CN108110761A - Fuzzy High-Order Sliding Mode Control Method of Active Power Filter based on Linearization Feedback - Google Patents

Fuzzy High-Order Sliding Mode Control Method of Active Power Filter based on Linearization Feedback Download PDF

Info

Publication number
CN108110761A
CN108110761A CN201810067129.2A CN201810067129A CN108110761A CN 108110761 A CN108110761 A CN 108110761A CN 201810067129 A CN201810067129 A CN 201810067129A CN 108110761 A CN108110761 A CN 108110761A
Authority
CN
China
Prior art keywords
msub
mrow
mover
centerdot
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810067129.2A
Other languages
Chinese (zh)
Other versions
CN108110761B (en
Inventor
李思扬
费峻涛
梁霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201810067129.2A priority Critical patent/CN108110761B/en
Publication of CN108110761A publication Critical patent/CN108110761A/en
Application granted granted Critical
Publication of CN108110761B publication Critical patent/CN108110761B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于线性化反馈的模糊高阶滑模有源电力滤波器控制方法,首先,建立三相并联型有源电力滤波器的数学模型,在设计控制器时,首先设计动态滑模面,再利用线性化反馈控制设计滑模控制器,并在此控制器的基础上利用模糊控制逼近不确定项,设计自适应律使系统保持稳定状态。通过仿真结果验证了此方法的有效性。该方法大大增强了系统的补偿性能和鲁棒性能,达到快速有效消除谐波的目的。

The invention discloses a fuzzy high-order sliding mode active power filter control method based on linearized feedback. First, a mathematical model of a three-phase parallel active power filter is established. When designing a controller, firstly, a dynamic sliding mode is designed. Then the sliding mode controller is designed by using linear feedback control, and on the basis of this controller, fuzzy control is used to approach uncertain items, and an adaptive law is designed to keep the system in a stable state. The effectiveness of this method is verified by simulation results. This method greatly enhances the compensation performance and robust performance of the system, and achieves the purpose of quickly and effectively eliminating harmonics.

Description

基于线性化反馈的模糊高阶滑模有源电力滤波器控制方法Control Method of Fuzzy High-Order Sliding Mode Active Power Filter Based on Linearized Feedback

技术领域technical field

本发明涉及属于有源电力滤波技术,特别涉及一种基于线性化反馈自适应模糊高阶滑模的有源电力滤波器控制方法。The invention relates to an active power filter technology, in particular to an active power filter control method based on a linearized feedback self-adaptive fuzzy high-order sliding mode.

背景技术Background technique

采用电力滤波器装置吸收谐波源所产生的谐波电流,是一种抑制谐波污染的有效措施。有源电力滤波器具有快速响应性及高度可控性,不仅可以补偿各次谐波,还可以补偿无功功率、抑制闪变等。由于电力系统的非线性和不确定性,自适应和智能控制具有建模简单、控制精度高、非线性适应性强等优点,可以应用在有源滤波器中用于电能质量控制和谐波治理,具有重要的研究意义和市场价值。Using power filter device to absorb the harmonic current generated by the harmonic source is an effective measure to suppress harmonic pollution. The active power filter has fast response and high controllability. It can not only compensate harmonics, but also compensate reactive power and suppress flicker. Due to the nonlinearity and uncertainty of the power system, adaptive and intelligent control has the advantages of simple modeling, high control precision, and strong nonlinear adaptability, and can be applied in active filters for power quality control and harmonic control , has important research significance and market value.

本文深入研究了三相并联有源电力滤波器的原理,在此基础上建立数学模型,利用三相并联型有源电力滤波器线性状态方程,加入了线性化反馈高阶滑模控制方法。研究有源电力滤波器模型参考自适应控制,提出了线性化反馈高阶滑模模糊自适应控制算法,应用于三相并联型有源电力滤波器的谐波补偿控制。通过MATLAB仿真,验证了增加线性化反馈高阶滑模模糊控制的自适应控制方法适合补偿电路谐波,提高电源质量。In this paper, the principle of the three-phase parallel active power filter is deeply studied, and a mathematical model is established on this basis. The linear state equation of the three-phase parallel active power filter is used, and the linearized feedback high-order sliding mode control method is added. The model reference adaptive control of active power filter is studied, and the linearized feedback high-order sliding mode fuzzy adaptive control algorithm is proposed, which is applied to the harmonic compensation control of three-phase parallel active power filter. Through MATLAB simulation, it is verified that the adaptive control method of adding linearized feedback high-order sliding mode fuzzy control is suitable for compensating circuit harmonics and improving power quality.

发明内容Contents of the invention

本发明为了抑制外界未知扰动和建模误差对有源电力滤波器系统性能的影响,提出了一种基于线性化反馈模糊高阶滑模的有源电力滤波器控制方法,进一步提高了系统鲁棒性。In order to suppress the influence of external unknown disturbances and modeling errors on the performance of the active power filter system, the present invention proposes an active power filter control method based on linearized feedback fuzzy high-order sliding mode, which further improves the robustness of the system sex.

本发明解决其技术问题是通过以下技术方案实现的:The present invention solves its technical problem and realizes through the following technical solutions:

基于线性化反馈的模糊高阶滑模有源电力滤波器控制方法,包括如下步骤:A fuzzy high-order sliding mode active power filter control method based on linearized feedback includes the following steps:

(1)建立有源电力滤波器数学模型;(1) Establish a mathematical model of an active power filter;

(2)设计控制器:首先设计动态滑模面,再利用线性化反馈控制设计滑模控制器,并在滑模控制器的基础上利用模糊控制逼近不确定项,设计自适应律使系统保持稳定状态。(2) Design the controller: first design the dynamic sliding mode surface, then design the sliding mode controller using linearized feedback control, and use fuzzy control to approach the uncertain items on the basis of the sliding mode controller, and design an adaptive law to keep the system stable state.

进一步的,所述步骤(1)中建立的有源电力滤波器数学模型为:Further, the active power filter mathematical model set up in the described step (1) is:

其中,x为指令电流,为x的导数,u为控制器输入,b为常数,Lc为电感,Rc为电阻,vdc为直流侧电容电压,vk为三相有源电力滤波器端电压,ik为三相补偿电流,dk为开关状态函数,dk定义如下:则dk依赖于第k相IGBT的通断状态,是系统的非线性项;ck、cm为开关函数,m,k为大于0的常数。Among them, x is the command current, is the derivative of x, u is the controller input, b is a constant, L c is the inductance, R c is the resistance, v dc is the DC side capacitor voltage, v k is the three-phase active power filter terminal voltage, ik is the three-phase compensation current, d k is the switch state function, d k is defined as follows: Then d k depends on the on-off state of the k-th phase IGBT, which is a nonlinear term of the system; c k and c m are switching functions, and m and k are constants greater than 0.

进一步的,对步骤(1)得到的有源电力滤波器数学模型进行二次求导,有源电力滤波器数学模型可以定义为:Further, the second derivation is performed on the mathematical model of the active power filter obtained in step (1), and the mathematical model of the active power filter can be defined as:

为f(x)的导数,为u的导数,的导数;设其中f1(x)为未知的非线性函数,则所述有源电力滤波器数学模型可以定义为: is the derivative of f(x), is the derivative of u, for Derivative; let Where f 1 (x) is an unknown nonlinear function, then the mathematical model of the active power filter can be defined as:

进一步的,所述步骤(2)中设计高阶滑模控制律的具体步骤为:Further, the specific steps of designing a high-order sliding mode control law in the step (2) are:

定义用于输入的跟踪误差e:Define the tracking error e for the input:

e=x-xd e=xx d

其中,x为指令电流,xd为参考电流,Among them, x is the command current, x d is the reference current,

对跟踪误差进行二次求导:Take the second derivative of the tracking error:

其中,的导数,为xd的导数;in, for derivative of is the derivative of x d ;

定义滑模面:Define the sliding surface:

l=e+k2∫el=e+k 2 ∫e

其中k2为常数,∫e为对跟踪误差的积分;where k2 is a constant, and ∫e is the integral of the tracking error;

对滑模面求导:Derivative for a sliding surface:

其中为e的导数;in is the derivative of e;

定义高阶滑模面s:Define the higher-order sliding mode surface s:

其中,为大于0的常数,in, is a constant greater than 0,

对高阶滑模面求导:Derivative for higher-order sliding mode surfaces:

其中的导数,为s的导数;in for derivative of is the derivative of s;

根据线性化反馈技术,According to the linearization feedback technique,

因为所以令g1(x)=b,because So let g 1 (x)=b,

RX=ξ-ρsgn(s)R X =ξ-ρsgn(s)

其中ρ为大于0的常数,且ρ≥|D|,D为ρ的上界常数,sgn为符号函数,ξ和RX是为了简化过程设计的中间变量,Where ρ is a constant greater than 0, and ρ≥|D|, D is the upper bound constant of ρ, sgn is a sign function, ξ and R X are intermediate variables designed to simplify the process,

因为:because:

所以:so:

因此,系统控制律设计为:Therefore, the system control law is designed as:

进一步的,根据设计的高阶滑模控制律设计加入模糊的控制律为:Further, according to the designed high-order sliding mode control law, the fuzzy control law is designed as:

其中,的模糊逼近函数,为f(xk)的模糊逼近函数,为ρsgn(s)的模糊逼近函数,xk为x的标量形式,sk为高阶滑模面s的标量形式。in, for The fuzzy approximation function of is the fuzzy approximation function of f(x k ), is the fuzzy approximation function of ρsgn(s), x k is the scalar form of x, and s k is the scalar form of the high-order sliding mode surface s.

进一步的,所述步骤(2)中利用李雅谱诺夫函数进行自适应律设计的具体步骤为:Further, in the step (2), the specific steps of utilizing the Lyapunov function to design the adaptive law are:

设李亚普诺夫函数:Let the Lyapunov function:

因为because

其中,分别为V1和V2的导数,sT为s的转置,γ1和γ2为大于0的常数,为函数的模糊参数,为函数的模糊参数,的转置,的转置,的导数,的导数,δT(xk)和φT(hk)分别为的隶属度函数,的估计值、为函数的理想值,为函数h(sk)的理想值,ω是模糊系统的逼近误差,f(xk)为实际值;in, and are the derivatives of V 1 and V 2 respectively, s T is the transpose of s, γ 1 and γ 2 are constants greater than 0, for the function fuzzy parameter of for the function fuzzy parameter of for the transposition of for the transposition of for derivative of for The derivatives of δ T (x k ) and φ T (h k ) are respectively and The membership function of , for estimated value of for the function ideal value, is the ideal value of the function h(s k ), ω is the approximation error of the fuzzy system, and f(x k ) is the actual value;

因为:because:

所以so

其中,ωk为ω的标量形式,为ωk的导数,γ1,γ2为常数,为dk的导数,进而设计系统的自适应律为:Among them, ω k is the scalar form of ω, is the derivative of ω k , γ 1 and γ 2 are constants, is the derivative of d k , and then the adaptive law of the design system is:

其中,η为大于0的常数;Wherein, n is a constant greater than 0;

将(2),(3),(4)带入(1)得到:Put (2), (3), (4) into (1) to get:

时,成立,when hour, set up,

其中,||sk||为sk的范数,其中,|ωmax|为ω的最大值的绝对值。Wherein, ||s k || is the norm of s k , and |ω max | is the absolute value of the maximum value of ω.

本发明的有益效果为:The beneficial effects of the present invention are:

与现有技术相比,本发明深入研究了三相并联有源电力滤波器的原理,在此基础上建立数学模型,利用三相并联型有源电力滤波器线性状态方程,加入了线性化反馈高阶滑模控制方法。研究有源电力滤波器模型参考自适应控制,提出了线性化反馈高阶滑模模糊自适应控制算法,应用于三相并联型有源电力滤波器的谐波补偿控制。通过MATLAB仿真,验证了增加线性化反馈高阶滑模模糊滑模控制的自适应控制方法适合补偿电路谐波,提高电源质量。Compared with the prior art, the present invention deeply studies the principle of the three-phase parallel active power filter, establishes a mathematical model on this basis, utilizes the linear state equation of the three-phase parallel active power filter, and adds linearized feedback Higher order sliding mode control method. The model reference adaptive control of active power filter is studied, and the linearized feedback high-order sliding mode fuzzy adaptive control algorithm is proposed, which is applied to the harmonic compensation control of three-phase parallel active power filter. Through MATLAB simulation, it is verified that the adaptive control method of adding linearized feedback high-order sliding mode fuzzy sliding mode control is suitable for compensating circuit harmonics and improving power supply quality.

附图说明Description of drawings

图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;

图2是本发明线性化反馈高阶滑模模糊自适应控制器框图;Fig. 2 is a block diagram of linearized feedback high-order sliding mode fuzzy adaptive controller of the present invention;

图3是电源电流的波形图;Figure 3 is a waveform diagram of the power supply current;

图4是系统误差的数据图;Fig. 4 is the data chart of systematic error;

图5是直流侧电压的波形图。Fig. 5 is a waveform diagram of the DC side voltage.

具体实施方式Detailed ways

下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。The present invention will be further described in detail below through the specific examples, the following examples are only descriptive, not restrictive, and cannot limit the protection scope of the present invention with this.

如图1所示,基于线性化反馈的模糊高阶滑模有源电力滤波器控制方法,包括以下步骤:As shown in Figure 1, the fuzzy high-order sliding mode active power filter control method based on linearized feedback includes the following steps:

(一)建立有源电力滤波器模型(1) Establishing an active power filter model

有源电力滤波器的基本工作原理是:检测补偿对象的电压和电流,经指令电流运算电路计算得出补偿电流的指令信号,该信号经补偿电流发生电路放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波及无功等电流抵消,最终得到期望的电源电流。The basic working principle of the active power filter is: detect the voltage and current of the compensation object, calculate the command signal of the compensation current through the command current operation circuit, and amplify the signal through the compensation current generation circuit to obtain the compensation current, and the compensation current and The harmonics and reactive power to be compensated in the load current are offset, and finally the desired power supply current is obtained.

根据电路理论和基尔霍夫定理可得到如下公式:According to circuit theory and Kirchhoff's theorem, the following formula can be obtained:

v1,v2,v3分别为三相有源电力滤波器端电压,i1,i2,i3分别为三相补偿电流,表示电流i1对时间的导数,表示电流i2对时间的导数,表示电流i3对时间的导数,v1M,v2M,v3M,vMN分别表示图一中M点到a,b,c,N点电压。M点是电源的负极点,a,b,c,N只是电路中的各个节点。Lc为电感,Rc为电阻,ik为三相补偿电流。v 1 , v 2 , v 3 are the terminal voltages of the three-phase active power filter respectively, i 1 , i 2 , i 3 are the three-phase compensation currents respectively, Indicates the derivative of current i 1 with respect to time, Indicates the derivative of current i 2 with respect to time, Indicates the derivative of current i 3 with respect to time, and v 1M , v 2M , v 3M , v MN respectively represent the voltages from point M to point a, b, c, and N in Figure 1. Point M is the negative pole of the power supply, and a, b, c, and N are just the nodes in the circuit. L c is the inductance, R c is the resistance, and ik is the three-phase compensation current.

假设交流侧电源电压稳定,可以得到Assuming that the power supply voltage on the AC side is stable, we can get

其中,m为大于0的常数,vmM为上面提到的v1M,v2M,v3M,vMNWherein, m is a constant greater than 0, and v mM is the aforementioned v 1M , v 2M , v 3M , and v MN .

并定义ck为开关函数,指示IGBT的工作状态,定义如下:And define c k as the switching function, indicating the working state of the IGBT, defined as follows:

其中,k=1,2,3。Among them, k=1,2,3.

同时,vkM=ckvdc,其中,vkM为上面提到的v1M,v2M,v3M,vMNMeanwhile, v kM = c k v dc , wherein, v kM is v 1M , v 2M , v 3M , v MN mentioned above.

所以(1)可改写为So (1) can be rewritten as

vdc为直流侧电容电压。v dc is the DC side capacitor voltage.

我们定义dk为开关状态函数,定义如下:We define d k as the switch state function, defined as follows:

则dk依赖于第k相IGBT的通断状态,是系统的非线性项;cm为开关函数。Then d k depends on the on-off state of the k-phase IGBT, which is a nonlinear term of the system; c m is a switching function.

并有And a

那么(4)可改写为Then (4) can be rewritten as

那么可以将(7)改写成如下形式Then (7) can be rewritten as follows

其中x为指令电流,为x的导数,b为常数,u为控制器输入。in x is the command current, is the derivative of x, b is a constant, and u is the controller input.

(二)线性化反馈高阶滑模控制(2) Linearized feedback high-order sliding mode control

定义跟踪误差e:Define the tracking error e:

e=x-xd e=xx d

其中,xd为参考电流。Among them, x d is the reference current.

对跟踪误差e求一阶导数:Find the first derivative with respect to the tracking error e:

其中为xd的导数in is the derivative of x d

对跟踪误差e求二阶导数:Find the second derivative with respect to the tracking error e:

其中的导数,的导数in for derivative of for derivative of

对系统模型进行二次求导:Take the second derivative of the system model:

为f(x)的导数,为u的导数, is the derivative of f(x), is the derivative of u,

其中f1(x)为未知的非线性函数。Assume Where f 1 (x) is an unknown nonlinear function.

所以原模型可以定义为:So the original model can be defined as:

定义滑模面:Define the sliding surface:

l=e+k2∫el=e+k 2 ∫e

其中k2为常数,∫e为对误差的积分。where k2 is a constant and ∫e is the integral of the error.

对滑模面求导:Derivative for a sliding surface:

其中为e的导数,in is the derivative of e,

定义高阶滑模面s:Define the higher-order sliding mode surface s:

其中,为大于0的常数。in, is a constant greater than 0.

对高阶滑模面s求导:Derivative for higher-order sliding surface s:

其中的导数,为s的导数。in for derivative of is the derivative of s.

根据线性化反馈技术:According to the linearization feedback technique:

RX=ξ-ρsgn(s)R X =ξ-ρsgn(s)

其中ρ为大于0的常数,且ρ≥|D|,D为ρ的上界常数,sgn为符号函数,为x的二阶导数,ξ和RX是为了简化过程设计的中间变量。Where ρ is a constant greater than 0, and ρ≥|D|, D is the upper bound constant of ρ, sgn is a sign function, is the second derivative of x, ξ and R x are intermediate variables designed to simplify the process.

因为:because:

所以:so:

因此,系统控制律设计为:Therefore, the system control law is designed as:

(三)线性化反馈高阶滑模模糊控制(3) Linearized feedback high-order sliding mode fuzzy control

Ri:If x1 isand....xn isthen y is Bi(i=1,2,.......,N)R i : If x 1 is and....x n is then y is B i (i=1,2,....,N)

其中,为xj(j=1,2,.......,n)的隶属度函数。in, is the membership function of x j (j=1,2,...,n).

则模糊系统的输出为:Then the output of the fuzzy system is:

其中δ=[δ1(x) δ2(x) ... δN(x)]T为隶属度函数,为隶属度函数中的每个小分量的值,为模糊参数,为模糊参数中的分量。Where δ=[δ 1 (x) δ 2 (x) ... δ N (x)] T is the membership function, is the value of each small component in the membership function, is the fuzzy parameter, is the component in the fuzzy parameter.

针对f(x,y)的模糊逼近,采用分别逼近f(1)和f(2)的形式,相应的模糊系统设计为:For the fuzzy approximation of f(x,y), the form of approximating f(1) and f(2) is adopted respectively, and the corresponding fuzzy system is designed as:

定义模糊函数为如下形式:Define the fuzzy function as follows:

其中,ψ为模糊系统的输出,ψ1和ψ2为输出中的标量。为模糊参数中的分量的和,N为分量的总数,中的最小值,中最小值的和。in, ψ is the output of the fuzzy system, and ψ 1 and ψ 2 are scalars in the output. is the sum of the components in the fuzzy parameters, N is the total number of components, for The minimum value in , for The sum of the minimum values in .

定义最优逼近常量 Define optimal approximation constants

式中Ω是的集合。where Ω is collection.

则:but:

ω是模糊系统的逼近误差,δT为δ的转置,的转置。对于给定的任意小常量ω(ω>0),如下不等式成立:|f(x,y)-ξT(x)θ*|≤ω令并且使得 ω is the approximation error of the fuzzy system, δ T is the transpose of δ, for transpose. For any given small constant ω (ω>0), the following inequality holds true: |f(x,y) -ξT (x)θ * |≤ω Let and make

控制器设计为:The controller is designed to:

其中,的模糊逼近函数,为f(xk)的模糊逼近函数,为ρsgn(s)的模糊逼近函数,xk为x的标量形式,sk为s的标量形式。in, for The fuzzy approximation function of is the fuzzy approximation function of f(x k ), is the fuzzy approximation function of ρsgn(s), x k is the scalar form of x, and s k is the scalar form of s.

稳定性证明:Proof of Stability:

设李亚普诺夫函数:Let the Lyapunov function:

因为because

其中,分别为V1和V2的导数,sT为s的转置,γ1和γ2为大于0的常数,为函数的模糊参数,为函数的模糊参数,的转置,的转置,的导数,的导数,δT(xk)和φT(hk)分别为的隶属度函数,为h(sk)的估计值为函数的理想值,为函数h(sk)的理想值,ω是模糊系统的逼近误差,f(xk)为实际值。in, and are the derivatives of V 1 and V 2 respectively, s T is the transpose of s, γ 1 and γ 2 are constants greater than 0, for the function fuzzy parameter of for the function fuzzy parameter of for the transposition of for the transposition of for derivative of for The derivatives of δ T (x k ) and φ T (h k ) are respectively and The membership function of , is an estimated value of h(s k ) for the function ideal value, is the ideal value of the function h(s k ), ω is the approximation error of the fuzzy system, and f(x k ) is the actual value.

所以so

其中,ωk为ω的标量形式,为ωk的导数,γ1,γ2为常数,为dk的导数。Among them, ω k is the scalar form of ω, is the derivative of ω k , γ 1 and γ 2 are constants, is the derivative of d k .

设计系统的自适应律为:The adaptive law of the design system is:

将(19),(20),(21)带入(18)得到:Put (19), (20), (21) into (18) to get:

其中,||sk||为sk的范数,当时,成立。Among them, ||s k || is the norm of s k , when hour, established.

其中,|ωmax|为ω的最大值的绝对值,得证。Among them, |ω max | is the absolute value of the maximum value of ω, which is proved.

(四)仿真验证(4) Simulation verification

为了验证上述理论的可行性,在Matlab下进行了仿真实验。仿真结果验证了所设计控制器的效果。In order to verify the feasibility of the above theory, a simulation experiment was carried out under Matlab. Simulation results verify the effect of the designed controller.

仿真参数选取如下:The simulation parameters are selected as follows:

图3,图4分别表示了电源电流和系统误差。从图三可以看出,在0.04秒时有小幅度的波动,但是可以迅速在0.05秒左右恢复到正弦波,并且保持平滑的波形。说明系统的电源电流较稳定,并且在0.1秒和0.2秒电路电阻发生改变时也可以保持正弦波,说明系统鲁棒性较强。从图四可以看出,系统误差幅值较小,没有较大的波动,并且在0.05秒以后就一直保持稳定状态,即使在负载发生改变的时刻也可以较好跟踪并且快速恢复成直线。说明系统的跟踪效果较好且跟踪速度较快。Figure 3 and Figure 4 show the power supply current and system error respectively. It can be seen from Figure 3 that there is a small fluctuation at 0.04 seconds, but it can quickly return to a sine wave at about 0.05 seconds, and maintain a smooth waveform. It shows that the power supply current of the system is relatively stable, and it can also maintain a sine wave when the circuit resistance changes in 0.1 seconds and 0.2 seconds, which shows that the system has strong robustness. It can be seen from Figure 4 that the system error amplitude is small, there is no large fluctuation, and it has been in a stable state after 0.05 seconds. Even when the load changes, it can track well and quickly return to a straight line. It shows that the tracking effect of the system is better and the tracking speed is faster.

图5表示为线性化反馈高阶滑模模糊控制的直流侧电压图。由图可知,电压可以在0.05秒之前就直线上升并稳定在1000伏特,在0.1和0.2秒加入负载之后,也可以很快恢复并且一直保持在1000左右,效果较好。Figure 5 shows the DC side voltage diagram for linearized feedback high-order sliding mode fuzzy control. It can be seen from the figure that the voltage can rise in a straight line before 0.05 seconds and stabilize at 1000 volts. After the load is added at 0.1 and 0.2 seconds, it can also recover quickly and remain at around 1000 volts. The effect is good.

具体实例的结果显示,本发明设计的基于线性化反馈高阶滑模模糊控制自适应控制的有源电力滤波器控制方法,可以有效克服非线性因素,外界扰动等影响,对改善有源滤波器系统的稳定性和动态性能,提高输配电、电网安全保障和电能质量是可行的。The results of specific examples show that the active power filter control method based on linearized feedback high-order sliding mode fuzzy control adaptive control designed by the present invention can effectively overcome nonlinear factors, external disturbances and other influences, and improve the active power filter. It is feasible to improve the stability and dynamic performance of the system, improve power transmission and distribution, power grid security and power quality.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (6)

1. The fuzzy high-order sliding mode active power filter control method based on the linearization feedback is characterized by comprising the following steps: the method comprises the following steps:
(1) establishing an active power filter mathematical model;
(2) designing a controller: firstly, designing a dynamic sliding mode surface, designing a sliding mode controller by utilizing linear feedback control, approaching an uncertain item by utilizing fuzzy control on the basis of the sliding mode controller, and designing a self-adaptive law to keep a system in a stable state.
2. The method for controlling the fuzzy high-order sliding mode active power filter based on the linearized feedback as set forth in claim 1, wherein: the mathematical model of the active power filter established in the step (1) is as follows:
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> </mrow>
wherein x is a command current,is the derivative of x and is,u is the controller input, b is a constant, LcIs an inductance, RcIs a resistance, vdcIs the DC side capacitor voltage, vkFor the terminal voltage, i, of three-phase active power filterskFor three-phase compensation current, dkAs a function of the switching state, dkThe definition is as follows:then dkThe on-off state of the kth phase IGBT is depended on and is a nonlinear term of the system; c. Ck、cmM, k are constants greater than 0 for the switching function.
3. The method for controlling the fuzzy higher-order sliding mode active power filter based on the linearized feedback as set forth in claim 2, wherein: performing secondary derivation on the active power filter mathematical model obtained in the step (1), wherein the active power filter mathematical model can be defined as:
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow>
is the derivative of f (x),is the derivative of u and is,is composed ofA derivative of (a); is provided withWherein f is1(x) For unknown non-linear functions, the active power filter mathematical model can be defined as:
<mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>.</mo> </mrow>
4. the method for controlling the fuzzy higher order sliding mode active power filter based on the linearized feedback as set forth in claim 3, wherein: the specific steps for designing the high-order sliding mode control law in the step (2) are as follows:
defining the tracking error e for the input:
e=x-xd
wherein x is a command current, xdAs a reference current, the current is,
and (3) carrying out secondary derivation on the tracking error:
<mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow>
wherein,is composed ofThe derivative of (a) of (b),is xdA derivative of (a);
defining a slip form surface:
l=e+k2∫e
wherein k is2Is a constant, and ^ e is the integral of the tracking error;
derivation of the sliding mode surface:
<mrow> <mover> <mi>l</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> </mrow>
whereinIs the derivative of e;
defining a high-order slip-form surface s:
<mrow> <mi>s</mi> <mo>=</mo> <mover> <mi>l</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <mi>l</mi> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> <mo>+</mo> <mo>&amp;part;</mo> <mi>e</mi> <mo>+</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>&amp;Integral;</mo> <mi>e</mi> </mrow>
wherein,is a constant number greater than 0 and is,
derivation of a high-order sliding mode surface:
<mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> </mrow>
whereinIs composed ofThe derivative of (a) of (b),is the derivative of s;
according to the linearized feedback technique,
because of the fact thatTherefore, g1(x)=b,
<mrow> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>X</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>X</mi> </msub> <mo>-</mo> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </mfrac> </mrow>
<mrow> <mi>&amp;xi;</mi> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow>
RX=ξ-ρsgn(s)
wherein rho is a constant larger than 0, and rho is greater than or equal to | D |, D is an upper bound constant of rho, sgn is a sign function, ξ and RXIs an intermediate variable in order to simplify the process design,
because:
<mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> </mrow>
<mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow>
therefore:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;xi;</mi> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>&amp;part;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>X</mi> </msub> <mo>=</mo> <mi>&amp;xi;</mi> <mo>-</mo> <mi>&amp;rho;</mi> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>&amp;part;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> <mo>-</mo> <mi>&amp;rho;</mi> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
thus, the system control law is designed to:
<mrow> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <mo>(</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mi>u</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow> <mo>)</mo> <mo>-</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> <mo>-</mo> <mi>&amp;rho;</mi> <mi>sgn</mi> <mo>(</mo> <mi>s</mi> <mo>)</mo> <mo>-</mo> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
5. the method for controlling the fuzzy higher order sliding mode active power filter based on the linearized feedback as set forth in claim 4, wherein: designing a fuzzy control law according to a designed high-order sliding mode control law as follows:
<mrow> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <mo>(</mo> <mrow> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mi>u</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow> <mo>)</mo> <mo>-</mo> <mo>&amp;part;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> <mo>-</mo> <mover> <mi>h</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>-</mo> <mover> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
wherein,is composed ofThe function of the fuzzy approximation of (a),is f (x)k) The function of the fuzzy approximation of (a),fuzzy approximation function for rho sgn(s)Number, xkIn the scalar form of x, skIn the scalar form of a high order sliding mode surface s.
6. The method for controlling the fuzzy higher order sliding mode active power filter based on the linearized feedback as set forth in claim 5, wherein: the specific steps of utilizing the Lyapunov function to carry out adaptive law design in the step (2) are as follows:
let the Lyapunov function:
<mrow> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>s</mi> <mi>T</mi> </msup> <mo>&amp;CenterDot;</mo> <mi>s</mi> </mrow>
because of the fact that
Wherein,andare respectively asAndderivative of(s)TIs a transposition of s, γ1And gamma2Is a constant number greater than 0 and is,is a function ofThe blur parameter of (a) is determined,is a function ofThe blur parameter of (a) is determined,is composed ofThe transpose of (a) is performed,is composed ofThe transpose of (a) is performed,is composed ofThe derivative of (a) of (b),is composed ofDerivative of, deltaT(sk) And phiT(hk) Are respectively asAndthe function of the degree of membership of (c),is h(s)k) The estimated value of,As a function f (x)k) The ideal value of (a) is,as a function h(s)k) Is the approximation error of the fuzzy system, f (x)k) Is an actual value;
because:
<mfenced open='' close=''> <mtable> <mtr> <mtd> <mover> <mi>s</mi> <mo>.</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mover> <mi>e</mi> <mo>.</mo> </mover> <mo>+</mo> <mo>&amp;PartialD;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mo>&amp;PartialD;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>e</mi> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mover> <mi>f</mi> <mo>.</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mover> <mi>f</mi> <mo>.</mo> </mover> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;PartialD;</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;PartialD;</mo> <mo>)</mo> </mrow> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>-</mo> <mover> <mi>h</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>d</mi> <mo>.</mo> </mover> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced>
therefore, it is not only easy to use
Wherein, ω iskIn the form of a scalar of omega,is omegakDerivative of, gamma1,γ2Is a constant number of times, and is,is dkAnd then the adaptive law of the design system is as follows:
<mrow> <mover> <mi>h</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>&amp;sigma;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
wherein η is a constant greater than 0;
bringing (2), (3), (4) into (1) yields:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msup> <mi>s</mi> <mi>T</mi> </msup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <msub> <mi>&amp;omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mo>(</mo> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>|</mo> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mover> <mi>d</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <msub> <mi>&amp;omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;eta;</mi> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <mi>sgn</mi> <mo>(</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mover> <mi>d</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;le;</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> <mo>)</mo> </mrow> <msub> <mi>&amp;omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>&amp;eta;</mi> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;le;</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>&amp;part;</mo> </mrow> <mo>)</mo> <msub> <mi>&amp;omega;</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
when in useWhen the temperature of the water is higher than the set temperature,it is true that the first and second sensors,
wherein, | skI is skWhere | ωmaxAnd | is the absolute value of the maximum value of ω.
CN201810067129.2A 2018-01-24 2018-01-24 Fuzzy high-order sliding mode active power filter control method based on linearization feedback Expired - Fee Related CN108110761B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810067129.2A CN108110761B (en) 2018-01-24 2018-01-24 Fuzzy high-order sliding mode active power filter control method based on linearization feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810067129.2A CN108110761B (en) 2018-01-24 2018-01-24 Fuzzy high-order sliding mode active power filter control method based on linearization feedback

Publications (2)

Publication Number Publication Date
CN108110761A true CN108110761A (en) 2018-06-01
CN108110761B CN108110761B (en) 2021-06-01

Family

ID=62220643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810067129.2A Expired - Fee Related CN108110761B (en) 2018-01-24 2018-01-24 Fuzzy high-order sliding mode active power filter control method based on linearization feedback

Country Status (1)

Country Link
CN (1) CN108110761B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834560A (en) * 2017-11-16 2018-03-23 河海大学常州校区 Control Method of Active Power Filter based on integer rank High-Order Sliding Mode fuzzy control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441499A (en) * 2013-07-24 2013-12-11 河海大学常州校区 Linearization feedback neural sliding-mode control method for three-phase parallel-connection active power filter
CN104917436A (en) * 2015-07-08 2015-09-16 沈阳工业大学 Adaptive second-order terminal sliding-mode control system and method of permanent magnet linear synchronous motor
CN106019938A (en) * 2016-06-03 2016-10-12 长春工业大学 ACC system dispersion second-order slip form control system based on data driving and method thereof
CN106374488A (en) * 2016-09-13 2017-02-01 河海大学常州校区 AFNN control method of active power filter based on fractional order terminal sliding mode
CN107147120A (en) * 2017-06-29 2017-09-08 河海大学常州校区 Active power filter RBF double neural network adaptive sliding mode control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441499A (en) * 2013-07-24 2013-12-11 河海大学常州校区 Linearization feedback neural sliding-mode control method for three-phase parallel-connection active power filter
CN104917436A (en) * 2015-07-08 2015-09-16 沈阳工业大学 Adaptive second-order terminal sliding-mode control system and method of permanent magnet linear synchronous motor
CN106019938A (en) * 2016-06-03 2016-10-12 长春工业大学 ACC system dispersion second-order slip form control system based on data driving and method thereof
CN106374488A (en) * 2016-09-13 2017-02-01 河海大学常州校区 AFNN control method of active power filter based on fractional order terminal sliding mode
CN107147120A (en) * 2017-06-29 2017-09-08 河海大学常州校区 Active power filter RBF double neural network adaptive sliding mode control method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JUNTAO FEI: "ADAPTIVE FUZZY BACKSTEPPING CONTROL OF THREE-PHASE ACTIVE POWER FILTER", 《2014 11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL&AUTOMATION》 *
RUI LING: "Second-Order Sliding-Mode Controlled Three-Level Buck DC–DC Converters", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *
TOUFIC AL CHAER: "Linear Feedback Control of a Parallel Active Harmonic Conditioner in Power Systems", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
XIAO LIANG, SIYANG LI, AND JUNTAO FEI: "Adaptive Fuzzy Global Fast Terminal Sliding Mode Control for Mic", 《IEEE ACCESS》 *
ZHONG TANG: "Research of APF Based On Fuzzy-Sliding Mode Variable Structure Control Strategy", 《CICED 2010 PROCEEDINGS》 *
刘金琨: "滑模变结构控制理论及其算法研究与进展", 《控制理论与应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834560A (en) * 2017-11-16 2018-03-23 河海大学常州校区 Control Method of Active Power Filter based on integer rank High-Order Sliding Mode fuzzy control
CN107834560B (en) * 2017-11-16 2020-09-29 河海大学常州校区 Active Power Filter Control Method Based on Integer-Order Higher-Order Sliding Mode Fuzzy Control

Also Published As

Publication number Publication date
CN108110761B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN105610162B (en) A kind of Active Power Filter-APF adaptive fuzzy sliding mode RBF neural control method
CN104135003B (en) APF control method based on active disturbance rejection and repetitive control
CN102832621B (en) Adaptive RBF (radial basis function) neural network control technique for three-phase parallel active filters
CN103151781B (en) Self-adaptive fuzzy control method for active power filter based on feedback linearization
CN108923430B (en) Active power filter neural network terminal sliding mode control method and computing device
CN103595050B (en) Method for controlling active power filter through model reference self-adaption fuzzy control
CN106374488B (en) Active Power Filter-APF AFNN control method based on fractional order terminal sliding mode
CN104716668B (en) Improve feed forward control method of the LCL type combining inverter to grid adaptability
CN102856904A (en) Self-adaption fuzzy sliding control method for active filter based on fuzzy approximation
CN100466413C (en) Multivariable Control Method for Distribution Static Var Generator
CN107565832A (en) A kind of high ferro low-frequency oscillation suppression method based on sliding formwork control
CN104052059A (en) Active Power Filter Control Method Based on Fuzzy Neural Network PID
CN107809113A (en) Complementary sliding-mode surface inverting Adaptive radial basis function neural network Design of Observer method
CN103441499B (en) The Linearization Feedback neural network sliding mode control method of Three Phase Shunt Active Filter
CN104009477B (en) The robust Model reference adaptive current control method of active power filter system
CN109103884A (en) Active Power Filter-APF back stepping control method based on metacognition fuzzy neural network
CN108828961B (en) Sliding Mode Control Method of Active Power Filter Based on Metacognitive Fuzzy Neural Network
CN103293963A (en) Adaptive fuzzy backstepping tracking control method of active power filter
CN109560551A (en) A kind of Active Power Filter-APF fractional order total-sliding-mode control method based on recurrent neural networks
CN104259005A (en) High-frequency and high-voltage power supply controller for electrostatic dust collection and control method
CN106292283A (en) A kind of adaptive fuzzy integral sliding mode control method of photovoltaic combining inverter
CN107482677A (en) A Fuzzy Sliding Mode Control Method for Photovoltaic Grid-connected Inverters Based on Disturbance Observer
CN106374490B (en) Control Method of Active Power Filter based on dynamic surface fuzzy sliding mode tracking control
CN104022508A (en) Three-phase four-switch active electric power filter and control method thereof
CN103887798B (en) The inverting overall situation fast terminal sliding-mode control of Active Power Filter-APF

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210601