CN108121955A - A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method - Google Patents

A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method Download PDF

Info

Publication number
CN108121955A
CN108121955A CN201711361044.7A CN201711361044A CN108121955A CN 108121955 A CN108121955 A CN 108121955A CN 201711361044 A CN201711361044 A CN 201711361044A CN 108121955 A CN108121955 A CN 108121955A
Authority
CN
China
Prior art keywords
mrow
msub
modified
hyperbolic tangent
norm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711361044.7A
Other languages
Chinese (zh)
Inventor
陈金立
李伟
李家强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201711361044.7A priority Critical patent/CN108121955A/en
Publication of CN108121955A publication Critical patent/CN108121955A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/22Source localisation; Inverse modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于修正近似双曲正切函数的平滑l0范数方法,该方法采用一种修正近似双曲正切函数来逼近l0范数,该修正近似双曲正切函数具有较优的逼近性能,然后利用牛顿法求解该修正近似双曲正切函数的极值问题,进而以较高的精度重构出稀疏信号,能够显著地提高SL0算法的稀疏重构性能。

The invention discloses a smoothing l0 norm method based on a modified approximate hyperbolic tangent function. The method adopts a modified approximate hyperbolic tangent function to approach the l0 norm. The modified approximate hyperbolic tangent function has better Approximate performance, and then use Newton's method to solve the extreme value problem of the modified approximate hyperbolic tangent function, and then reconstruct the sparse signal with higher precision, which can significantly improve the sparse reconstruction performance of the SL0 algorithm.

Description

一种基于修正近似双曲正切函数的平滑l0范数方法A Smooth l0 Norm Method Based on Modified Approximate Hyperbolic Tangent Function

技术领域technical field

本发明属于稀疏信号恢复技术领域,具体涉及一种基于修正近似双曲正切函数的平滑l0范数方法。The invention belongs to the technical field of sparse signal recovery, and in particular relates to a smoothing l0 norm method based on a modified approximate hyperbolic tangent function.

背景技术Background technique

在传统信号采样理论中,为保证信号的无失真输出,需要的采样率至少为信号带宽的两倍。因此,在处理较大带宽的信号时,传统信号采样会对硬件系统造成很大的压力。压缩感知(Compressing Sensing,CS)是一种新型的信号采样理论,它只需要极少的稀疏信号采样值即可利用重构算法完成信号的精确重构,现已广泛地应用在雷达成像、信号处理及医学成像等领域。稀疏重构问题等价于欠定方程组y=Dx的稀疏求解问题,其中,为测量矩阵,是感知矩阵,是稀疏向量。稀疏问题的求解模型可表示为In the traditional signal sampling theory, in order to ensure the undistorted output of the signal, the required sampling rate is at least twice the signal bandwidth. Therefore, when processing signals with a large bandwidth, traditional signal sampling will cause great pressure on the hardware system. Compressed sensing (Compressing Sensing, CS) is a new type of signal sampling theory. It only needs very few sparse signal sampling values to complete the accurate reconstruction of the signal using the reconstruction algorithm. It has been widely used in radar imaging, signal processing and medical imaging. The sparse reconstruction problem is equivalent to the sparse solution problem of the underdetermined equation system y=Dx, where, is the measurement matrix, is the perception matrix, is a sparse vector. The solution model of the sparse problem can be expressed as

式中,||·||0表示l0范数,即向量非零元素的个数。l0范数最小化问题是NP-hard问题,从而导致式(1)难以求解。基追踪(Basic Pursuit,BP)算法是解决上述问题的一种有效的算法,该算法利用l1范数来代替l0范数,由此式(1)转变为In the formula, ||·|| 0 represents the l 0 norm, that is, the number of non-zero elements of the vector. l The 0 -norm minimization problem is an NP-hard problem, which makes formula (1) difficult to solve. The basic pursuit (Basic Pursuit, BP) algorithm is an effective algorithm to solve the above problems. This algorithm uses the l 1 norm to replace the l 0 norm, and the formula (1) is transformed into

然后通过线性规划对式(2)进行求解,从而实现对稀疏信号的重构。尽管BP算法能够有效的解决稀疏信号重构问题,但是该算法的计算量较大,不能快速重构稀疏信号。此外,还有许多其它稀疏重构算法,比如,迭代加权最小二乘(Iterative Re-weighted LeastSquares,IRLS)算法、正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法以及平滑l0范数(Smoothed l0norm,SL0)算法等。其中,SL0算法利用高斯函数来逼近l0范数,并通过最速下降法和梯度投影原理实现稀疏信号的重构。尽管SL0算法能够快速重构稀疏信号,但是该算法所采用的高斯函数对l0范数的逼近性能较差,并且在利用最速下降法解决该函数极值问题时会产生“锯齿效应”,从而导致SL0算法的重构精度较低。文献[1](Zhang Y,Yu J,Bai H,et al.Improved Sparse Signal Reconstruction based on ApproximateHyperbolic Tangent Function with Smoothed l0Norm[J].International Journal ofScience,2017,4(2):201-210.)提出一种牛顿平滑l0范数(Newton Smoothed l0norm,NSL0)算法,该算法采用近似双曲正切函数来逼近l0范数,并利用修正牛顿法解决函数的极值问题,从而提高了SL0算法的重构性能。文献[2](Feng J J,Zhang G,Wen F Q.MIMO radarimaging based on smoothed l0norm[J].Mathematical Problems in Engineering,2015,(8):1-10.)采用另一种近似双曲正切函数来逼近l0范数,并在牛顿方向上搜寻该函数的极值,进而获得一种近似SL0(Approximate Smoothed l0norm,ASL0)算法,然后利用该算法进行MIMO雷达目标成像,有效地提高了其成像性能。SL0算法的核心思想在于采用高斯函数来逼近l0范数,从而将l0范数最小化问题转变成平滑函数的极值问题,避免了对l0范数最小化问题的直接求解。因此,为了进一步提高SL0算法对稀疏信号的重构性能,构造一种逼近性能更优的函数来近似l0范数并求解该函数所对应的稀疏求解问题是非常有必要的。Then formula (2) is solved by linear programming, so as to realize the reconstruction of sparse signals. Although the BP algorithm can effectively solve the sparse signal reconstruction problem, the algorithm has a large amount of calculation and cannot quickly reconstruct the sparse signal. In addition, there are many other sparse reconstruction algorithms, such as Iterative Re-weighted LeastSquares (IRLS) algorithm, Orthogonal Matching Pursuit (OMP) algorithm and Smoothed l 0 norm (Smoothed l 0 norm, SL0) algorithm, etc. Among them, the SL0 algorithm uses the Gaussian function to approximate the l 0 norm, and realizes the reconstruction of the sparse signal through the steepest descent method and the gradient projection principle. Although the SL0 algorithm can quickly reconstruct the sparse signal, the Gaussian function used in the algorithm has poor approximation performance to the l 0 norm, and when the steepest descent method is used to solve the extreme value problem of the function, a "sawtooth effect" will occur, thus The reconstruction accuracy of the SL0 algorithm is lower. Literature [1] (Zhang Y, Yu J, Bai H, et al. Improved Sparse Signal Reconstruction based on Approximate Hyperbolic Tangent Function with Smoothed l 0 Norm [J]. International Journal of Science, 2017, 4(2): 201-210. ) proposed a Newton Smoothed l 0 norm ( NSL0) algorithm, which uses an approximate hyperbolic tangent function to approximate the l 0 norm, and uses the modified Newton method to solve the extreme value problem of the function, thereby improving The reconstruction performance of the SL0 algorithm is improved. Literature [2] (Feng JJ, Zhang G, Wen F Q. MIMO radarimaging based on smoothed l 0 norm [J]. Mathematical Problems in Engineering, 2015, (8): 1-10.) uses another approximate hyperbolic The tangent function is used to approximate the l 0 norm, and the extremum of the function is searched in the Newton direction, and then an approximate SL0 (Approximate Smoothed l 0 norm, ASL0) algorithm is obtained, and then the algorithm is used for MIMO radar target imaging, effectively Improving its imaging performance. The core idea of the SL0 algorithm is to use the Gaussian function to approximate the l 0 norm, thus transforming the l 0 norm minimization problem into a smooth function extremum problem, avoiding the direct solution to the l 0 norm minimization problem. Therefore, in order to further improve the reconstruction performance of the SL0 algorithm for sparse signals, it is very necessary to construct a function with better approximation performance to approximate the l 0 norm and solve the sparse solution problem corresponding to this function.

发明内容Contents of the invention

针对SL0算法及其改进算法所采用高斯函数和近似双曲正切函数等平滑函数对l0范数的逼近效果不理想,从而导致算法的重构性能差的问题,本发明提出一种基于修正近似双曲正切函数的平滑l0范数方法,采用一种修正的近似双曲正切函数来对l0范数实现较优的逼近,并通过牛顿法求解该平滑函数的极值问题,从而有效提高了SL0算法的稀疏信号重构性能。Aiming at the problem that the smoothing functions such as Gaussian function and approximate hyperbolic tangent function adopted by the SL0 algorithm and its improved algorithm are unsatisfactory to the approximation effect of the l0 norm, which leads to the problem of poor reconstruction performance of the algorithm, the present invention proposes a method based on modified approximation The smooth l 0 norm method of hyperbolic tangent function adopts a modified approximate hyperbolic tangent function to achieve a better approximation to l 0 norm, and solves the extremum problem of the smooth function by Newton's method, thereby effectively improving The sparse signal reconstruction performance of the SL0 algorithm is improved.

实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:Realize above-mentioned technical purpose, reach above-mentioned technical effect, the present invention realizes through the following technical solutions:

一种基于修正近似双曲正切函数的平滑l0范数方法,包括以下步骤:A smooth l0 norm method based on the modified approximate hyperbolic tangent function, comprising the following steps:

(1)设计用于逼近l0范数的修正近似双曲正切函数;(1) a modified approximate hyperbolic tangent function designed to approach the l0 norm;

(2)建立基于修正近似双曲正切函数的稀疏问题模型;(2) Establish a sparse problem model based on the modified approximate hyperbolic tangent function;

(3)利用修正牛顿法求解当参数σ逐次下降时的修正函数所表示的稀疏问题,σ为函数的形状参数,重构出稀疏信号。(3) Using the modified Newton method to solve the sparse problem represented by the modified function when the parameter σ decreases successively, σ is the shape parameter of the function, and the sparse signal is reconstructed.

进一步地,所述步骤(1)中的修正近似双曲正切函数的表达式为:Further, the expression of the modified approximate hyperbolic tangent function in the step (1) is:

其中,x为变量;σ为函数的形状参数。Among them, x is a variable; σ is the shape parameter of the function.

进一步地,所述步骤(2)具体为:Further, the step (2) is specifically:

采用平滑函数fσ(x)来近似l0范数,令:Using the smooth function f σ (x) to approximate the l 0 norm, let:

其中,是稀疏向量;xi(i=1,2,…,N)为稀疏向量x中的第i个元素。in, is a sparse vector; x i (i=1,2,...,N) is the i-th element in the sparse vector x.

可以得到:can get:

其中,||·||0表示l0范数,则基于修正近似双曲正切函数的稀疏问题模型为:Among them, ||·|| 0 represents the l 0 norm, then the sparse problem model based on the modified approximate hyperbolic tangent function is:

其中,为测量矩阵;是感知矩阵。in, is the measurement matrix; is the perception matrix.

进一步地,所述步骤(3)具体为:Further, the step (3) is specifically:

(3.1)将σ取为一组逐次下降的序列[σ12>,...>σJ],其中σJ为一个接近于零的正数;(3.1) Take σ as a set of descending sequences [σ 12 >,...>σ J ], where σ J is a positive number close to zero;

(3.2)利用修正牛顿法依次对σ=σi(1≤i≤J)时的进行求解,使得向量x能够逐渐逼近全局最优解。(3.2) Use the modified Newton method to sequentially analyze the time when σ=σ i (1≤i≤J) Solve to make the vector x gradually approach the global optimal solution.

进一步地,所述步骤(3.1)具体为:Further, the step (3.1) is specifically:

初始化:initialization:

(a)设初始值 (a) Set the initial value

(b)选取一组合适的序列[σ12,...,σJ],且σj+1=ρσj,其中,ρ(0<ρ<1)为衰减因子, (b) Select a suitable sequence [σ 12 ,...,σ J ], and σ j+1 =ρσ j , where ρ(0<ρ<1) is the attenuation factor,

进一步地,所述步骤(3.2)具体为:Further, the step (3.2) is specifically:

算法迭代:Algorithm iteration:

forj=1,2,...,Jforj=1,2,...,J

①令σ=σj ①Let σ=σ j ,

②在修正牛顿方向上逐次搜寻函数Fσ(x)的全局最小值,并将该最小值投影到可行集上;②Search for the global minimum value of the function F σ (x) successively in the modified Newton direction, and project the minimum value onto the feasible set;

for l=1,2,...,Lfor l=1,2,...,L

(a)修正牛顿方向为 (a) The modified Newton direction is

(b) (b)

(c)将投影到可行集上得 (c) will projected onto the feasible set

③令 ③ order

输出稀疏向量解 output sparse vector solution

与现有技术相比,本发明的有益效果:Compared with prior art, the beneficial effect of the present invention:

(1)SL0算法的核心思想在于采用平滑函数来逼近l0范数,从而将l0范数最小化问题转变成平滑函数所表示的稀疏问题,避免l0范数最小化的NP-hard问题的直接求解。本发明提出的一种新的平滑函数能对l0范数实现较好的逼近,其逼近程度要优于现有的高斯函数和近似双曲正切函数,因此,该平滑函数所表示稀疏问题最接近理想情况,从而有效提高了SL0算法对稀疏信号的重构性能。(1) The core idea of the SL0 algorithm is to use a smooth function to approximate the l 0 norm, thereby transforming the l 0 norm minimization problem into a sparse problem represented by a smooth function, and avoiding the NP-hard problem of l 0 norm minimization direct solution of . A new smoothing function proposed by the present invention can achieve better approximation to the l 0 norm, and its approximation degree is better than the existing Gaussian function and approximate hyperbolic tangent function. Therefore, the sparse problem represented by the smoothing function is the best It is close to the ideal situation, thus effectively improving the reconstruction performance of the SL0 algorithm for sparse signals.

(2)本发明提出的平滑函数简单易求导,而且该函数对应的修正牛顿方向计算简单,因此,在SL0算法中引入本发明提出的平滑函数不仅能提高稀疏信号重构性能,而且仍然在保持其高计算效率的特点。(2) The smoothing function proposed by the present invention is simple and easy to derive, and the calculation of the modified Newton direction corresponding to the function is simple. Therefore, introducing the smoothing function proposed by the present invention into the SL0 algorithm can not only improve the sparse signal reconstruction performance, but also maintain maintain its high computational efficiency.

附图说明Description of drawings

图1为本发明一种实施例的方法实现流程图;Fig. 1 is the method implementation flowchart of an embodiment of the present invention;

图2为四种函数在σ=0.1时的分布图;Fig. 2 is the distribution figure of four kinds of functions when σ=0.1;

图3为原始稀疏信号以及利用各算法获得的重构信号示意图;Figure 3 is a schematic diagram of the original sparse signal and the reconstructed signal obtained by using various algorithms;

图4为不同算法的重构信噪比与信噪比的变化关系示意图;Fig. 4 is a schematic diagram of the relationship between the reconstructed SNR and the change of the SNR of different algorithms;

图5为不同算法的重构误差与信噪比的变化关系示意图;Fig. 5 is a schematic diagram of the relationship between the reconstruction error and the signal-to-noise ratio of different algorithms;

图6为各算法的重构信噪比与稀疏度的变化关系示意图;Fig. 6 is a schematic diagram of the relationship between the reconstructed signal-to-noise ratio and the sparsity of each algorithm;

图7为各算法的重构误差与稀疏度的变化关系示意图。Fig. 7 is a schematic diagram of the relationship between the reconstruction error and the sparsity of each algorithm.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

下面结合附图对本发明的应用原理作详细的描述。The application principle of the present invention will be described in detail below in conjunction with the accompanying drawings.

如图1所示,本发明提出的一种基于修正近似双曲正切函数的平滑l0范数方法的具体实现步骤如下:As shown in Figure 1, a kind of smooth 10 norm method based on revising approximate hyperbolic tangent function that the present invention proposes concrete implementation steps are as follows:

步骤1:设计用于逼近l0范数的修正近似双曲正切函数;Step 1: designing a modified approximate hyperbolic tangent function for approximating the l0 norm;

SL0算法的核心思想在于采用高斯函数来逼近l0范数,从而将l0范数最小化问题转变成平滑函数的极值问题,避免了对l0范数最小化问题的直接求解。The core idea of the SL0 algorithm is to use the Gaussian function to approximate the l 0 norm, thus transforming the l 0 norm minimization problem into a smooth function extremum problem, avoiding the direct solution to the l 0 norm minimization problem.

SL0算法中所采用的高斯函数的表达式为:The expression of the Gaussian function used in the SL0 algorithm is:

其中,x为变量;σ为函数的形状参数。Among them, x is a variable; σ is the shape parameter of the function.

but

make

其中,是稀疏向量;xi(i=1,2,…,N)为稀疏向量x中的第i个元素。in, is a sparse vector; x i (i=1,2,...,N) is the i-th element in the sparse vector x.

可以得到can get

则式(5)可转化为:Then formula (5) can be transformed into:

其中,为测量矩阵。in, is the measurement matrix.

为了提高SL0算法中的平滑函数对l0范数的逼近程度,文献[1]和文献[2]分别采用两种不同的近似双曲正切函数来代替标准高斯函数,这两种不同的双曲正切函数表达式分别为:In order to improve the approximation degree of the smoothing function in the SL0 algorithm to the l 0 norm, literature [1] and literature [2] respectively use two different approximate hyperbolic tangent functions to replace the standard Gaussian function. These two different hyperbolic tangent functions The tangent function expressions are:

由此可知,寻找一种合适的平滑函数能有效逼近l0范数,对SL0算法的重构性能至关重要。在文献[1]和[2]分别提出的NSL0算法和ASL0算法的基础上,为了更进一步提高平滑函数对l0范数的近似程度,本发明设计出一种新的平滑函数(修正近似双曲正切函数)来近似l0范数,从而提高其逼近程度,所述修正近似双曲正切函数表达式为:It can be seen that finding a suitable smoothing function that can effectively approximate the l 0 norm is crucial to the reconstruction performance of the SL0 algorithm. On the basis of the NSL0 algorithm and the ASL0 algorithm respectively proposed in literature [1] and [2], in order to further improve the approximation degree of the smoothing function to the l 0 norm, the present invention designs a new smoothing function (modified approximate double Hyperbolic tangent function) to approximate the 10 norm, thereby improving its degree of approximation, the modified approximate hyperbolic tangent function expression is:

图2为高斯函数、文献[1]和文献[2]中分别采用的两种近似双曲正切函数以及本发明提出的修正近似双曲正切函数fσ(x)在σ=0.1处的函数分布图。由图2可以看出,与高斯函数、文献[1]和文献[2]中提出的两种近似双曲正切函数相比,本发明提出的修正近似双曲正切函数在x∈[-0.5,0.5]内的“陡峭性”更大,表明该函数对l0范数的逼近程度更优。Fig. 2 is Gaussian function, two kinds of approximate hyperbolic tangent functions adopted respectively in document [1] and document [2] and the modified approximate hyperbolic tangent function f σ (x) that the present invention proposes at the function distribution of σ=0.1 place picture. As can be seen from Fig. 2, compared with two kinds of approximate hyperbolic tangent functions proposed in Gaussian function, literature [1] and literature [2], the modified approximate hyperbolic tangent function proposed by the present invention is at x∈[-0.5, 0.5], the "steepness" is greater, indicating that the function has a better approximation to the l 0 norm.

步骤2:建立基于修正近似双曲正切函数的稀疏求解问题模型Step 2: Build a sparse solution problem model based on the modified approximate hyperbolic tangent function

采用平滑函数fσ(x)来近似l0范数,令:Using the smooth function f σ (x) to approximate the l 0 norm, let:

可以得到can get

则基于修正近似双曲正切函数的稀疏问题模型为:Then the sparse problem model based on the modified approximate hyperbolic tangent function is:

步骤3:利用修正牛顿法求解当参数σ逐次下降时的修正函数所表示的稀疏问题Step 3: Use the modified Newton method to solve the sparse problem represented by the modified function when the parameter σ decreases successively

形状参数σ控制着Fσ(x)对l0范数的近似程度,即σ越小,Fσ(x)越趋近于l0范数,但同时Fσ(x)存在的局部极值也越多,则Fσ(x)在逼近l0范数的过程中,易陷入局部极值,极大地增加了对函数全局最小值的求解难度。The shape parameter σ controls the approximation degree of F σ (x) to the l 0 norm, that is, the smaller σ is, the closer F σ (x) is to the l 0 norm, but at the same time, the local extremum of F σ (x) The more , the easier it is for F σ (x) to fall into a local extremum in the process of approaching the l 0 norm, which greatly increases the difficulty of finding the global minimum of the function.

为了解决该问题,本发明首先将σ取为一组逐次下降的序列[σ12>,...>σJ],其中σJ为一个接近于零的正数;然后利用修正牛顿法依次对σ=σi(1≤i≤J)时的式(13)进行求解,使得向量x能够逐渐逼近全局最优解。In order to solve this problem, the present invention first takes σ as a set of descending sequences [σ 12 >,...>σ J ], where σ J is a positive number close to zero; and then uses the modified Newton The method sequentially solves the formula (13) when σ=σ i (1≤i≤J), so that the vector x can gradually approach the global optimal solution.

SL0算法通常利用最速下降法求解高斯函数的全局最小值,虽然最速下降法步骤简单,且每次计算函数最小值时迭代量很小,但是在搜寻函数全局最小值的过程中会出现“锯齿效应”,从而对SL0算法的重构精度产生不利影响。针对此问题,本发明利用修正牛顿法求解式(13),即基于修正近似双曲正切函数的稀疏问题,从而提高了稀疏信号的重构精度。对于函数Fσ(x),其牛顿方向为:The SL0 algorithm usually uses the steepest descent method to solve the global minimum of the Gaussian function. Although the steps of the steepest descent method are simple, and the number of iterations is small each time the function minimum is calculated, the "sawtooth effect" will appear in the process of searching for the global minimum of the function. ”, thus adversely affecting the reconstruction accuracy of the SL0 algorithm. In view of this problem, the present invention uses the modified Newton method to solve the formula (13), that is, the sparse problem based on the modified approximate hyperbolic tangent function, thereby improving the reconstruction accuracy of the sparse signal. For the function F σ (x), its Newton direction is:

d=-A2Fσ(x)-1ΔFσ(x) (14)d=-A 2 F σ (x)-1ΔF σ (x) (14)

式中:In the formula:

其中,in,

在计算出函数Fσ(x)的牛顿方向d之后,其中矩阵Δ2Fσ(x)是Hessen矩阵,该矩阵不满足正定条件,进而不能保证牛顿方向d为下降方向。为保证d为下降方向,对式(16)中的对角元素进行修正,从而构造一个新矩阵H来代替牛顿方向d中的Δ2Fσ(x)矩阵。新矩阵H的表达式为:After calculating the Newton direction d of the function F σ (x), the matrix Δ 2 F σ (x) is a Hessen matrix, which does not satisfy the positive definite condition, and thus cannot guarantee that the Newton direction d is the descending direction. In order to ensure that d is the descending direction, the diagonal elements in Eq. (16) are modified to construct a new matrix H to replace the Δ 2 F σ (x) matrix in Newton's direction d. The expression of the new matrix H is:

H=Δ2(Fσ(x))+ψ (18)H=Δ 2 (F σ (x))+ψ (18)

式中,ψ为一个对角矩阵,为方便计算,本文将其对角元素ψi取为In the formula, ψ is a diagonal matrix. For the convenience of calculation, this paper takes its diagonal elements ψ i as

由此可得,H中第i个对角线上的元素为From this, it can be obtained that the elements on the i-th diagonal in H are

由上式可知,修正后的新矩阵H满足正定条件,利用矩阵H代替牛顿方向d中的Δ2Fσ(xi)矩阵,以保证牛顿方向d为下降方向,即改进后的修正牛顿方向为:It can be seen from the above formula that the new matrix H after modification satisfies the positive definite condition, and the matrix H is used to replace the Δ 2 F σ ( xi ) matrix in the Newton direction d to ensure that the Newton direction d is the descending direction, that is, the improved modified Newton direction for:

利用修正牛顿法求解当参数σ逐次下降时的修正函数所表示的稀疏问题,在实际操作时,具体包括下述步骤:Use the modified Newton method to solve the sparse problem represented by the modified function when the parameter σ decreases successively. In actual operation, the following steps are specifically included:

A1初始化:A1 initialization:

(a)设初始值 (a) Set the initial value

(b)选取一组合适的序列[σ12,...,σJ],且σj+1=ρσj,其中,ρ(0<ρ<1)为衰减因子, (b) Select a suitable sequence [σ 12 ,...,σ J ], and σ j+1 =ρσ j , where ρ(0<ρ<1) is the attenuation factor,

A2算法迭代:A2 algorithm iteration:

forj=1,2,...,Jforj=1,2,...,J

①令σ=σj ①Let σ=σ j ,

②在修正牛顿方向上逐次搜寻函数Fσ(x)的全局最小值,并将该最小值投影到可行集上。②Search for the global minimum value of the function F σ (x) successively in the modified Newton direction, and project the minimum value onto the feasible set.

forl=1,2,...,Lforl=1,2,...,L

(a)修正牛顿方向为 (a) The modified Newton direction is

(b) (b)

(c)将投影到可行集上得 (c) will projected onto the feasible set

③令 ③ order

A3输出稀疏向量解 A3 output sparse vector solution

为验证本发明方法的稀疏重构性能,本发明中设计了几组SL0算法、文献[1]提出的NSL0算法、文献[2]提出的ASL0算法和本发明算法的对比实验。在仿真实验中,稀疏源信号是通过伯努立-高斯模型随机生成,该模型为:In order to verify the sparse reconstruction performance of the method of the present invention, several groups of SL0 algorithms, the NSL0 algorithm proposed in the literature [1], the ASL0 algorithm proposed in the literature [2] and the comparison experiments of the algorithm of the present invention are designed in the present invention. In the simulation experiment, the sparse source signal is randomly generated by the Bernoulli-Gaussian model, which is:

xi-p·N(0,δon)+(1-p)·N(0,δoff)x i -p·N(0, δ on )+(1-p)·N(0, δ off )

其中,p为源信号中出现大的非零量的概率;N(0,δ)为高斯加性白噪声,其均值为零,方差为δ;δon和δoff分别是构成源信号的较大非零系数和较小非零系数。设置δoff<<δon,且p<<1,以保证源信号的稀疏性。Among them, p is the probability of a large non-zero quantity appearing in the source signal; N(0, δ) is Gaussian additive white noise with a mean of zero and a variance of δ; δ on and δ off are the comparative Large nonzero coefficients and small nonzero coefficients. Set δ off << δ on , and p<<1 to ensure the sparsity of the source signal.

在仿真实验中,为随机采样矩阵,为稀疏源信号矩阵,为感知矩阵。对于y=Dx,在已知y和D的情况下,分别利用SL0算法、NSL0算法、ASL0算法以及本发明算法对稀疏源信号进行重构。用于产生稀疏源信号的模型中参数设置分别为M=1000,N=400,δon=1,δoff=10-3,p=0.1;在SL0算法、NSL0算法、ASL0算法和本发明算法中,设置σJ=0.001,ρ=0.7,内循环次数L=5。In the simulation experiment, is a random sampling matrix, is the sparse source-signal matrix, is the perception matrix. For y=Dx, when y and D are known, the sparse source signal is reconstructed by using the SL0 algorithm, the NSL0 algorithm, the ASL0 algorithm and the algorithm of the present invention respectively. The parameter settings in the model for generating sparse source signals are respectively M=1000, N=400, δ on =1, δ off =10 −3 , p=0.1; in SL0 algorithm, NSL0 algorithm, ASL0 algorithm and the algorithm of the present invention , set σ J =0.001, ρ=0.7, and the number of inner cycles L=5.

定义信噪比为:Define the signal-to-noise ratio as:

式中,tr(·)表示对矩阵进行求迹。In the formula, tr(·) means to trace the matrix.

本发明采用重构信噪比和重构误差来评价各算法的重构性能,重构信噪比定义为:The present invention uses the reconstruction signal-to-noise ratio and the reconstruction error to evaluate the reconstruction performance of each algorithm, and the reconstruction signal-to-noise ratio is defined as:

式中,为稀疏源信号xi的估值解。重构误差定义为:In the formula, is the estimated solution of the sparse source signal xi . The reconstruction error is defined as:

仿真实验一:不同方法对稀疏信号重构的实验Simulation experiment 1: Experiments on sparse signal reconstruction by different methods

图3是原始信号以及利用各方法获得的重构信号对比图。源信号稀疏度表示信号矩阵中非零元素的个数。本次仿真中,取稀疏度K=100,信噪比SNR=30dB。本发明方法采用了一种修正近似双曲正切函数来逼近l0范数,提高了平滑函数对l0范数的近似程度,由图3可知,相比于SL0算法、NSL0算法和ASL0算法,本发明方法重构出的稀疏信号最接近于原始源信号。Figure 3 is a comparison chart of the original signal and the reconstructed signal obtained by various methods. The source signal sparsity indicates the number of non-zero elements in the signal matrix. In this simulation, the sparseness K=100 and the signal-to-noise ratio SNR=30dB are taken. The inventive method has adopted a kind of revised approximate hyperbolic tangent function to approach l0 norm, has improved the approximation degree of smooth function to l0 norm, as can be seen from Fig. 3, compared with SL0 algorithm, NSL0 algorithm and ASL0 algorithm, The sparse signal reconstructed by the method of the present invention is closest to the original source signal.

仿真实验二:各算法的重构性能与信噪比的关系Simulation experiment 2: the relationship between the reconstruction performance of each algorithm and the signal-to-noise ratio

图4和图5分别为四种算法的重构信噪比和重构误差与信噪比的变化关系。设信噪比变化范围为20~40dB,信号稀疏度K=100,进行200次仿真实验。由图4和图5可知,由于在NSL0算法和ASL0算法中所采用的近似双曲正切函数对l0范数的近似程度优于高斯函数,而且利用了修正牛顿法来求解平滑函数的极值问题,避免了最速下降法在迭代过程中产生的“锯齿效应”,因此NSL0算法和ASL0算法的重构信噪比要高于SL0算法,而重构误差要低于SL0算法。本发明方法采用了一种修正的近似双曲正切函数,其近似l0范数的程度要优于NSL0算法和ASL0算法中的平滑函数,由图4和图5可知,本发明算法的重构性能最好。Figure 4 and Figure 5 respectively show the reconstruction SNR and the relationship between reconstruction error and SNR of the four algorithms. Assuming that the signal-to-noise ratio ranges from 20 to 40dB, and the signal sparsity K is 100, 200 simulation experiments are carried out. From Figure 4 and Figure 5, it can be seen that the approximate hyperbolic tangent function used in the NSL0 algorithm and the ASL0 algorithm has a better approximation to the l 0 norm than the Gaussian function, and the modified Newton method is used to solve the extremum of the smooth function The problem is to avoid the "sawtooth effect" produced by the steepest descent method in the iterative process, so the reconstruction signal-to-noise ratio of the NSL0 algorithm and the ASL0 algorithm is higher than that of the SL0 algorithm, and the reconstruction error is lower than that of the SL0 algorithm. The inventive method has adopted a kind of revised approximate hyperbolic tangent function, and the degree of its approximation l0 norm is better than the smooth function in NSL0 algorithm and ASL0 algorithm, as can be seen from Fig. 4 and Fig. 5, the reconstruction of the present invention's algorithm Best performance.

仿真实验三:各算法的重构性能与稀疏度之间的变化关系Simulation Experiment 3: The relationship between the reconstruction performance of each algorithm and the degree of sparsity

图6和图7分别为各算法的重构信噪比和重构误差与稀疏度的变化关系。假设稀疏度K的变化范围为20~100,信噪比为30dB。由图6和图7可知,本发明算法在不同信号稀疏度下其重构性能始终要优于SL0算法、NSL0算法和ASL0算法。Figure 6 and Figure 7 show the relationship between the reconstruction signal-to-noise ratio, reconstruction error and sparsity of each algorithm, respectively. Assume that the variation range of the sparsity K is 20-100, and the signal-to-noise ratio is 30dB. It can be seen from Fig. 6 and Fig. 7 that the reconstruction performance of the algorithm of the present invention is always better than that of SL0 algorithm, NSL0 algorithm and ASL0 algorithm under different signal sparsity.

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.

Claims (6)

1.一种基于修正近似双曲正切函数的平滑l0范数方法,其特征在于,包括以下步骤:1. a smooth 10 norm method based on the modified approximate hyperbolic tangent function, is characterized in that, comprises the following steps: (1)设计用于逼近l0范数的修正近似双曲正切函数;(1) a modified approximate hyperbolic tangent function designed to approach the l0 norm; (2)建立基于修正近似双曲正切函数的稀疏问题模型;(2) Establish a sparse problem model based on the modified approximate hyperbolic tangent function; (3)利用修正牛顿法求解当参数σ逐次下降时的修正函数所表示的稀疏问题,σ为函数的形状参数,重构出稀疏信号。(3) Using the modified Newton method to solve the sparse problem represented by the modified function when the parameter σ decreases successively, σ is the shape parameter of the function, and the sparse signal is reconstructed. 2.根据权利要求1所述的一种基于修正近似双曲正切函数的平滑l0范数方法,其特征在于:所述步骤(1)中的修正近似双曲正切函数的表达式为:2. a kind of smooth 10 norm method based on modified approximate hyperbolic tangent function according to claim 1, is characterized in that: the expression of the modified approximate hyperbolic tangent function in described step (1) is: <mrow> <msub> <mi>f</mi> <mi>&amp;sigma;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mo>|</mo> <mi>x</mi> <msup> <mo>|</mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mo>|</mo> <mi>x</mi> <msup> <mo>|</mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>/</mo> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>x</mi> <msup> <mo>|</mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </msup> <mo>/</mo> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msub><mi>f</mi><mi>&amp;sigma;</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mi>exp</mi><mrow><mo>(</mo><mo>-</mo><mo>|</mo><mi>x</mi><msup><mo>|</mo><mrow><mn>1</mn><mo>//</mo><mn>4</mn></mrow></msup><mo>-</mo><msup><mi>&amp;sigma;</mi><mn>2</mn></msup><mo>)</mo></mrow></mrow><mrow><mi>exp</mi><mrow><mo>(</mo><mo>-</mo><mo>|</mo><mi>x</mi><msup><mo>|</mo><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>/</mo><msup><mi>&amp;sigma;</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><mi>exp</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><msup><mo>|</mo><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>/</mo><msup><mi>&amp;sigma;</mi><mn>2</mn></msup><mo>)</mo></mrow></mrow></mi>mfrac></mrow> 其中,x为变量;σ为函数的形状参数。Among them, x is a variable; σ is the shape parameter of the function. 3.根据权利要求2所述的一种基于修正近似双曲正切函数的平滑l0范数方法,其特征在于:所述步骤(2)具体为:3. a kind of smooth 10 norm method based on revising approximate hyperbolic tangent function according to claim 2, is characterized in that: described step (2) is specially: 采用平滑函数fσ(x)来近似l0范数,令:Using the smooth function f σ (x) to approximate the l 0 norm, let: <mrow> <msub> <mi>F</mi> <mi>&amp;sigma;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>N</mi> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>f</mi> <mi>&amp;sigma;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>F</mi><mi>&amp;sigma;</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>N</mi><mo>-</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>f</mi><mi>&amp;sigma;</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow> 其中,是稀疏向量;xi(i=1,2,…,N)为稀疏向量x中的第i个元素。in, is a sparse vector; x i (i=1,2,...,N) is the i-th element in the sparse vector x. 可以得到:can get: <mrow> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>0</mn> </msub> <mo>=</mo> <munder> <mi>lim</mi> <mrow> <mi>&amp;sigma;</mi> <mo>&amp;RightArrow;</mo> <mn>0</mn> </mrow> </munder> <msub> <mi>F</mi> <mi>&amp;sigma;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow><mo>|</mo><mo>|</mo><mi>x</mi><mo>|</mo><msub><mo>|</mo><mn>0</mn></msub><mo>=</mo><munder><mi>lim</mi><mrow><mi>&amp;sigma;</mi><mo>&amp;RightArrow;</mo><mn>0</mn></mrow></munder><msub><mi>F</mi><mi>&amp;sigma;</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow> 其中,||·||0表示l0范数,则基于修正近似双曲正切函数的稀疏问题模型为:Among them, ||·|| 0 represents the l 0 norm, then the sparse problem model based on the modified approximate hyperbolic tangent function is: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <mi>min</mi> <mi>x</mi> </munder> <msub> <mi>F</mi> <mi>&amp;sigma;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mi>D</mi> <mi>x</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><munder><mi>min</mi><mi>x</mi></munder><msub><mi>F</mi><mi>&amp;sigma;</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mtd><mtd><mrow><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo></mrow></mtd><mtd><mrow><mi>y</mi><mo>=</mo><mi>D</mi><mi>x</mi></mrow></mtd></mtr></mtable></mfenced> 其中,为测量矩阵;是感知矩阵。in, is the measurement matrix; is the perception matrix. 4.根据权利要求3所述的一种基于修正近似双曲正切函数的平滑l0范数方法,其特征在于:所述步骤(3)具体为:4. a kind of smooth 10 norm method based on revising approximate hyperbolic tangent function according to claim 3, is characterized in that: described step (3) is specially: (3.1)将σ取为一组逐次下降的序列[σ12>,...>σJ],其中σJ为一个接近于零的正数;(3.1) Take σ as a set of descending sequences [σ 12 >,...>σ J ], where σ J is a positive number close to zero; (3.2)利用修正牛顿法依次对σ=σi(1≤i≤J)时的s.t.y=Dx进行求解,使得向量x能够逐渐逼近全局最优解。(3.2) Use the modified Newton method to sequentially analyze the time when σ=σ i (1≤i≤J) sty=Dx to solve, so that the vector x can gradually approach the global optimal solution. 5.根据权利要求4所述的一种基于修正近似双曲正切函数的平滑l0范数方法,其特征在于:所述步骤(3.1)具体为:5. a kind of smooth 10 norm method based on revising approximate hyperbolic tangent function according to claim 4, is characterized in that: described step (3.1) is specially: 初始化:initialization: (a)设初始值 (a) Set the initial value (b)选取一组合适的序列[σ12,...,σJ],且σj+1=ρσj,其中,ρ(0<ρ<1)为衰减因子, (b) Select a suitable sequence [σ 12 ,...,σ J ], and σ j+1 =ρσ j , where ρ(0<ρ<1) is the attenuation factor, 6.根据权利要求4或5所述的一种基于修正近似双曲正切函数的平滑l0范数方法,其特征在于:所述步骤(3.2)具体为:6. according to claim 4 or 5 described a kind of smooth 10 norm method based on modified approximate hyperbolic tangent function, it is characterized in that: described step (3.2) is specially: 算法迭代:Algorithm iteration: forj=1,2,...,Jforj=1,2,...,J ①令σ=σj ①Let σ=σ j , ②在修正牛顿方向上逐次搜寻函数Fσ(x)的全局最小值,并将该最小值投影到可行集上;②Search for the global minimum value of the function F σ (x) successively in the modified Newton direction, and project the minimum value onto the feasible set; for l=1,2,...,Lfor l=1,2,...,L (a)修正牛顿方向为 (a) The modified Newton direction is (b) (b) (c)将投影到可行集上得 (c) will projected onto the feasible set ③令 ③ order 输出稀疏向量解 output sparse vector solution
CN201711361044.7A 2017-12-18 2017-12-18 A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method Pending CN108121955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711361044.7A CN108121955A (en) 2017-12-18 2017-12-18 A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711361044.7A CN108121955A (en) 2017-12-18 2017-12-18 A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method

Publications (1)

Publication Number Publication Date
CN108121955A true CN108121955A (en) 2018-06-05

Family

ID=62229166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711361044.7A Pending CN108121955A (en) 2017-12-18 2017-12-18 A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method

Country Status (1)

Country Link
CN (1) CN108121955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462427A (en) * 2018-10-12 2019-03-12 南京信息工程大学 A kind of MIMO underwater acoustic channel estimation method optimizing smooth L0 norm based on improved ADAPTIVE MIXED
CN111862257A (en) * 2020-07-17 2020-10-30 中国科学院光电技术研究所 A Compressed Sensing Image Reconstruction Method Based on Approximation of Arctangent Function to Approximate L0 Norm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462427A (en) * 2018-10-12 2019-03-12 南京信息工程大学 A kind of MIMO underwater acoustic channel estimation method optimizing smooth L0 norm based on improved ADAPTIVE MIXED
CN109462427B (en) * 2018-10-12 2021-05-04 南京信息工程大学 MIMO underwater acoustic channel estimation method
CN111862257A (en) * 2020-07-17 2020-10-30 中国科学院光电技术研究所 A Compressed Sensing Image Reconstruction Method Based on Approximation of Arctangent Function to Approximate L0 Norm

Similar Documents

Publication Publication Date Title
Ongie et al. Off-the-grid recovery of piecewise constant images from few Fourier samples
CN102891684B (en) The construction method of the noisy reconfiguration system of a kind of compressed sensing
CN103218524B (en) The deficient of density based determines blind source separation method
CN111870245B (en) Cross-contrast-guided ultra-fast nuclear magnetic resonance imaging deep learning method
CN107527371B (en) A Design and Construction Method of Image Reconstruction Algorithm Approaching Smooth L0 Norm in Compressed Sensing
CN107330946A (en) A kind of image processing method and device based on compressed sensing
Yang et al. Orthonormal Expansion $\ell_ {1} $-Minimization Algorithms for Compressed Sensing
CN105787895B (en) Statistics compressed sensing image reconstructing method based on Hierarchical GMM
CN102024266A (en) Image structure model-based compressed sensing image reconstruction method
CN107170019A (en) A kind of quick low storage image compression sensing method
CN108121955A (en) A kind of smooth l based on adjusted mean approximation hyperbolic tangent function0Norm Method
CN104734724B (en) Based on the Compression of hyperspectral images cognitive method for weighting Laplce&#39;s sparse prior again
Bolte et al. Alternating proximal algorithm for blind image recovery
Jiang et al. Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization
CN110363713B (en) Hyperspectral image denoising method based on recursive sample scaling and bilinear factorization
CN112396567A (en) Scattered point cloud denoising method based on two-step method of normal correction and position filtering
CN105447894B (en) Compressed sensing reconstruction algorithm based on Quasi Newton formula
CN105162472B (en) A kind of block-sparse signal reconfiguring method based on greedy iteration
CN105490682B (en) Compressed Sensing Signal Recovery Algorithm Based on SVD and OMP
Ling et al. Image denoising method using the gradient matching pursuit
CN102890286B (en) Radioactivity energy spectrum smoothing method
CN110703038A (en) A Harmonic Impedance Estimation Method Applicable for Wind Turbine Access to Distribution Network
Fermi et al. Local zeta regularization and the scalar Casimir effect III. The case with a background harmonic potential
CN105608719A (en) Rapid CT image reconstruction method based on two-stage projection adjustment
Manimala et al. Sparse recovery algorithms based on dictionary learning for MR image reconstruction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180605

RJ01 Rejection of invention patent application after publication