CN108123003A - 一种半导体三量子点结构实现中远红外单光子探测的方法 - Google Patents

一种半导体三量子点结构实现中远红外单光子探测的方法 Download PDF

Info

Publication number
CN108123003A
CN108123003A CN201711291750.9A CN201711291750A CN108123003A CN 108123003 A CN108123003 A CN 108123003A CN 201711291750 A CN201711291750 A CN 201711291750A CN 108123003 A CN108123003 A CN 108123003A
Authority
CN
China
Prior art keywords
quantum
quantum dot
dot
semiconductor
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711291750.9A
Other languages
English (en)
Other versions
CN108123003B (zh
Inventor
钟旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201711291750.9A priority Critical patent/CN108123003B/zh
Publication of CN108123003A publication Critical patent/CN108123003A/zh
Application granted granted Critical
Publication of CN108123003B publication Critical patent/CN108123003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种半导体三量子点结构实现中远红外单光子探测的方法。在半导体量子结构中远红外探测领域,量子点中电子激发寿命相比目前较成熟的量子阱红外探测器方案要更长,因此量子点探测器工作温度更高、光电导增益也更高。本发明引入了Fano型量子干涉通道,增强了光子吸收效率,进一步增大了光电导增益;同时,由于光子吸收只发生在中间量子点C中,降低了周围环境的影响,进一步提高了工作温度。

Description

一种半导体三量子点结构实现中远红外单光子探测的方法
技术领域
本发明涉及一种利用半导体量子点探测中远红外单光子的方法,属于红外和远红外探测应用领域。
背景技术
单光子探测器在成像、化学分析、环境监测和激光测距等领域中具有广泛的应用。在可见光和近红外范围,可以采用雪崩光电二极管和光电倍增管实现单光子探测。但在中远红外波长范围,很小的光子能量使得固体中难以产生稳定的光生载流子。目前在中远红外波长范围有以下三种主要探测方式:一是利用电光晶体的非线性效应进行差分探测,此种方式具有灵敏度高、可以同时探测辐射强度和相位;二是热电探测器,这类探测器探测范围较广;三是光子型探测器,以半导体量子阱探测器为代表,具有响应速度快、探测灵敏度高和较强的光谱分辨本领等特点。
差分探测探测器体积较大,不易与半导体电路集成,具有很大的局限性;热电探测器响应率较低,没有光谱分辨本领;量子阱探测器的暗电流较大,无法探测微弱的中远红外辐射。这三种类型的探测器目前基本都不具有单光子精度,无法实现微弱中远红外光的灵敏探测。
发明内容
本发明的目的是提供一种能探测微弱的中远红外辐射的方法。
为了达到上述目的,本发明的技术方案是提供了一种半导体三量子点结构实现中远红外单光子探测的方法,其特征在于,包括以下步骤:
步骤1、制作半导体异质结,在离该半导体异质结表面一定距离处形成二维电子气,在该半导体异质结表面制作多个金属电极,通电后形成半导体三量子点结构,三量子点中的左量子点L及右量子点R分别与二维电子气通过隧穿耦合连接,三量子点中的中间量子点C与左量子点L及右量子点R通过隧穿耦合连接,左量子点L与中间量子点C构成双量子点LC系统,右量子点R与中间量子点C构成双量子点LR系统;
步骤2、调整金属电极上的电压,确保在导电窗口内左量子点L及右量子点R内部分别只有一个单电子态,而中间量子点C在导电窗口内有Donor单电子态和Acceptor单电子态,中间量子点C内Donor单电子态和Acceptor单电子态的能级之差决定了可以探测的中远红外光子频率;
步骤3、电子从半导体异质结二维电子气中由电子隧穿作用隧穿到双量子点LC系统中,中远红外光照射下,双量子点LC系统中的电子吸收一个光子由Donor单电子态跃迁到Acceptor单电子态,即进入双量子点LR系统中,再由电子隧穿作用电子从右量子点R隧穿到半导体异质结二维电子气中,从而形成光生电流,通过对光生电流的检测实现对远红外单光子的探测。
优选地,双量子点LC系统中左量子点L单电子态和中间量子点C中的Donor单电子态隧穿耦合,当该耦合强度比较大而左量子点L单电子态和中间量子点C中的Donor单电子态能级差为零时,左量子点L单电子态和中间量子点C中的Donor单电子态将形成Fano型量子干涉通道,调整隧穿耦合大小控制Fano型量子干涉通道的干涉强度,实现增强光子吸收而抑制光子激发作用,从而达到增强光电导增益的目的。
优选地,调整金属电极上的电压来控制左量子点L与中间量子点C、中间量子点C与右量子点R之间的隧穿耦合强度和能级差,并可以控制中间量子点C内两个单电子态能级差的大小。
在半导体量子结构中远红外探测领域,量子点中电子激发寿命相比目前较成熟的量子阱红外探测器方案要更长,因此量子点探测器工作温度更高、光电导增益也更高。本发明引入了Fano型量子干涉通道,增强了光子吸收效率,进一步增大了光电导增益;同时,由于光子吸收只发生在中间量子点C中,降低了周围环境的影响,进一步提高了工作温度。
附图说明
图1是实施例中半导体三量子点中远红外单光子探测器件的示意图,图中:1左量子点L、2中间量子点C、3右量子点R、4金属电极BL、5金属电极BC、6金属电极BR、7金属电极AL、8金属电极ALC、9金属电极ACR、10金属电极AR、图中带有箭头的直线代表入射中远红外光子。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明提供的一种半导体三量子点结构实现中远红外单光子探测的方法实现的量子点中远红外单光子探测器件主要由三个量子点构成,利用量子点的点间隧穿来形成光电流,利用量子干涉效应增强光电转化效率,具体包括以下步骤:
步骤1、以GaAs/AlGaAs等材料体系制作半导体异质结,在该半导体异质结表面约100nm处形成二维电子气。在该半导体表面以金、银、铝等材质制作几个金属电极,即金属电极BL4、金属电极BC5、金属电极BR6、金属电极AL7、金属电极ALC8、金属电极ACR9、金属电极AR10,通电后形成半导体三量子点结构。三量子点中的左量子点L1及右量子点R3分别与二维电子气通过隧穿耦合连接,三量子点中的中间量子点C2与左量子点L1及右量子点R3通过隧穿耦合连接,左量子点L1与中间量子点C2构成双量子点LC系统,右量子点R3与中间量子点C2构成双量子点LR系统。
步骤2、调整金属电极BL4、金属电极BC5、金属电极BR6上的电压,确保在导电窗口内左量子点L1及右量子点R3内部分别只有一个单电子态,而中间量子点C2在导电窗口内有Donor单电子态和Acceptor单电子态,中间量子点C2内Donor单电子态和Acceptor单电子态的能级之差决定了可以探测的中远红外光子频率。
步骤3、调整金属电极ALC8和金属电极ACR9上的电压可以分别控制双量子点LC系统、双量子点LR系统之间的隧穿耦合强度。微调金属电极BL4和金属电极BR6上的电压可以分别控制左量子点L1与中间量子点C2之间、中间量子点C2与之间的能级差;改变量子点C大小可以控制量子点C内两个单电子态能级差的大小,即决定探测光子的频率。
电子从半导体异质结二维电子气中由电子隧穿作用隧穿到双量子点LC系统中,中远红外光照射下,双量子点LC系统中的电子吸收一个光子由Donor单电子态跃迁到Acceptor单电子态,即进入双量子点LR系统中,再由电子隧穿作用电子从右量子点R隧穿到半导体异质结二维电子气中,从而形成光生电流,通过对光生电流的检测实现对远红外单光子的探测。
在本发明中三个量子点由外加电压偏置,在左量子点L1、右量子点R3内部分别形成一个空电子基态和一个单电子态,而中间量子点C2在导电窗口内有两个单电子态Donor和Acceptor,保证三量子点结构中只有一个激发电子。中间量子点C2内两个单电子态Donor和Acceptor能级之差,该能级差基本决定了可以探测的中远红外光子频率;左量子点L1和中间量子点C2、中间量子点C2和右量子点R3之间分别由单电子隧穿作用来耦合连接。双量子点LC系统中左量子点L1单电子态和中间量子点C2中的Donor单电子态隧穿耦合,当该耦合强度比较大而两个单电子态能级差为零时,双量子点LC系统中的两个单电子态将形成Fano型量子干涉通道,调整隧穿耦合大小可以控制该干涉强度,实现增强光子吸收而抑制光子激发作用,从而达到增强光电导增益。为增强电子收集效率,双量子点CR系统中两个单电子态形成一定的能级差来减小量子相干作用导致的逆向电流大小。

Claims (3)

1.一种半导体三量子点结构实现中远红外单光子探测的方法,其特征在于,包括以下步骤:
步骤1、制作半导体异质结,在离该半导体异质结表面一定距离处形成二维电子气,在该半导体异质结表面制作多个金属电极,通电后形成半导体三量子点结构,三量子点中的左量子点L及右量子点R分别与二维电子气通过隧穿耦合连接,三量子点中的中间量子点C与左量子点L及右量子点R通过隧穿耦合连接,左量子点L与中间量子点C构成双量子点LC系统,右量子点R与中间量子点C构成双量子点LR系统;
步骤2、调整金属电极上的电压,确保在导电窗口内左量子点L及右量子点R内部分别只有一个单电子态,而中间量子点C在导电窗口内有Donor单电子态和Acceptor单电子态,中间量子点C内Donor单电子态和Acceptor单电子态的能级之差决定了可以探测的中远红外光子频率;
步骤3、电子从半导体异质结二维电子气中由电子隧穿作用隧穿到双量子点LC系统中,中远红外光照射下,双量子点LC系统中的电子吸收一个光子由Donor单电子态跃迁到Acceptor单电子态,即进入双量子点LR系统中,再由电子隧穿作用电子从右量子点R隧穿到半导体异质结二维电子气中,从而形成光生电流,通过对光生电流的检测实现对远红外单光子的探测。
2.如权利要求1所述的一种半导体三量子点结构实现中远红外单光子探测的方法,其特征在于,双量子点LC系统中左量子点L单电子态和中间量子点C中的Donor单电子态隧穿耦合,当该耦合强度比较大而左量子点L单电子态和中间量子点C中的Donor单电子态能级差为零时,左量子点L单电子态和中间量子点C中的Donor单电子态将形成Fano型量子干涉通道,调整隧穿耦合大小控制Fano型量子干涉通道的干涉强度,实现增强光子吸收而抑制光子激发作用,从而达到增强光电导增益的目的。
3.如权利要求1所述的一种半导体三量子点结构实现中远红外单光子探测的方法,其特征在于,调整金属电极上的电压来控制左量子点L与中间量子点C、中间量子点C与右量子点R之间的隧穿耦合强度和能级差,并可以控制中间量子点C内两个单电子态能级差的大小。
CN201711291750.9A 2017-12-07 2017-12-07 一种半导体三量子点结构实现中远红外单光子探测的方法 Active CN108123003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711291750.9A CN108123003B (zh) 2017-12-07 2017-12-07 一种半导体三量子点结构实现中远红外单光子探测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711291750.9A CN108123003B (zh) 2017-12-07 2017-12-07 一种半导体三量子点结构实现中远红外单光子探测的方法

Publications (2)

Publication Number Publication Date
CN108123003A true CN108123003A (zh) 2018-06-05
CN108123003B CN108123003B (zh) 2019-12-31

Family

ID=62229767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711291750.9A Active CN108123003B (zh) 2017-12-07 2017-12-07 一种半导体三量子点结构实现中远红外单光子探测的方法

Country Status (1)

Country Link
CN (1) CN108123003B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085733A (zh) * 2019-04-25 2019-08-02 电子科技大学中山学院 一种增强环形量子点结构中自旋热电势的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134814A1 (en) * 1999-07-15 2001-09-19 Japan Science and Technology Corporation Millimeter wave and far-infrared detector
JP2004214383A (ja) * 2002-12-27 2004-07-29 Japan Science & Technology Agency 中赤外光子検出器
US20100289001A1 (en) * 2007-10-30 2010-11-18 Kahen Keith B Device containing non-blinking quantum dots
CN102136520A (zh) * 2010-12-21 2011-07-27 上海电机学院 太赫兹单光子探测器及其探测方法
CN106384756A (zh) * 2016-10-19 2017-02-08 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134814A1 (en) * 1999-07-15 2001-09-19 Japan Science and Technology Corporation Millimeter wave and far-infrared detector
JP2004214383A (ja) * 2002-12-27 2004-07-29 Japan Science & Technology Agency 中赤外光子検出器
US20100289001A1 (en) * 2007-10-30 2010-11-18 Kahen Keith B Device containing non-blinking quantum dots
CN102136520A (zh) * 2010-12-21 2011-07-27 上海电机学院 太赫兹单光子探测器及其探测方法
CN106384756A (zh) * 2016-10-19 2017-02-08 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085733A (zh) * 2019-04-25 2019-08-02 电子科技大学中山学院 一种增强环形量子点结构中自旋热电势的方法
CN110085733B (zh) * 2019-04-25 2022-11-29 电子科技大学中山学院 一种增强环形量子点结构中自旋热电势的方法

Also Published As

Publication number Publication date
CN108123003B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US8969850B2 (en) Nano-structure arrays for EMR imaging
Kielar et al. Light Detection in Open‐Circuit Voltage Mode of Organic Photodetectors
CN107611195B (zh) 吸收层变掺杂InGaAs雪崩光电二极管及制备方法
US8492727B1 (en) Nano-structure arrays for EMR imaging
CN110718603B (zh) 基于外尔半金属贝里曲率增强的高灵敏中红外光探测器
Liu et al. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode
Nusir et al. Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts
Ariyawansa et al. Multi-color tunneling quantum dot infrared photodetectors operating at room temperature
CN102306667B (zh) 一种波长上转换半导体结构及其光探测方法
CN108123003A (zh) 一种半导体三量子点结构实现中远红外单光子探测的方法
CN109962118B (zh) 基于第二类外尔半金属钽铱碲的光探测器及其探测方法
Wang et al. Carrier transport in III–V quantum-dot structures for solar cells or photodetectors
Brennan et al. Review of reliability issues of metal-semiconductor-metal and avalanche photodiode photonic detectors
Slocombe et al. Electrical versus optical: Comparing methods for detecting terahertz radiation using neon lamps
Bansal et al. Atlas simulation of a long-infrared P+-N homojunction photodiode
Yang et al. Investigation on the limit of weak infrared photodetection
Li et al. Wide spectrum terahertz quantum well photodetector
US6969896B1 (en) Photodetector biasing scheme
He et al. Quantitative analysis of edge breakdown effect of Geiger mode avalanche photo-diodes utilizing optical probe scanning method
Yardimci et al. Broadband terahertz detection with 100 db dynamic range through a high switching-contrast plasmonic nanocavity
Dortaj et al. Design and simulation of two-color mid-infrared photoconductors based on intersubband transitions in quantum structures
Lu et al. The photocurrent-voltage characteristic simulated of resonant tunneling photodiodes
Choi et al. C-QWIP material design and growth
Qin et al. Colloidal Quantum Dots in Very-Long-Wave Infrared Detection: Progress, Challenges, and Opportunities
El-Tokhy et al. Performance improvement of quantum well infrared photodetectors through modeling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant