CN108122225A - 基于自适应特征点的数字图像篡改检测方法 - Google Patents

基于自适应特征点的数字图像篡改检测方法 Download PDF

Info

Publication number
CN108122225A
CN108122225A CN201711364488.6A CN201711364488A CN108122225A CN 108122225 A CN108122225 A CN 108122225A CN 201711364488 A CN201711364488 A CN 201711364488A CN 108122225 A CN108122225 A CN 108122225A
Authority
CN
China
Prior art keywords
feature
characteristic point
refer
matrix
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711364488.6A
Other languages
English (en)
Other versions
CN108122225B (zh
Inventor
牛盼盼
牛影
杨红颖
王向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN201711364488.6A priority Critical patent/CN108122225B/zh
Publication of CN108122225A publication Critical patent/CN108122225A/zh
Application granted granted Critical
Publication of CN108122225B publication Critical patent/CN108122225B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于自适应特征点的数字图像篡改检测方法,首先通过自适应阈值选择算法进行SURF特征点提取,同时使用一种分布处理算法使得图像特征点能够均匀分布;其次,利用BRISK方法提取所有特征点的二进制特征描述符;然后,使用可辨别嵌入的随机蕨算法来进行快速特征匹配;最后,通过RANSAC算法来消除错误匹配对,并进一步利用快速NNPROD算法和形态学方法对匹配区域进行标记。实验结果表明,本发明的方法不仅能有效提高平滑篡改区域的检测性能,而且对诸如JPEG压缩、旋转、缩放等后处理操作均具有不变性,且具有较高的检测精度和较低的时间复杂度。

Description

基于自适应特征点的数字图像篡改检测方法
技术领域
本发明涉及基于特征点的图像篡改检测方法,特别涉及一种基于自适应特征点的数字图像篡改检测方法,属于数字图像认证技术领域。
背景技术
当今社会,数字图像在人们的生活和工作中得到了广泛应用。然而,随着计算机图像媒体技术的快速发展,数字图像的篡改也变得愈加容易实现。如果篡改的数字图像被运用到法庭、新闻报道以及科学论文上,会对社会制度的安稳性产生极大的威胁。因此,越来越多的研究人员开始关注数字图像篡改问题并提出各种解决方法,现有的篡改检测技术主要分为主动检测和被动检测。数字签名和数字水印等主动检测方法都要依赖于图像的先验信息,然而,在许多情况下,图像的先验信息是不可知的。相应地,被动检测方法因其特有的适用性已成为一个热门的研究课题。
复制移动篡改检测是一种常用的被动检测方法。在这种方法中,通常将图像的一部分内容进行复制,然后再将其粘贴到同一图像的另外一部分。复制移动篡改的主要目的是通过复制某些区域来覆盖特定的对象,或者是过分强调某些对象。为了使这种篡改不留下任何肉眼可视的线索,篡改者通常会将要复制的部分进行一系列诸如压缩、噪声、缩放等处理。图像处理软件的快速增长产生了大量没有明显痕迹的复制移动篡改图像,使得复制移动篡改检测成为目前最重要、最热门的数字图像认证技术。近年来,人们提出了许多被动的篡改检测方法,大致可分为基于块和基于特征点两大类。
基于块的方法首先对待检测图像进行重叠分块,然后每个分块通过使用诸如离散余弦变换、离散小波变换、奇异值分解等变换方法来增强鲁棒性。然而,这类检测方法存在特征描述符识别能力低、计算时间复杂度高等缺点。作为块方法的改进,基于特征点的方法有效解决了上述问题,特别是在纹理区域,基于特征点方法的检测性能卓越。此外,由于特征点的数量仅仅代表了图像所有像素中相对较小的一部分集合,因此时间复杂度相对较低。然而,当篡改涉及到平滑的区域时,基于特征点方法的检测性能不够准确。
发明内容
本发明是为了解决现有复制粘贴篡改检测技术所存在的上述技术问题,提供一种基于自适应特征点的数字图像篡改检测方法。
本发明的技术解决方案是:一种基于自适应特征点的数字图像篡改检测方法,其特征在于按照下面步骤进行:
约定:I指待检测的图像;指经自适应阈值选择得到的SURF特征点;指图像块中控制最小数量特征点的阈值;指经均匀分布算法处理后的特征点;指特征点横坐标;指特征点纵坐标;指均匀分布的特征点的数量;指用于存放所有BRISK特征信息的矩阵;表示第个数据点的第个特征;指二元决策的个数;指蕨的个箱子中的一个;为类;指图像I实时子区间的灰度值;是目标模板的灰度值;
a. 初始设置
获取待检测图像I,并设置表示循环次数;
b. 自适应阈值特征点检测
b.1 对图像I进行不重叠分块,划分为大小为图像块
b.2 采用阈值大小为的SURF检测器提取特征点;
b.3 定义表示每个图像子块的特征点数目,是图像I中检测到的特征点数目,计算标准特征点数目
b.4 设置一个均匀性阈值为0.5,计算特征点均匀性测量KUM的值Φ:
b.5 如果,则输出矩阵,否则,重复b.2~b.5;
c. 分布均匀特征点获取
c.1 选取一个子图像块,将属于的特征点保存在一个临时矩阵中
c.2 如果特征点数目,则消除中最弱的特征点,并将中剩余的特征点插入到输出矩阵中;
c.3 如果所有的子图像块都被测试,则输出矩阵,,得到均匀分布的特征点,否则返回步骤c.1,选择下一个子图像块;
d. BRISK特征提取
对所有的特征点进行BRISK特征描述符的提取,每一个特征点经计算可以得到64位的二进制描述符来表示其特征;
e. 可辨别嵌入随机蕨快速匹配
e.1 输入特征矩阵,在维的特征空间生成训练数据矩阵
e.2 的第个蕨可使用随机选择特征集合,通过选择大小为的特征使其减少为一个蕨特定的矩阵
e.3 设定二进制分配向量作为一个线性组合,的映射矩阵,是一个偏移向量;
e.4 映射矩阵通过使用和典型相关分析(CCA)中提供的标签矩阵定义一个新的嵌入空间,分配每个训练样本一个二进制箱子;
e.5 测试过程选取相同大小的特征,应用训练所得映射将样本分配到二进制箱子,以半朴素贝叶斯方式组合获得所有基分类器的概率;
e.6 重复e.2~e.5,得到由映射矩阵以及偏移向量定义的一组随机蕨,每一个对应的类,经随机蕨分类可以得到个概率,选择值第二大类作为其匹配结果;
f. 后处理
f.1 利用RANSAC方法来消除错误匹配,得到RANSAC仿射变换图像;
f.2 使用快速NNPROD算法和形态学方法对匹配区域进行标记,快速NNPROD匹配算法的互相关运算公式如下:
其中,邻域窗口尺寸为
本发明首先通过自适应阈值选择算法进行SURF特征点提取,同时使用一种分布处理算法使得图像特征点能够均匀分布;其次,利用BRISK方法提取所有特征点的二进制特征描述符;然后,使用可辨别嵌入的随机蕨算法来进行快速特征匹配;最后,通过RANSAC算法来消除错误匹配对,并进一步利用快速NNPROD算法和形态学方法对匹配区域进行标记。实验结果表明,本发明的方法不仅能有效提高平滑篡改区域的检测性能,而且对诸如JPEG压缩、旋转、缩放等后处理操作均具有不变性,且具有较高的检测精度和较低的时间复杂度。
与现有技术相比,本发明具有以下有益效果:
第一,从基于特征点的篡改检测方法的局限作为出发点,提出了自适应的阈值选择策略进行SURF特征点的提取,保证了提取的特征点分布良好,并进一步通过一种分布处理方法实现了特征点的均匀分布;
第二,利用BRISK 算法生成了特征点的二进制64位特征描述符,其特征具有快速、辨识度高等优势;
第三,采用了可辨别嵌入的随机蕨算法,成功将分类问题转化为匹配问题,使本篡改检测方法更加高效可行;
第四,提出了一种优化了的快速NNPROD算法,与传统的NNPROD算法相比,其定位篡改区域的时间缩短为原来的
附图说明
图1为本发明实施例篡改区域标记图。
图2为本发明实施例具体实施步骤中间结果图。
图3为本发明实施例FUA库的部分篡改检测结果图。
图4为本发明实施例GRIP库的部分篡改检测结果图。
图5为本发明实施例Ard库的部分篡改检测结果图。
图6为本发明实施例与对比文献方法在FUA库的检测精度对比分析图。
图7为本发明实施例与对比文献方法在GRIP库的检测精度对比分析图。
图8为本发明实施例的流程图。
具体实施方式
本发明的方法如图8所示共包括五个阶段:自适应阈值特征点检测、分布均匀特征点获取、BRISK特征提取、可辨别嵌入随机蕨快速匹配和后处理。
约定:I指待检测的图像;指经自适应阈值选择得到的SURF特征点;指图像块中控制最小数量特征点的阈值;指经均匀分布算法处理后的特征点;指特征点横坐标;指特征点纵坐标;指均匀分布的特征点的数量;指用于存放所有BRISK特征信息的矩阵;表示第个数据点的第个特征;指二元决策的个数;指蕨的个箱子中的一个;为类;指图像I实时子区间的灰度值;是目标模板的灰度值;
a.初始设置
获取待检测图像I,并设置表示循环次数;
b. 自适应阈值特征点检测
b.1 对图像I进行不重叠分块,划分为大小为图像块
b.2 采用阈值大小为的SURF检测器提取特征点;
b.3 定义表示每个图像子块的特征点数目,是图像I中检测到的特征点数目,计算标准特征点数目
b.4 设置一个均匀性阈值为0.5,计算特征点均匀性测量KUM的值Φ:
b.5 如果,则输出矩阵,否则,重复b.2~b.5;
c. 分布均匀特征点获取
c.1 选取一个子图像块,将属于的特征点保存在一个临时矩阵中
c.2 如果特征点数目,则消除中最弱的特征点,并将中剩余的特征点插入到输出矩阵中;
c.3 如果所有的子图像块都被测试,则输出矩阵,,得到均匀分布的特征点,否则返回步骤c.1,选择下一个子图像块;
d. BRISK特征提取
对所有的特征点进行BRISK特征描述符的提取,每一个特征点经计算可以得到64位的二进制描述符来表示其特征;
e. 可辨别嵌入随机蕨快速匹配
e.1 输入特征矩阵,在维的特征空间生成训练数据矩阵
e.2 的第个蕨可使用随机选择特征集合,通过选择大小为的特征使其减少为一个蕨特定的矩阵
e.3 设定二进制分配向量作为一个线性组合,的映射矩阵,是一个偏移向量;
e.4 映射矩阵通过使用和典型相关分析(CCA)中提供的标签矩阵定义一个新的嵌入空间,分配每个训练样本一个二进制箱子;
e.5 测试过程选取相同大小的特征,应用训练所得映射将样本分配到二进制箱子,以半朴素贝叶斯方式组合获得所有基分类器的概率;
e.6 重复e.2~e.5,得到由映射矩阵以及偏移向量定义的一组随机蕨,每一个对应的类,经随机蕨分类可以得到个概率,选择值第二大类作为其匹配结果;
f. 后处理
f.1 利用RANSAC方法来消除错误匹配,得到RANSAC仿射变换图像;
f.2 使用快速NNPROD算法和形态学方法对匹配区域进行标记,快速NNPROD匹配算法的互相关运算公式如下:
其中,邻域窗口尺寸为
实验测试和参数设置:
实验是在Matlab R2011a环境下执行的,实验所涉及到的三个图像库分别为FAU、GRIP和Ard,均已公开,可以在网上自行搜索下载。
图1为本发明实施例篡改区域标记图。
图2为本发明实施例具体实施步骤中间结果图。
图3为本发明实施例FUA库的部分篡改检测结果图。
图4为本发明实施例GRIP库的部分篡改检测结果图。
图5为本发明实施例Ard库的部分篡改检测结果图。
图6为本发明实施例与对比文献方法在FUA库的检测精度对比分析图。
图7为本发明实施例与对比文献方法在GRIP库的检测精度对比分析图。
实验结果表明:本发明的方法不仅能有效提高平滑篡改区域的检测性能,而且对诸如JPEG压缩、旋转、缩放等后处理操作均具有不变性,且具有较高的检测精度和较低的时间复杂度。

Claims (2)

1.一种基于自适应特征点的数字图像篡改检测方法,其特征在于按照如下步骤进行:
约定:I指待检测的图像;指经自适应阈值选择得到的SURF特征点;指图像块中控制最小数量特征点的阈值;指经均匀分布算法处理后的特征点;指特征点横坐标;指特征点纵坐标;指均匀分布的特征点的数量;指用于存放所有BRISK特征信息的矩阵;表示第个数据点的第个特征;指二元决策的个数;指蕨的个箱子中的一个;为类;指图像I实时子区间的灰度值;是目标模板的灰度值;
初始设置
获取待检测图像I,并设置表示循环次数;
b. 自适应阈值特征点检测
b.1 对图像I进行不重叠分块,划分为大小为图像块
b.2 采用阈值大小为的SURF检测器提取特征点;
b.3 定义表示每个图像子块的特征点数目,是图像I中检测到的特征点数目,计算标准特征点数目
b.4 设置一个均匀性阈值为0.5,计算特征点均匀性测量KUM的值Φ:
b.5 如果,则输出矩阵,否则,重复b.2~b.5;
c. 分布均匀特征点获取
c.1 选取一个子图像块,将属于的特征点保存在一个临时矩阵中
c.2 如果特征点数目,则消除中最弱的特征点,并将中剩余的特征点插入到输出矩阵中;
c.3 如果所有的子图像块都被测试,则输出矩阵,,得到均匀分布的特征点,否则返回步骤c.1,选择下一个子图像块;
d. BRISK特征提取
对所有的特征点进行BRISK特征描述符的提取,每一个特征点经计算可以得到64位的二进制描述符来表示其特征;
e. 可辨别嵌入随机蕨快速匹配
e.1 输入特征矩阵,在维的特征空间生成训练数据矩阵
e.2的第个蕨可使用随机选择特征集合,通过选择大小为的特征使其减少为一个蕨特定的矩阵
e.3 设定二进制分配向量作为一个线性组合,的映射矩阵,是一个偏移向量;
e.4 映射矩阵通过使用和典型相关分析(CCA)中提供的标签矩阵定义一个新的嵌入空间,分配每个训练样本一个二进制箱子;
e.5 测试过程选取相同大小的特征,应用训练所得映射将样本分配到二进制箱子,以半朴素贝叶斯方式组合获得所有基分类器的概率;
e.6 重复e.2~e.5,得到由映射矩阵以及偏移向量()定义的一组随机蕨,每一个对应的类,经随机蕨分类可以得到个概率,选择值第二大类作为其匹配结果;
f. 后处理
f.1 利用RANSAC方法来消除错误匹配,得到RANSAC仿射变换图像;
f.2 使用快速NNPROD算法和形态学方法对匹配区域进行标记,快速NNPROD匹配算法的互相关运算公式如下:
2.其中,邻域窗口尺寸为
CN201711364488.6A 2017-12-18 2017-12-18 基于自适应特征点的数字图像篡改检测方法 Expired - Fee Related CN108122225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711364488.6A CN108122225B (zh) 2017-12-18 2017-12-18 基于自适应特征点的数字图像篡改检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711364488.6A CN108122225B (zh) 2017-12-18 2017-12-18 基于自适应特征点的数字图像篡改检测方法

Publications (2)

Publication Number Publication Date
CN108122225A true CN108122225A (zh) 2018-06-05
CN108122225B CN108122225B (zh) 2021-11-19

Family

ID=62230181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711364488.6A Expired - Fee Related CN108122225B (zh) 2017-12-18 2017-12-18 基于自适应特征点的数字图像篡改检测方法

Country Status (1)

Country Link
CN (1) CN108122225B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109345514A (zh) * 2018-09-12 2019-02-15 河南理工大学 一种基于PatchMatch的数字图像盲取证技术
CN109727237A (zh) * 2018-12-27 2019-05-07 辽宁师范大学 基于均匀特征点混合描述的图像篡改检测方法
CN110222699A (zh) * 2019-05-24 2019-09-10 东南大学 一种基于区域自适应surf的无序图像快速匹配方法
CN111754441A (zh) * 2020-06-29 2020-10-09 国网甘肃省电力公司电力科学研究院 一种图像复制粘贴伪造被动检测方法
CN112949718A (zh) * 2020-11-20 2021-06-11 扬州大学 一种半配对多视图邻域相关分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105740899A (zh) * 2016-01-29 2016-07-06 长安大学 一种机器视觉图像特征点检测与匹配复合的优化方法
US20170091588A1 (en) * 2015-09-02 2017-03-30 Sam Houston State University Exposing inpainting image forgery under combination attacks with hybrid large feature mining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170091588A1 (en) * 2015-09-02 2017-03-30 Sam Houston State University Exposing inpainting image forgery under combination attacks with hybrid large feature mining
CN105740899A (zh) * 2016-01-29 2016-07-06 长安大学 一种机器视觉图像特征点检测与匹配复合的优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUNIL KUMAR等: "A Fast Keypoint Based Hybrid Method for Copy Move Forgery Detection", 《ARXIV》 *
李思然: "数字图像同源拼接篡改的盲取证研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109345514A (zh) * 2018-09-12 2019-02-15 河南理工大学 一种基于PatchMatch的数字图像盲取证技术
CN109727237A (zh) * 2018-12-27 2019-05-07 辽宁师范大学 基于均匀特征点混合描述的图像篡改检测方法
CN109727237B (zh) * 2018-12-27 2023-05-23 辽宁师范大学 基于均匀特征点混合描述的图像篡改检测方法
CN110222699A (zh) * 2019-05-24 2019-09-10 东南大学 一种基于区域自适应surf的无序图像快速匹配方法
CN110222699B (zh) * 2019-05-24 2023-07-18 东南大学 一种基于区域自适应surf的无序图像快速匹配方法
CN111754441A (zh) * 2020-06-29 2020-10-09 国网甘肃省电力公司电力科学研究院 一种图像复制粘贴伪造被动检测方法
CN111754441B (zh) * 2020-06-29 2023-11-21 国网甘肃省电力公司电力科学研究院 一种图像复制粘贴伪造被动检测方法
CN112949718A (zh) * 2020-11-20 2021-06-11 扬州大学 一种半配对多视图邻域相关分析方法

Also Published As

Publication number Publication date
CN108122225B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN108122225A (zh) 基于自适应特征点的数字图像篡改检测方法
Gani et al. A robust copy-move forgery detection technique based on discrete cosine transform and cellular automata
Bilal et al. A low-complexity pedestrian detection framework for smart video surveillance systems
Fadl et al. Robust copy–move forgery revealing in digital images using polar coordinate system
Bi et al. Fast reflective offset-guided searching method for copy-move forgery detection
CN108898132B (zh) 一种基于形状上下文描述的太赫兹图像危险品识别方法
Ramu et al. Image forgery detection for high resolution images using SIFT and RANSAC algorithm
CN107862680B (zh) 一种基于相关滤波器的目标跟踪优化方法
Hou et al. Detection of hue modification using photo response nonuniformity
Muzaffer et al. A fast and effective digital image copy move forgery detection with binarized SIFT
Chen et al. Learning robust scene classification model with data augmentation based on xception
CN108257153A (zh) 一种基于方向梯度统计特征的目标跟踪方法
Prasad et al. Mobile plant species classification: a low computational aproach
Zhang et al. Research on Surface Defect Detection of Rare‐Earth Magnetic Materials Based on Improved SSD
Nawaz et al. Image authenticity detection using DWT and circular block-based LTrP features
Singh et al. Copy move forgery detection on digital images
Lou et al. Hierarchical co-salient object detection via color names
Waleed et al. Comprehensive display of digital image copy-move forensics techniques
Gani et al. Copy move forgery detection using DCT, PatchMatch and cellular automata
Tyagi et al. Comparative analysis of feature detection and extraction techniques for vision-based ISLR system
Savakar et al. Copy-move image forgery detection using shannon entropy
Fang Naive bayes image classification based on multiple features
Ikhlayel et al. A study of copy-move forgery detection scheme based on segmentation
Kumar et al. ResUNet: an automated deep learning model for image splicing localization
Song et al. The method of shape recognition based on V-system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211119