器250可以包括微处理器或任何合适类型的处理电路,例如一个或多个通用处理器(例如,基于ARM的处理器)、数字信号处理器(DSP)、可编程逻辑器件(PLD)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、图形处理单元(GPU)、视频卡控制器等。此外,应当认识到,当通用计算机访问用于实施本文所示的处理的代码时,代码的执行将通用计算机转换成用于执行本文所示的处理的专用计算机。附图中提供的功能和步骤中的某些可以以硬件、软件或者两者的结合来实现,并且可以全部或部分地在计算机的编程指令内执行。除非使用短语“用于”来明确陈述元素,否则不应按照35U.S.C.112第六款的规定来解释本文权利要求中的元素。此外,本领域技术人员理解并认识到:“处理器”或“微处理器”可以是要求保护的本公开中的硬件。在最宽合理解释下,所附权利要求是符合35U.S.C.§101的法定主题。
在下文中,为了符合国际标准(例如,无线电力联盟(WPC)标准(Qi)、无线电力联盟(A4WP)标准、EN 300-330标准等)并减少电磁干扰(EMI)等对人体造成的不利影响,稍后将参考图3A和图3B详细描述用于通过处理器250来控制无线充电的操作。
图2示出了经由电磁感应耦合进行无线电力传输的电力传输设备10,但是本公开不限于此。例如,电力传输设备10也可以通过使用电磁共振或电磁波来传输电力。
根据本公开的一个实施例的电子设备可以包括:导电线圈;电力产生电路;以及一个或多个处理器,可操作地连接到所述电力产生电路并且被配置为:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率,当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位,将具有指定频率和相位的控制信号发送到电力产生电路以产生与传输功率的量对应的传输功率,使得所述传输功率是至少部分地基于控制信号产生的,以及经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。
在一个实施例中,电子设备还可以包括一个或多个通信电路,并且一个或多个处理器还可以被配置为:通过一个或多个通信电路从电力接收设备接收功率信息,并且至少部分地基于接收的功率信息来确定传输功率的量。
在一个实施例中,指定频率可以与指定阈值功率量对应。
在一个实施例中,电力产生电路可以包括由四个开关组成的全桥电路,并且在确定控制信号的相位时,所述一个或多个处理器还被配置为使得四个开关中的两个开关接通的第一时间间隔和四个开关中其余两个开关接通的第二时间间隔至少部分地重叠。
在一个实施例中,当指定频率被确定为控制信号的频率时,所述一个或多个处理器还可以被配置为至少部分地基于传输功率的量和/或指定频率来确定控制信号的占空比。
在一个实施例中,当传输功率的量等于或小于指定阈值电量时,所述一个或多个处理器还可以被配置为在指定频率范围内改变控制信号的频率。
在一个实施例中,在改变控制信号的频率时,所述一个或多个处理器还可以被配置为在指定频率范围内在指定频率附近减少或增加控制信号的频率。
在一个实施例中,所述一个或多个处理器还可以被配置为至少部分地基于传输功率的量和改变后的频率来确定控制信号的相位和占空比中的至少一个。
在一个实施例中,电子设备可以通过使用电磁感应、磁共振或电磁波对电力接收设备进行无线充电。
根据本公开的一个实施例的电子设备可以包括:导电线圈;电力产生电路;以及一个或多个处理器,可操作地连接到电力产生电路并且可以被配置为:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,当传输功率的量等于或小于指定阈值功率量时,在指定频率范围内改变用于控制电力产生电路的控制信号的频率,至少部分地基于传输功率的量和/或改变后的频率来确定控制信号的相位和占空比中的至少一个,发送具有改变后的频率、所确定的相位和所确定的占空比中的至少一个的控制信号到电力产生电路,以产生与传输功率的量对应的传输功率,使得传输功率是至少部分地基于控制信号产生的,以及经由导电线圈向功率接收设备提供由功率产生电路产生的传输功率。
图3A和3B是示出了根据本公开的一个实施例的无线充电方法的曲线图。
参考3A,电力传输设备10可以调整(控制)传输功率的频率,以便调整提供给电力接收设备20的功率(以下称为“传输功率”、功率量、有效功率量、或平均功率量)例如,传输功率(或功率量)可以随着传输功率的频率的增加而减少,并且可以随着传输功率的频率的减少而增加。例如,在图3A中,当传输功率的频率增加时,传输功率可以减少。然而,当传输功率的频率等于或大于指定频率时,可能发生超过国际标准(EN 300-330V1.81)针对发射定义的限制(例如,上限)的EMI。
为了符合国际标准并减少EMI,在本公开的各种实施例中,当确定(或计算)传输功率等于或小于指定阈值功率时,电力传输设备10可以将与指定阈值功率对应的频率(以下,称为“指定频率”)确定为传输功率的频率。例如,指定频率可以是148kHz。电力传输设备10可以调整从处理器250输出到电力产生电路220的控制信号的相位和占空比,使得控制信号符合指定频率。
当确定传输功率超过指定阈值功率时,电力传输设备10可以确定与传输功率对应的传输功率的频率。例如,电力传输设备10可以确定(或计算)能够产生所需传输功率量的频率。同时,从处理器250输出的控制信号的相位和占空比可以被设置为默认值。在一个实施例中,当确定传输功率处于超过指定阈值功率的范围内时,电力传输设备10可以产生具有默认相位和占空比并且具有与传输功率对应的频率的传输功率。如图5A和图5B所示,在默认相位和占空比中,将高电平控制信号施加到开关S1和S4的时间间隔与将高电平控制信号施加到开关S2和S3的时间间隔不重叠。而且,在默认相位和占空比中,占空比可以是50%。然而,这仅仅是默认相位和占空比的一个示例性实施例,因此默认相位和占空比不限于此。
参考图3B,在一个实施例中,当确定传输功率是大于指定阈值功率W2的W1时,电力传输设备10可以将传输功率的频率确定为与功率W1对应的频率f1。在这种情况下,电力传输设备10可以将用于控制电力产生电路220的控制信号的相位和占空比保持在默认相位和占空比。
在另一个实施例中,当确定传输功率是小于指定阈值功率W2的功率W3时,电力传输设备10可以将传输功率的频率确定为与指定阈值功率W2对应的指定频率f2。请注意,指定频率f2可以与对应于功率W3的频率f3不同。这里,当用于控制电力产生电路220的控制信号的相位和占空比被设置为默认相位和占空比时,频率f3可以是与传输功率W3对应的传输功率的频率。
当电力传输设备10在频率f2下发送传输功率W3时,电力传输设备10可以调整用于控制电力产生电路220的控制信号的相位或占空比,以便产生传输功率W3。例如,如图3B所示,电力传输设备10可以调整相位和/或占空比,以便将传输功率降低ΔW。ΔW对应于作为在频率f2下传输的功率的功率W2与功率W3之间的差。
例如,为了将功率降低ΔW,电力传输设备10可以将控制信号发送到栅极AH、BL、BH和AL,使得将高电平控制信号施加到开关S1和S4的时间间隔与将高电平控制信号施加到开关S2和S3的时间间隔部分地重叠。重叠的时间间隔在下文中可以被称为“重叠时间间隔”。所增加的重叠时间间隔可以与增加的ΔW对应。
在另一个实施例中,为了将功率降低ΔW,电力传输设备10可以减少用于控制电力产生电路220的控制信号的占空比。例如,电力传输设备10可以减少开关S1至S4的占空比,即可以减少开关S1和S4、或者S2和S3接通的时间量。在该实施例中,占空比的减少可以与ΔW的增加对应。ΔW的增加可能意味着W2和W3之间的更大差异。
在又一个实施例中,为了将功率降低ΔW,电力传输设备10可以减少占空比,同时设置重叠时间间隔。例如,ΔW可以分成ΔW1和ΔW2两部分。在这种情况下,电力传输设备10可以通过设置重叠时间间隔将传输功率减少ΔW1,并且可以通过减少占空比来将传输功率减少ΔW2。
在上面公开的各种实施例中,传输功率的频率可以与用于控制电力产生电路220的控制信号的频率相同。在下文中,将描述调整用于控制电力产生电路220的控制信号的频率的方法。由于控制信号的频率也是传输功率的频率,通过调整控制信号的频率,也可以调整传输功率的频率。
将参考图4至图8详细描述调整用于控制电力产生电路220的控制信号的相位和/或占空比的无线充电方法。
为了符合国际标准并减少EMI,在各种实施例中,可以使用频率抖动(frequencydithering)来控制传输功率。例如,电力传输设备10可以确定在指定频率范围内的传输功率的频率,并且可以至少部分地基于传输功率和改变后的频率来调整用于控制电力产生电路220的控制信号的相位和/或占空比。
例如,如图3B所示,当传输功率被确定或计算为功率W3时,电力传输设备10可以在迭代地改变指定频率范围(例如在频率f2和频率f4之间)内的传输功率的频率。在一个实施例中,电力传输设备10可以调整用于控制电力产生电路220的控制信号的相位和/或占空比,以产生具有指定范围内的频率的传输功率。
将参考图9至图15详细描述使用频率抖动的无线充电方法。
图4是示出了根据本公开的一个实施例的无线充电方法的流程图。
图5A至图6C是示出了根据本公开各种实施例的无线充电方法的示例的曲线图。
在本公开中,“电力”可以指电压或电流以及功率。例如,尽管在下文中将电力产生电路11描述为产生传输功率,但是电力产生电路11可以产生与传输功率对应的电压或电流。另外,所公开的阈值功率也可以指阈值电压或电流。
参考图4至图6C,在操作401,处理器250可以从电力接收设备20接收功率信息。
在一个实施例中,处理器250可以通过第一通信电路13a或第二通信电路13b从电力接收设备20接收包括与电力接收设备20的充电状态有关的信息的功率信息。例如,处理器250可以从电力接收设备20接收指示电力接收设备20需要特定电压的分组或消息。在另一示例中,处理器250可以从电力接收设备20接收关于电池21e的充电状态的信息。在又一示例中,电力接收设备20可以感测整流电路21b中的整流电容器Crec的电压(例如,Vrec),并且可以通过通信电路23向电力传输设备10发送关于所感测电压的信息(例如,Vrec值或Vrec值的变化)。在一个实施例中,当整流电路21b中的整流电容器的电压高于对电力接收设备20进行充电所需的电压时,电力接收设备20可以向电力传输设备10发送请求以减小传输功率。相反,当整流电路21b中的整流电容器的电压低于对电力接收设备20进行充电所需的电压时,电力接收设备20可以向电力传输设备10发送请求以增大传输功率。在操作403中,处理器250可以确定向电力接收设备20提供的传输功率。例如,处理器250可以至少部分地基于从电力接收设备20接收到的功率信息来确定或计算将向电力接收设备20提供的传输功率。例如,处理器250可以基于来自电力接收设备20的增大或减少传输功率的请求来确定传输功率。
在操作405中,处理器250可以确定在操作403中确定的传输功率是否等于或小于指定阈值功率。
在一个实施例中,如图3B所示,指定阈值功率可以与功率W2(具有对应的指定频率f2)对应。当用于控制电力产生电路220的控制信号的频率被设置为指定频率(例如,f2),并且控制信号的相位和占空比被设置为默认值(例如,相位被设置为没有重叠时间间隔,占空比被设置为50%)时,指定阈值功率可以对应于由电力产生电路220产生的功率。但是,指定阈值功率不受此限制。
在操作407中,当确定传输功率超过操作405中的指定阈值功率时,处理器250可以产生具有与传输功率对应的频率的控制信号。例如,处理器250可以确定能够产生传输功率的频率,同时还具有默认相位和占空比。在各种实施例中,默认相位和占空比可以设置在范围中,使得传输功率超过指定阈值功率。例如,如图5A所示,可以设置默认相位,使得高控制信号被施加到开关S1和S4的时间间隔与高控制信号被施加到开关S2和S3的时间间隔不重叠。再如图5A所示,默认占空比可以被设置为50%。但是,默认相位和占空比不受此限制。处理器250可以产生具有所确定的频率以及默认相位和占空比的控制信号。例如,如图3B所示,当传输功率被确定为大于指定阈值功率W2的功率W1时,处理器250可以确定频率f1能够产生具有默认设置的相位和占空比的传输功率W1。因此,处理器250可以将用于控制电力产生电路220的控制信号的频率设置为f1,并且可以产生相应的控制信号。
在操作409中,当传输功率等于或小于在操作405中的指定阈值功率时,处理器250可以将指定频率确定为用于控制电力产生电路220的频率。
在一个实施例中,当使用电磁感应进行无线电力传输时,国际标准(例如,EN 300-330V1.81)可能要求用于控制电力产生电路220的频率等于或小于148.5kHz。当传输功率等于或小于在操作405中的指定阈值功率时,处理器250可以将指定频率确定为在该上限频率或以下。例如,如图5A所示,处理器250可以将用于驱动电力产生电路220中的栅极AH、BL、BH和AL的频率确定为148kHz。在另一个实施例中,如图5B所示,处理器250可将指定频率确定为144kHz,以更好地确保EMI减少。因此,指定频率不限于148kHz或144kHz,而是取决于适用的国际标准、期望的EMI减少、实现无线电力传输的方式(例如,电磁感应或电磁共振)等。
在操作411中,处理器250可以至少部分地基于指定频率和传输功率来确定控制信号的相位。
在一个实施例中,传输功率可以高控制信号被施加到开关S1和S4的时间间隔与高控制信号被施加到开关S2和S3的时间间隔之间的重叠来改变。例如,如图2所示,由于电力产生电路220是全桥电路,所以当开关S1至S4全部(即同时)接通或断开时,电力传输设备10可以不向电力接收设备20传输电力。相反,当开关S1和S4接通但开关S2和S3断开时,或者当开关S2和S3接通但开关S1和S4断开时,电力传输设备10可以向电力接收设备20传输电力。
因此,在一个实施例中,处理器250可以从电力接收设备20接收对传输功率W3的请求。
但是,如图3B所示,传输功率W3与比上限频率f2更高的频率f3对应。因此,用于输出该传输功率的控制信号的频率被设置为f2。但是这样会产生问题,因为一般情况下,即如果控制信号的相位和占空比被设置为默认值,则频率为f2的控制信号产生传输功率W2。为了将传输功率减少ΔW以产生W3,可以调整控制信号的相位和/或占空比。例如,为了将传输功率减少ΔW,处理器250可以调整控制信号的相位,使得高控制信号被施加到开关S1和S4的时间间隔与高控制信号被施加到开关S2和S3的时间间隔部分地重叠。重叠越大,功率W3降低得越多。
图6中示出了示例。例如,当用于控制栅极AH、BL、BH和AL的控制信号的频率被确定为144kHz并且占空比被设置为50%时,处理器250可以以使高控制信号被施加到栅极AH和BL的时间间隔与高控制信号被施加到栅极AL和BH的时间间隔部分重叠的方式来确定或调整用于控制栅极AH、BL、BH和AL的控制信号的相位。
例如,为了实现重叠,处理器250可以保持施加到栅极AL和BH的控制信号的默认相位,并且可以将施加到栅极AH和BL的控制信号的相位改变或延迟
Figure BDA0001485629660000164
如图6A所示。
在另一个示例中,处理器250可以保持施加到栅极AH和BL的控制信号的默认相位,并且可以将施加到栅极AL和BH的控制信号的相位改变
Figure BDA0001485629660000161
如图6B所示。
在又一示例中,处理器250可以将施加到栅极AL和BH的控制信号的相位改变
Figure BDA0001485629660000162
同时还将施加到栅极AH和BL的控制信号的相位改变
Figure BDA0001485629660000163
如图6C所示。
在操作413中,处理器250可以产生具有在操作709中确定的指定频率和在操作711中确定的相位的控制信号。
例如,处理器250可以产生占空比为50%(默认占空比)并且具有如上所述确定的指定频率和相位的控制信号。
在操作415中,处理器250可以向电力产生电路220发送在操作407或操作413中产生的控制信号。
例如,处理器250可以将控制信号发送到开关S1至S4的栅极AH、BH、AL和BL,使得电力产生电路220可以产生适当的传输功率。
在操作417中,电力传输设备10可以经由导电线圈无线地向电力接收设备20提供由电力产生电路220产生的传输功率。
例如,电力产生电路220可以基于从处理器250施加的控制信号来产生传输功率。可以经由导电线圈无线地向电力接收设备20提供由电力产生电路220产生的功率(例如,交流电)。
图7是示出了根据本公开的一个实施例的无线充电方法的流程图。
图8A和图8B是示出了根据本公开各种实施例的无线充电方法的示例的图。
图7至图8B示出了调整电力产生电路220的控制信号的相位和占空比的无线充电方法。
图7中的操作701至709类似于图4中的操作401至409,因此省略其详细说明。
在操作711中,处理器250可以基于指定频率和传输功率来确定控制信号的相位和占空比。
在一个实施例中,为了在频率f2处将传输功率减少ΔW,处理器250可以确定控制信号的相位,使得高控制信号被施加到开关S1和S4的时间间隔与高控制信号被施加到开关S2和S3的时间间隔部分地重叠。
例如,如图8A所示,为了在频率f2(例如,144kHz)处将传输功率减少ΔW,处理器250可以以使被施加到门AH和BL的高控制信号的相位和被施加到栅极BH和AL的高控制信号的相位彼此重叠相位
Figure BDA0001485629660000172
的方式来确定控制信号的相位。在图8A所示的示例中,占空比保持在50%。
但是,为了产生与图8A中的传输功率相同的传输功率,处理器250可以以使被施加到栅极AH和BL的高控制信号的相位和被施加到栅极BH和AL的高控制信号的相位彼此交叠相位
Figure BDA0001485629660000173
的方式来确定控制信号的相位。重叠可以小于图8A中所示的重叠。如图8B所示,为了补偿,占空比可以改变为45%。例如,图3的ΔW可以分成ΔW3和ΔW4之和,并且处理器250可以确定相位
Figure BDA0001485629660000171
以便不产生与ΔW3对应的功率,并且可以将占空比从默认值减少,以便不产生与ΔW4对应的功率。
虽然在操作711中未示出,但是在替代实施例中,处理器250可以仅调整占空比而不调整控制信号的相位。例如,处理器250可以将控制信号的相位保持在默认相位,并且可以减少占空比以便不产生与图3的电力ΔW对应的功率。
在操作713中,处理器250可以产生具有在操作709中确定的指定频率以及在操作711中确定的相位和占空比的控制信号。
在操作715中,处理器250可以向电力产生电路220传输在操作707或713中产生的控制信号。
例如,处理器250可以将控制信号发送到开关S1至S4的栅极AH、BH、AL和BL,使得电力产生电路220可以产生适当的传输功率。
在操作717中,电力传输设备10可以经由导电线圈无线地向电力接收设备20提供由电力产生电路220产生的传输功率。
例如,电力产生电路220可以基于从处理器250施加的控制信号来产生传输功率。可以经由导电线圈无线地向电力接收设备20提供由电力产生电路220产生的功率(例如,交流电)。
图9是示出了根据本公开的一个实施例的无线充电方法的流程图。
图10至图15B是示出了根据本公开各种实施例的无线充电方法的示例的各种曲线图。
图9至图15B图示了使用频率抖动来控制传输功率,使得EMI减少并且功率传输符合相关国际标准的方法。
图9中的操作901至907类似于图4中的操作401至407或图7中的操作701至707,因此将省略其详细描述。
在操作909中,处理器250可以将在指定范围内的频率确定为用于控制电力产生电路220的控制信号的频率。
例如,如图10所示,处理器250可以基于指定频率(例如146Hz)迭代地改变控制信号的频率。例如,控制信号的频率可以在上限频率(例如148kHz)和下限频率(例如144kHz)之间变化。
在一个实施例中,通过使用频率抖动,可以避免由控制信号的基频的谐波发生的EMI。
例如,图11A示出了当不使用(或应用)频率抖动时的辐射发射量。如图11A所示,当使用频率抖动方法时,电力传输设备10可以以频率1110中的频率1130输出超过参考值1120的辐射发射量。图11B示出了使用频率抖动时的辐射发射量。如图11B所示,当使用频率抖动时,电力传输设备10可以在频率1140内输出不超过参考值1120的辐射发射量。
本文公开的上限频率(例如148kHz)和/或下限频率(例如144kHz)可以在替代实施例中改变。
在一个实施例中,指定范围的上限频率可以被设置为与指定阈值功率对应的指定频率,例如,图3中的f2,。然而,上限频率不限于此,并且可以被确定为比指定频率低的频率。
可以考虑期望的EMI减少、所请求的传输功率的量、电力传输的稳定性等来确定指定范围或者指定范围的下限频率。例如,当指定范围较窄时,频率抖动可能不会导致较大的EMI减少。相反,如果指定范围较大,则传输功率的变化范围也变大,因此无线电力传输操作可能变得不稳定。因此,可以考虑这些折衷来设计指定频率范围。
在一个实施例中,如图10所示,控制信号的频率可以在恒定的时间段(例如t1)内变化。例如,控制信号的频率改变1kHz的时间(例如,频率从148kHz减少到147kHz的时间)可以是5ms。
在另一个实施例中,控制信号的频率可以在不规则的时间间隔上改变。
在图10中,控制信号的频率被示出为线性减少并且增加,但是本公开不限于此。例如,如图12A所示,控制信号的频率可以被阶梯式地上升或下降。在另一个实施例中,如图12B所示,控制信号的频率可以以正弦波的形式减少和增加(或增加和减少)。
在操作911中,处理器250可以基于传输功率和控制信号的改变后的频率来确定控制信号的相位和/或占空比。
在一个实施例中,处理器250可根据在操作909中指定的范围内变化的频率来确定或调整占空比,以产生在操作903中确定的传输功率。如图13所示,当控制信号的频率1310在指定范围(例如,148kHz至144kHz)内改变时,占空比1320也可以根据改变中的频率而改变。例如,当传输功率被确定为图3B中的W3并且指定频率范围在f2到f4之间时,当控制信号的频率是f2时可以使用占空比(例如,45%),以便将传输功率降低ΔW。当控制信号的频率是f4时,可以使用另一个占空比(例如,40%),以便将传输功率从W4减少到W3。当频率在f2和f4之间时,占空比可以在40%和45%之间。
在另一个实施例中,处理器250可以根据在操作909中指定的范围内变化的频率来确定或调整控制信号的相位,以产生在操作903中确定或计算的传输功率。例如,在图14A中,当传输功率是W3,占空比是50%,并且频率是144kHz时,可以确定控制信号的相位,使得被施加到栅极AH和BL的高控制信号的相位和被施加到栅极BH和AL的高控制信号的相位彼此重叠了相位
Figure BDA0001485629660000206
在图14B中,当传输功率为W3,占空比为50%,并且频率为140kHz时,控制信号的重叠相位可以被确定为相位
Figure BDA0001485629660000201
相位
Figure BDA0001485629660000202
可以是比相位
Figure BDA0001485629660000203
更长的时间间隔。
在又一个实施例中,处理器250可以根据在操作909中的指定范围内变化的频率来确定或调整控制信号的相位和占空比,以产生在操作903中确定的传输功率。例如,在图15A中,当传输功率是W5并且频率是144kHz时,占空比可以被确定为50%,并且控制信号的相位可以被确定为重叠相位
Figure BDA0001485629660000204
但是当传输功率是W5并且频率是图15B中的140kHz时,占空比可以被确定为45%,并且控制信号的相位可以被确定为重叠相位
Figure BDA0001485629660000205
在操作913中,处理器250可以产生具有在操作909中确定的频率和在操作911中确定的相位和占空比的控制信号。
在操作915中,处理器250可以向电力产生电路220传输在操作907或913中产生的控制信号。
例如,处理器250可以将控制信号发送到开关S1至S4的栅极AH、BH、AL和BL,使得电力产生电路220可以产生适当的传输功率。
在操作917中,电力传输设备10可以经由导电线圈无线地向电力接收设备20提供由电力产生电路220产生的传输功率。
例如,电力产生电路220可以基于从处理器250施加的控制信号来产生传输功率。可以经由导电线圈无线地向电力接收设备20提供由电力产生电路220产生的功率(例如,交流电)。
根据本公开的一个实施例的无线充电方法可以包括以下操作:将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较;当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率;当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位;将具有指定频率和相位的控制信号发送到电力产生电路以产生与传输功率的量对应的传输功率,使得所述传输功率是至少部分地基于控制信号产生的;以及经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。
在一个实施例中,无线充电方法还可以包括以下操作:通过一个或多个通信电路从电力接收设备接收功率信息;以及至少部分地基于所接收的功率信息来确定传输功率的量。
在一个实施例中,指定频率与指定阈值功率量对应。
在一个实施例中,电力产生电路可以包括由四个开关构成的全桥电路,并且确定控制信号的相位的操作还可以包括以下操作:使得四个开关中的两个开关接通的第一时间间隔和四个开关中其余两个开关接通的第二时间间隔至少部分地重叠。
在一个实施例中,当指定频率被确定为控制信号的频率时,所述无线充电方法还可以包括以下操作:至少部分地基于传输功率的量和/或指定频率来确定控制信号的占空比。
在一个实施例中,所述无线充电方法还可以包括以下操作:当传输功率的量等于或小于指定阈值功率量时,在指定频率范围内改变控制信号的频率。
在一个实施例中,所述无线充电方法还可以包括以下操作:在指定频率范围内在指定频率附近减少或增加控制信号的频率。
在一个实施例中,所述无线充电方法还可以包括以下操作:至少部分地基于传输功率的量和改变后的频率来确定控制信号的相位和占空比中的至少一个。
在一个实施例中,所述无线充电方法可以使用电磁感应、磁共振或电磁波。
另外,在本公开的上述实施例中使用的数据结构可以通过各种手段记录在计算机可读记录介质上。计算机可读记录介质包括诸如磁存储介质(例如,ROM、软盘、硬盘等)、光学读取介质(例如,CD-ROM、DVD等)的存储介质等。
以上已经结合本公开的示例性实施例讨论了本公开。
本领域技术人员将理解,可以在不脱离本公开的基本特征的情况下以修改形式来实施本公开。因此,本文公开的实施例应被认为是说明性的而非限制性的。本公开的范围并不在上面的描述中而是在所附权利要求中,并且落入权利要求范围内的所有差异应该被解释为包括在本公开中。
本公开的上述实施例可以实现为硬件、固件或作为存储在诸如CD ROM、数字多功能盘(DVD)、磁带、RAM、软盘、硬盘或磁光盘等记录介质上的软件或计算机代码来执行,或在网络上下载的原始存储在远程记录介质或非暂时机器可读介质上并存储在本地记录介质上的计算机代码来执行,使得本文所述方法可以使用通用计算机经由存储在记录介质上的这种软件来呈现,或经由专用处理器或可编程或专用硬件(例如ASIC或FPGA)来呈现。本领域技术人员应理解:计算机、处理器、微处理器控制器或可编程硬件包括存储组件,例如RAM、ROM、闪存等,其可以存储或接收软件或计算机代码,这些软件或计算机代码在被计算机、处理器或硬件访问和执行时实现本文所述的处理方法。

Claims (15)

1.一种电子设备,包括:
导电线圈;
电力产生电路;以及
一个或多个处理器,可操作地连接到所述电力产生电路并且被配置为:
将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,
当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率,
当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位,
将具有指定频率和相位的控制信号发送到电力产生电路,以至少部分地基于控制信号来产生与传输功率的量对应的传输功率,以及
经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。
2.根据权利要求1所述的电子设备,还包括:
一个或多个通信电路,其中所述一个或多个处理器还被配置为:
通过所述一个或多个通信电路从电力接收设备接收功率信息,以及
至少部分地基于接收的功率信息来确定传输功率的量。
3.根据权利要求1所述的电子设备,其中,所述指定频率与指定阈值功率量对应。
4.根据权利要求1所述的电子设备,其中:
所述电力产生电路包括含有四个开关的全桥电路,以及
在确定控制信号的相位时,所述一个或多个处理器还被配置为使得四个开关中的两个开关接通的第一时间间隔和四个开关中其余两个开关接通的第二时间间隔至少部分地重叠。
5.根据权利要求1所述的电子设备,其中,当指定频率被确定为控制信号的频率时,所述一个或多个处理器还被配置为至少部分地基于传输功率的量和/或指定频率来确定控制信号的占空比。
6.根据权利要求1所述的电子设备,其中,当传输功率的量等于或小于指定阈值电量时,所述一个或多个处理器还被配置为在指定频率范围内改变控制信号的频率。
7.根据权利要求6所述的电子设备,其中,在改变控制信号的频率时,所述一个或多个处理器还被配置为在指定频率范围内在指定频率附近减少或增加控制信号的频率。
8.根据权利要求6所述的电子设备,其中,所述一个或多个处理器还被配置为至少部分地基于传输功率的量和改变后的频率来确定控制信号的相位和占空比中的至少一个。
9.一种无线充电方法,包括:
将要提供给电力接收设备的传输功率的量与指定阈值功率量进行比较,
当传输功率的量等于或小于指定阈值功率量时,将指定频率确定为用于控制电力产生电路的控制信号的频率,
当指定频率被确定为控制信号的频率时,至少部分地基于传输功率的量和/或指定频率来确定控制信号的相位,
将具有指定频率和相位的控制信号发送到电力产生电路,以至少部分地基于控制信号来产生与传输功率的量对应的传输功率,以及
经由导电线圈无线地向电力接收设备提供由电力产生电路产生的传输功率。
10.根据权利要求9所述的无线充电方法,还包括:
通过一个或多个通信电路从电力接收设备接收功率信息,以及
至少部分地基于接收的功率信息来确定传输功率的量。
11.根据权利要求9所述的无线充电方法,其中,所述指定频率与指定阈值功率量对应。
12.根据权利要求9所述的无线充电方法,其中,
所述电力产生电路包括含有四个开关的全桥电路,以及
确定控制信号的相位包括使得四个开关中的两个开关接通的第一时间间隔和四个开关中其余两个开关接通的第二时间间隔至少部分地重叠。
13.根据权利要求9所述的无线充电方法,其中,当指定频率被确定为控制信号的频率时,所述无线充电方法还包括至少部分地基于传输功率的量和/或指定频率来确定控制信号的占空比。
14.根据权利要求9所述的无线充电方法,还包括:
当传输功率的量等于或小于指定阈值功率量时,在指定频率范围内改变控制信号的频率。
15.根据权利要求14所述的无线充电方法,还包括:
在指定频率范围内在指定频率附近减少或增加控制信号的频率。
CN201711223405.1A 2016-11-29 2017-11-28 无线充电方法和支持该方法的电子设备 Active CN108123548B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0160105 2016-11-29
KR1020160160105A KR102602386B1 (ko) 2016-11-29 2016-11-29 무선 충전 방법 및 이를 지원하는 전자 장치

Publications (2)

Publication Number Publication Date
CN108123548A CN108123548A (zh) 2018-06-05
CN108123548B true CN108123548B (zh) 2022-12-27

Family

ID=60515188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711223405.1A Active CN108123548B (zh) 2016-11-29 2017-11-28 无线充电方法和支持该方法的电子设备

Country Status (4)

Country Link
US (1) US10742075B2 (zh)
EP (1) EP3346582B1 (zh)
KR (1) KR102602386B1 (zh)
CN (1) CN108123548B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102653362B1 (ko) 2018-10-12 2024-04-02 삼성전자 주식회사 전자 장치 및 무선 충전을 위한 전력 제어 방법
CN111384735B (zh) * 2018-12-29 2021-07-30 华润微集成电路(无锡)有限公司 基于跟踪功率方式实现频率调节的方法
WO2020171440A1 (en) * 2019-02-19 2020-08-27 Samsung Electronics Co., Ltd. Electronic device for wirelessly charging external electronic device
US11532950B2 (en) * 2019-05-08 2022-12-20 Western Digital Technologies, Inc. Systems and methods for wireless charging and wireless data transfer for multiple devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957309A (zh) * 2011-08-26 2013-03-06 立锜科技股份有限公司 Pfm电源供应器的频率抖动控制电路及方法
CN104011969A (zh) * 2011-12-13 2014-08-27 德克萨斯仪器股份有限公司 无线电源系统和方法
WO2014167207A1 (fr) * 2013-04-11 2014-10-16 Schneider Electric Industries Sas Procede de charge par induction d'une batterie de vehicule
CN104113098A (zh) * 2013-08-04 2014-10-22 深圳市兴龙辉科技有限公司 无线充电拓扑结构及扫频算法
CN106063080A (zh) * 2014-01-08 2016-10-26 Lg伊诺特有限公司 无线电力传输装置和无线电力传输系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ528542A (en) * 2003-09-29 2006-09-29 Auckland Uniservices Ltd Inductively-powered power transfer system with one or more, independently controlled loads
US8901880B2 (en) * 2008-08-19 2014-12-02 Qualcomm Incorporated Wireless power transmission for portable wireless power charging
US9515494B2 (en) * 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8729735B2 (en) * 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
WO2012066559A1 (en) * 2010-11-16 2012-05-24 Muthukumar Prasad Smart directional radiation protection system for wireless mobile device to reduce sar
US20130026981A1 (en) * 2011-07-28 2013-01-31 Broadcom Corporation Dual mode wireless power
US9264108B2 (en) * 2011-10-21 2016-02-16 Qualcomm Incorporated Wireless power carrier-synchronous communication
JP2013176196A (ja) 2012-02-24 2013-09-05 Toko Inc ワイヤレス電力伝送装置
KR101807899B1 (ko) * 2012-10-19 2017-12-11 삼성전자주식회사 무선 전력 송신기, 무선 전력 수신기 및 무선 전력 송신기의 무선 전력 수신기 허가 방법
KR20140099822A (ko) 2013-02-04 2014-08-13 엘지전자 주식회사 무선 전력 전송장치 및 이를 구비하는 무선충전시스템
KR20140099741A (ko) 2013-02-04 2014-08-13 삼성전자주식회사 충전장치 및 충전방법
JP2016063551A (ja) 2014-09-12 2016-04-25 株式会社東芝 無線電力伝送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957309A (zh) * 2011-08-26 2013-03-06 立锜科技股份有限公司 Pfm电源供应器的频率抖动控制电路及方法
CN104011969A (zh) * 2011-12-13 2014-08-27 德克萨斯仪器股份有限公司 无线电源系统和方法
WO2014167207A1 (fr) * 2013-04-11 2014-10-16 Schneider Electric Industries Sas Procede de charge par induction d'une batterie de vehicule
CN104113098A (zh) * 2013-08-04 2014-10-22 深圳市兴龙辉科技有限公司 无线充电拓扑结构及扫频算法
CN106063080A (zh) * 2014-01-08 2016-10-26 Lg伊诺特有限公司 无线电力传输装置和无线电力传输系统

Also Published As

Publication number Publication date
EP3346582A1 (en) 2018-07-11
US20180152058A1 (en) 2018-05-31
EP3346582B1 (en) 2019-04-24
KR102602386B1 (ko) 2023-11-16
KR20180060531A (ko) 2018-06-07
US10742075B2 (en) 2020-08-11
CN108123548A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
CN108123548B (zh) 无线充电方法和支持该方法的电子设备
CN107820732B (zh) 电子装置和用于控制电子装置的风扇的方法
KR102381432B1 (ko) 무선 충전 방법 및 장치
US10284002B2 (en) Apparatus for receiving wireless power and method of controlling same
CN107438935B (zh) 用于无线充电的方法和装置
US10778039B2 (en) Coil device for wireless power transmission
US10056945B2 (en) Processing method for leakage power and electronic device supporting the same
CN110462974B (zh) 无线电力发送器、无线电力接收电子设备及其操作方法
US20160087484A1 (en) Wireless charging apparatus
CN110165725B (zh) 无线充电方法、接收器、终端设备及充电器
KR102251992B1 (ko) 전류를 제어하는 방법과 전자 장치
US11133711B2 (en) Wireless power transmitter, wireless power receiving electronic device, and method for operating the same
US20160099588A1 (en) Charging electronic device and method for controlling power in charging electronic device
US20170077734A1 (en) Power transmission with wireless transceiver
KR102399167B1 (ko) 충전을 수행하는 전자 장치 및 그 제어 방법
US10978912B2 (en) Electronic device for wirelessly receiving power and operation method thereof
KR102319981B1 (ko) 다중 에너지 자원을 이용한 충전 방법 및 장치
EP3579377A1 (en) Wireless power transmission apparatus and operating method thereof
KR20170054976A (ko) 전자 장치 및 전자 장치의 무선 충전 방법
KR102512678B1 (ko) 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
CN109089345B (zh) 过温保护电路及应用其的电子设备
US11637454B2 (en) Electronic device for receiving power wirelessly and method for operating same
KR20150112382A (ko) 전자 장치
US20150381048A1 (en) Method and electronic device for controlling switching regulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant