CN108108772A - 一种基于配电线路航拍图像的绝缘子污闪状态检测方法 - Google Patents
一种基于配电线路航拍图像的绝缘子污闪状态检测方法 Download PDFInfo
- Publication number
- CN108108772A CN108108772A CN201810012817.9A CN201810012817A CN108108772A CN 108108772 A CN108108772 A CN 108108772A CN 201810012817 A CN201810012817 A CN 201810012817A CN 108108772 A CN108108772 A CN 108108772A
- Authority
- CN
- China
- Prior art keywords
- image
- insulator
- insulation
- training
- training set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 68
- 238000011109 contamination Methods 0.000 title claims abstract description 29
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 238000009826 distribution Methods 0.000 title claims abstract description 17
- 238000012549 training Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000009413 insulation Methods 0.000 claims abstract description 27
- 230000011218 segmentation Effects 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 230000002708 enhancing effect Effects 0.000 claims description 6
- 230000000877 morphologic effect Effects 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 238000011387 Li's method Methods 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 241000316887 Saissetia oleae Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- HUTDUHSNJYTCAR-UHFFFAOYSA-N ancymidol Chemical compound C1=CC(OC)=CC=C1C(O)(C=1C=NC=NC=1)C1CC1 HUTDUHSNJYTCAR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/187—Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Processing (AREA)
- Insulators (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810012817.9A CN108108772B (zh) | 2018-01-06 | 2018-01-06 | 一种基于配电线路航拍图像的绝缘子污闪状态检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810012817.9A CN108108772B (zh) | 2018-01-06 | 2018-01-06 | 一种基于配电线路航拍图像的绝缘子污闪状态检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108108772A true CN108108772A (zh) | 2018-06-01 |
CN108108772B CN108108772B (zh) | 2021-08-10 |
Family
ID=62218806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810012817.9A Active CN108108772B (zh) | 2018-01-06 | 2018-01-06 | 一种基于配电线路航拍图像的绝缘子污闪状态检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108108772B (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109272043A (zh) * | 2018-09-21 | 2019-01-25 | 北京京东金融科技控股有限公司 | 用于光学字符识别的训练数据生成方法、系统和电子设备 |
CN109614888A (zh) * | 2018-11-23 | 2019-04-12 | 华南理工大学 | 基于架空输电线路缺陷辅助数据集的深度学习缺陷检测模型训练方法 |
CN109799442A (zh) * | 2019-03-29 | 2019-05-24 | 云南电网有限责任公司电力科学研究院 | 基于机载高光谱的绝缘子污闪预测方法及系统 |
CN110942457A (zh) * | 2019-11-30 | 2020-03-31 | 天津大学 | 基于数字图像处理技术的太阳能电池板缺陷检测方法 |
CN111079645A (zh) * | 2019-12-16 | 2020-04-28 | 国网重庆市电力公司永川供电分公司 | 一种基于AlexNet网络的绝缘子自爆识别方法 |
CN112381798A (zh) * | 2020-11-16 | 2021-02-19 | 广东电网有限责任公司肇庆供电局 | 一种输电线路缺陷识别方法和终端 |
CN112567474A (zh) * | 2018-08-07 | 2021-03-26 | 第一百欧有限公司 | 利用多重颜色模型和神经网络的疾病诊断系统和方法 |
CN112884720A (zh) * | 2021-02-01 | 2021-06-01 | 广东电网有限责任公司广州供电局 | 一种配电线路污闪绝缘子检测方法及系统 |
CN114897920A (zh) * | 2022-07-15 | 2022-08-12 | 天津市勘察设计院集团有限公司 | 一种基于索贝尔算法的道路空洞边缘分割方法 |
CN117132787A (zh) * | 2023-09-04 | 2023-11-28 | 北京闪电侠科技有限公司 | 基于图像识别的机车车顶绝缘子憎水性能评价方法及装置 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080037823A1 (en) * | 2006-06-30 | 2008-02-14 | New Jersey Institute Of Technology | Method and apparatus for image splicing/tampering detection using moments of wavelet characteristic functions and statistics of 2-d phase congruency arrays |
CN102063627A (zh) * | 2010-12-31 | 2011-05-18 | 宁波大学 | 基于多小波变换的自然图像和计算机生成图像的识别方法 |
WO2012145909A1 (zh) * | 2011-04-28 | 2012-11-01 | 中国科学院自动化研究所 | 基于图像色度的彩色数字图像篡改检测方法 |
CN103323460A (zh) * | 2013-06-03 | 2013-09-25 | 深圳供电局有限公司 | 一种基于可见光图像的绝缘子检测方法及装置 |
CN203275313U (zh) * | 2013-06-03 | 2013-11-06 | 深圳供电局有限公司 | 一种基于可见光图像的绝缘子检测装置 |
CN103411980A (zh) * | 2013-07-23 | 2013-11-27 | 同济大学 | 基于可见光图像的外绝缘污秽状态识别方法 |
CN105354589A (zh) * | 2015-10-08 | 2016-02-24 | 成都唐源电气有限责任公司 | 一种在接触网图像中智能识别绝缘子裂损的方法及系统 |
CN105445283A (zh) * | 2016-02-01 | 2016-03-30 | 成都通甲优博科技有限责任公司 | 一种绝缘子图像污秽状态检测方法 |
CN105513039A (zh) * | 2015-07-10 | 2016-04-20 | 中国电力科学研究院 | 一种带电绝缘子串覆冰桥接度智能图像分析方法 |
CN105678219A (zh) * | 2015-12-29 | 2016-06-15 | 北京邮电大学 | 带电绝缘子闪络图像自动提取方法及系统 |
CN106127756A (zh) * | 2016-06-21 | 2016-11-16 | 西安工程大学 | 一种基于多特征信息融合技术的绝缘子识别检测方法 |
CN106780438A (zh) * | 2016-11-11 | 2017-05-31 | 广东电网有限责任公司清远供电局 | 基于图像处理的绝缘子缺陷检测方法及系统 |
CN106877237A (zh) * | 2017-03-16 | 2017-06-20 | 天津大学 | 一种基于航拍图像的检测输电线路中绝缘子缺失的方法 |
CN107240095A (zh) * | 2017-05-25 | 2017-10-10 | 武汉大学 | 一种基于可见光图像的直流线路绝缘子表面污秽状态识别法 |
-
2018
- 2018-01-06 CN CN201810012817.9A patent/CN108108772B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080037823A1 (en) * | 2006-06-30 | 2008-02-14 | New Jersey Institute Of Technology | Method and apparatus for image splicing/tampering detection using moments of wavelet characteristic functions and statistics of 2-d phase congruency arrays |
CN102063627A (zh) * | 2010-12-31 | 2011-05-18 | 宁波大学 | 基于多小波变换的自然图像和计算机生成图像的识别方法 |
WO2012145909A1 (zh) * | 2011-04-28 | 2012-11-01 | 中国科学院自动化研究所 | 基于图像色度的彩色数字图像篡改检测方法 |
CN103323460A (zh) * | 2013-06-03 | 2013-09-25 | 深圳供电局有限公司 | 一种基于可见光图像的绝缘子检测方法及装置 |
CN203275313U (zh) * | 2013-06-03 | 2013-11-06 | 深圳供电局有限公司 | 一种基于可见光图像的绝缘子检测装置 |
CN103411980A (zh) * | 2013-07-23 | 2013-11-27 | 同济大学 | 基于可见光图像的外绝缘污秽状态识别方法 |
CN105513039A (zh) * | 2015-07-10 | 2016-04-20 | 中国电力科学研究院 | 一种带电绝缘子串覆冰桥接度智能图像分析方法 |
CN105354589A (zh) * | 2015-10-08 | 2016-02-24 | 成都唐源电气有限责任公司 | 一种在接触网图像中智能识别绝缘子裂损的方法及系统 |
CN105678219A (zh) * | 2015-12-29 | 2016-06-15 | 北京邮电大学 | 带电绝缘子闪络图像自动提取方法及系统 |
CN105445283A (zh) * | 2016-02-01 | 2016-03-30 | 成都通甲优博科技有限责任公司 | 一种绝缘子图像污秽状态检测方法 |
CN106127756A (zh) * | 2016-06-21 | 2016-11-16 | 西安工程大学 | 一种基于多特征信息融合技术的绝缘子识别检测方法 |
CN106780438A (zh) * | 2016-11-11 | 2017-05-31 | 广东电网有限责任公司清远供电局 | 基于图像处理的绝缘子缺陷检测方法及系统 |
CN106877237A (zh) * | 2017-03-16 | 2017-06-20 | 天津大学 | 一种基于航拍图像的检测输电线路中绝缘子缺失的方法 |
CN107240095A (zh) * | 2017-05-25 | 2017-10-10 | 武汉大学 | 一种基于可见光图像的直流线路绝缘子表面污秽状态识别法 |
Non-Patent Citations (6)
Title |
---|
DAN ZUO等: ""An insulator defect detection algorithm based on computer vision"", 《2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA)》 * |
于谦龙: "《基于企业财务预警模式的高校财务困境预警研究 以教育部直属高校为例》", 28 February 2014, 企业管理出版社 * |
宋健: ""基于颜色特征的茄子病害图像检索方法"", 《安徽农业科学》 * |
张晶: "《多媒体信息与通信》", 30 November 2017, 西安电子科技大学出版社 * |
阳武: ""基于航拍图像的绝缘子识别与状态检测方法研究"", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 * |
高宇: ""基于机器视觉的接触网绝缘子污秽检测技术研究"", 《万方数据企业知识服务平台》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112567474A (zh) * | 2018-08-07 | 2021-03-26 | 第一百欧有限公司 | 利用多重颜色模型和神经网络的疾病诊断系统和方法 |
CN109272043A (zh) * | 2018-09-21 | 2019-01-25 | 北京京东金融科技控股有限公司 | 用于光学字符识别的训练数据生成方法、系统和电子设备 |
CN109614888A (zh) * | 2018-11-23 | 2019-04-12 | 华南理工大学 | 基于架空输电线路缺陷辅助数据集的深度学习缺陷检测模型训练方法 |
CN109614888B (zh) * | 2018-11-23 | 2023-09-29 | 华南理工大学 | 基于架空输电线路缺陷辅助数据集的深度学习缺陷检测模型训练方法 |
CN109799442A (zh) * | 2019-03-29 | 2019-05-24 | 云南电网有限责任公司电力科学研究院 | 基于机载高光谱的绝缘子污闪预测方法及系统 |
CN109799442B (zh) * | 2019-03-29 | 2021-11-19 | 云南电网有限责任公司电力科学研究院 | 基于机载高光谱的绝缘子污闪预测方法及系统 |
CN110942457A (zh) * | 2019-11-30 | 2020-03-31 | 天津大学 | 基于数字图像处理技术的太阳能电池板缺陷检测方法 |
CN110942457B (zh) * | 2019-11-30 | 2023-12-08 | 天津大学 | 基于数字图像处理技术的太阳能电池板缺陷检测方法 |
CN111079645A (zh) * | 2019-12-16 | 2020-04-28 | 国网重庆市电力公司永川供电分公司 | 一种基于AlexNet网络的绝缘子自爆识别方法 |
CN112381798A (zh) * | 2020-11-16 | 2021-02-19 | 广东电网有限责任公司肇庆供电局 | 一种输电线路缺陷识别方法和终端 |
CN112884720A (zh) * | 2021-02-01 | 2021-06-01 | 广东电网有限责任公司广州供电局 | 一种配电线路污闪绝缘子检测方法及系统 |
CN114897920A (zh) * | 2022-07-15 | 2022-08-12 | 天津市勘察设计院集团有限公司 | 一种基于索贝尔算法的道路空洞边缘分割方法 |
CN114897920B (zh) * | 2022-07-15 | 2022-10-04 | 天津市勘察设计院集团有限公司 | 一种基于索贝尔算法的道路空洞边缘分割方法 |
CN117132787A (zh) * | 2023-09-04 | 2023-11-28 | 北京闪电侠科技有限公司 | 基于图像识别的机车车顶绝缘子憎水性能评价方法及装置 |
CN117132787B (zh) * | 2023-09-04 | 2024-05-31 | 北京闪电侠科技有限公司 | 基于图像识别的机车车顶绝缘子憎水性能评价方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108108772B (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108108772A (zh) | 一种基于配电线路航拍图像的绝缘子污闪状态检测方法 | |
CN112734692B (zh) | 一种变电设备缺陷识别方法及装置 | |
Davari et al. | Intelligent diagnosis of incipient fault in power distribution lines based on corona detection in UV-visible videos | |
Stefenon et al. | Classification of distribution power grid structures using inception v3 deep neural network | |
CN103247039B (zh) | 一种基于复合视觉的高压线缆带电检测方法 | |
CN107392886A (zh) | 一种电力设备图像处理方法 | |
Haidari et al. | Deep learning-based model for fault classification in solar modules using infrared images | |
CN105957088B (zh) | 基于计算机视觉的变压器复合绝缘子套管监测方法及系统 | |
CN105004972A (zh) | 基于日盲紫外成像图像特征的瓷绝缘子绝缘状态评估方法 | |
CN107679495A (zh) | 一种输电线路周边活动工程车辆的检测方法 | |
CN107831409A (zh) | 特高频局放检测图谱特征参量提取的方法及异常检测方法 | |
CN106951863B (zh) | 一种基于随机森林的变电站设备红外图像变化检测方法 | |
CN108345898A (zh) | 一种新型的线路绝缘子绝缘状态评估方法 | |
CN116310274A (zh) | 一种输变电设备的状态评估方法 | |
Lu et al. | Application research of convolution neural network in image classification of icing monitoring in power grid | |
Maraaba et al. | A neural network-based estimation of the level of contamination on high-voltage porcelain and glass insulators | |
Zhang et al. | Detection and condition assessment of icicle bridging for suspension glass insulator by image analysis | |
Patel et al. | Defect detection in PV arrays using image processing | |
Tao et al. | Electric insulator detection of UAV images based on depth learning | |
CN116485802B (zh) | 一种绝缘子闪络缺陷检测方法、装置、设备及存储介质 | |
Wei et al. | Insulator defect detection in transmission line based on an improved lightweight YOLOv5s algorithm | |
Jyh-Horng et al. | Automated image identification method for flood disaster monitoring in riverine environments: A case study in Taiwan | |
CN116519710A (zh) | 一种用于复合绝缘子表面污秽状态的检测方法及系统 | |
Zhou et al. | Water photovoltaic plant contaminant identification using visible light images | |
CN112444522B (zh) | 一种电力系统绝缘子串缺陷检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Yang Yang Inventor after: Li Menglong Inventor after: Hou Chunping Inventor after: Zhang Hengguang Inventor after: Guan Dai Inventor after: Lang Yue Inventor after: Zhang Guifeng Inventor after: Chen Peng Inventor before: Hou Chunping Inventor before: Zhang Hengguang Inventor before: Yang Yang Inventor before: Guan Dai Inventor before: Lang Yue |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |