CN108108573A - A kind of IGBT power module junction temperature dynamic prediction method - Google Patents

A kind of IGBT power module junction temperature dynamic prediction method Download PDF

Info

Publication number
CN108108573A
CN108108573A CN201810036617.7A CN201810036617A CN108108573A CN 108108573 A CN108108573 A CN 108108573A CN 201810036617 A CN201810036617 A CN 201810036617A CN 108108573 A CN108108573 A CN 108108573A
Authority
CN
China
Prior art keywords
mrow
msub
igbt
mtd
fwd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810036617.7A
Other languages
Chinese (zh)
Other versions
CN108108573B (en
Inventor
张承宁
辛欣
张硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201810036617.7A priority Critical patent/CN108108573B/en
Publication of CN108108573A publication Critical patent/CN108108573A/en
Application granted granted Critical
Publication of CN108108573B publication Critical patent/CN108108573B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供了一种IGBT功率模块结温动态预测方法,解决了目前为避免IGBT功率模块结温过高及波动过大引起失效而进行的过度降额使用和不合理热设计的问题。其根据电机的运行状态进行包括调制比、输出电流、输出电压、输出频率等电路参数的动态解析,将解析值输入到考虑电热耦合的结温计算模型中,实现工况下的动态结温预测。

The invention provides a method for dynamically predicting the junction temperature of an IGBT power module, which solves the current problems of excessive derating and unreasonable thermal design to avoid failure caused by excessive junction temperature and excessive fluctuation of the IGBT power module. It performs dynamic analysis of circuit parameters including modulation ratio, output current, output voltage, output frequency, etc. according to the operating state of the motor, and inputs the analytical values into the junction temperature calculation model considering electrothermal coupling to realize dynamic junction temperature prediction under working conditions .

Description

一种IGBT功率模块结温动态预测方法A Dynamic Prediction Method of IGBT Power Module Junction Temperature

技术领域technical field

本发明涉及IGBT模块的结温预测领域,尤其涉及一种三相逆变系统中IGBT功率模块在工况应用下动态的结温预测方法。The invention relates to the field of junction temperature prediction of IGBT modules, in particular to a dynamic junction temperature prediction method of an IGBT power module in a three-phase inverter system under working conditions.

背景技术Background technique

IGBT(绝缘栅极晶体管)功率模块的kHz级开关频率特性使其在工作时会产生很大的热损耗,造成芯片PN结处温度(结温)的上升及波动,严重时会导致模块的失效。现有的应对措施是对IGBT模块进行降额使用,或者对其所处逆变系统匹配较大质量体积的散热器来充分保证散热。然而在上述措施中,过分降额会降低功率模块的应用范围,而不合理的散热设计也会造成系统重量增加以及占用空间的浪费。因此,准确的结温预测对于确定IGBT功率模块的安全极限、提高应用范围和可靠性、进行合理的热设计具有重要意义。The kHz-level switching frequency characteristics of the IGBT (insulated gate transistor) power module will cause a large heat loss during operation, resulting in the rise and fluctuation of the temperature (junction temperature) at the PN junction of the chip, which will lead to module failure in severe cases . The existing countermeasures are to derate the IGBT module, or match the inverter system where it is located with a radiator with a large mass and volume to fully ensure heat dissipation. However, in the above measures, excessive derating will reduce the application range of the power module, and unreasonable heat dissipation design will also increase the weight of the system and waste the occupied space. Therefore, accurate junction temperature prediction is of great significance for determining the safety limit of IGBT power modules, improving application range and reliability, and making reasonable thermal design.

IGBT功率模块中电场与温度场存在相互耦合,同时相关电路参数在不同应用场合下的运行工况也实时变化,现有的IGBT结温预测模型往往忽略电热耦合的影响,或者只能用于特定工作点下的结温预测,在工况应用上仍有不足。因而对IGBT功率模块在工况应用下的动态结温预测很有必要。There is mutual coupling between the electric field and the temperature field in the IGBT power module. At the same time, the operating conditions of related circuit parameters in different applications also change in real time. The existing IGBT junction temperature prediction models often ignore the influence of electrothermal coupling, or can only be used for specific The junction temperature prediction at the working point is still insufficient in the application of working conditions. Therefore, it is necessary to predict the dynamic junction temperature of the IGBT power module under working conditions.

发明内容Contents of the invention

针对上述本领域中存在的技术问题,本发明提供了一种IGBT功率模块结温动态预测方法,具体包括以下步骤:Aiming at the above-mentioned technical problems in this field, the present invention provides a method for dynamically predicting the junction temperature of an IGBT power module, which specifically includes the following steps:

步骤1、根据电机的运行状态得到电机第一个工作点下的转矩和转速;Step 1. Obtain the torque and speed at the first working point of the motor according to the running state of the motor;

步骤2、建立电机工作点解析模型;将所述步骤1中得到的所述转矩和转速输入所建立的电机工作点解析模型,得到dq轴电流电压值,继而获得逆变器输出三相电流电压、开关信号。储存驱动端栅极电阻、开关频率及DC端直流母线电压信息;Step 2. Establish an analytical model of the motor operating point; input the torque and rotational speed obtained in the step 1 into the established analytical model of the motor operating point to obtain dq axis current and voltage values, and then obtain the inverter output three-phase current Voltage, switching signal. Store the grid resistance of the driving end, the switching frequency and the DC bus voltage information of the DC end;

步骤3、建立IGBT功率模块的损耗计算模型;设定所述功率模块中的IGBT以及反并联二极管FWD的初始温度,并将所述步骤2中所述的各参数输入所建立的所述损耗计算模型,得到所述IGBT以及反并联二极管FWD的损耗值;Step 3. Establish a loss calculation model of the IGBT power module; set the initial temperature of the IGBT in the power module and the anti-parallel diode FWD, and input the parameters described in step 2 into the established loss calculation Model, obtain the loss value of described IGBT and anti-parallel diode FWD;

步骤4、建立IGBT功率模块的热阻网络模型;将所述步骤3中得到的所述损耗值输入所述热阻网络模型,得到当前电机工作点所对应的结温;Step 4, establishing a thermal resistance network model of the IGBT power module; inputting the loss value obtained in the step 3 into the thermal resistance network model to obtain the junction temperature corresponding to the current motor operating point;

步骤5、将所述步骤4中得到的结温反馈输入所述IGBT功率模块的损耗计算模型,实现工况应用下的动态结温预测。Step 5. Feedback the junction temperature obtained in step 4 into the loss calculation model of the IGBT power module to realize dynamic junction temperature prediction under working conditions.

进一步地,所述步骤2中所述的建立电机工作点解析模型,具体包括:Further, the establishment of the motor operating point analytical model described in step 2 specifically includes:

对于表贴式电机而言,d、q轴的电感相同且与相电感相同,所以其电磁转矩Tem表达如下For the surface-mounted motor, the inductance of the d and q axes is the same as that of the phase inductance, so its electromagnetic torque T em is expressed as follows

其中,p为极对数,ψf为永磁体磁链,iq为q轴电流;Among them, p is the number of pole pairs, ψ f is the flux linkage of the permanent magnet, and i q is the q-axis current;

或者,采用由电机常数kt和iq表示电磁转矩的方式:Or, in terms of expressing the electromagnetic torque by the motor constants k t and i q :

判断电机处于非弱磁区还是弱磁区:在非弱磁区采用id=0,此时的输出相电压的幅值表示为:Judging whether the motor is in the non-weakening field area or the field-weakening area: use id=0 in the non-field-weakening area, and the amplitude of the output phase voltage at this time is expressed as:

在弱磁区时,输出相电压的幅值表示如下:In the field weakening area, the amplitude of the output phase voltage is expressed as follows:

在得到id、iq后,通过恒幅值变换得到对应转矩转速下A、B、C三相的输出,其中,dq轴向αβ旋转坐标系的变化应用Park变换,具有如下转换关系:After obtaining id and iq, the output of the three phases A, B, and C at the corresponding torque speed is obtained through constant amplitude transformation. Among them, the change of dq axial αβ rotating coordinate system applies Park transformation, which has the following conversion relationship:

其中,θ为相角;Among them, θ is the phase angle;

αβ旋转坐标系向三相A、B、C的变换为Clark变换,转换关系如下:The transformation from the αβ rotating coordinate system to the three-phase A, B, and C is Clark transformation, and the transformation relationship is as follows:

其中,iA、iB、iC分别为各相电流。Among them, i A , i B , and i C are the currents of each phase respectively.

该模型可实现模块在不同负载工况下输出电压、电流、频率、开关信号等的电路参数的状态解析。This model can realize the state analysis of circuit parameters such as output voltage, current, frequency, switching signal, etc. of the module under different load conditions.

进一步地,所述步骤3中所述的建立IGBT功率模块的损耗计算模型,具体包括:Further, the establishment of the loss calculation model of the IGBT power module described in step 3 specifically includes:

IGBT功率模块的损耗PModule包括:IGBT工作时产生的通态损耗PIGBT_con和开关暂态时候的开通损耗PIGBT_on、关断损耗PIGBT_off;FWD工作时的通态损耗PFWD_con以及反向恢复损耗PFWD_reThe loss P Module of the IGBT power module includes: the on-state loss P IGBT_con generated during the IGBT operation, the turn-on loss P IGBT_on and the turn-off loss P IGBT_off during the switching transient state; the on-state loss P FWD_con and the reverse recovery loss during the FWD operation P FWD_re :

PModule=PIGBT_con+PIGBT_on+PIGBT_off+PFWD_con+PFWD_re P Module =P IGBT_con +P IGBT_on +P IGBT_off +P FWD_con +P FWD_re

IGBT和FWD导通时的通态压降VCE和VD由各自的门槛电压VCEO、VDO以及通态电阻Rch、Rd产生的压降两部分组成,且与温度实际温度T相关,其关系表示如下,T0为参考温度,IC和ID分别为通过IGBT和FWD的电流,其中,bT、m和bD均为可以通过曲线拟合出的温度相关项。The on-state voltage drops V CE and V D when the IGBT and FWD are turned on are composed of two parts: the respective threshold voltages V CEO , V DO and the voltage drops generated by the on-state resistances R ch and R d , and are related to the actual temperature T , the relationship is expressed as follows, T 0 is the reference temperature, I C and I D are the currents passing through the IGBT and FWD respectively, among which, b T , m and b D are temperature-related items that can be obtained by curve fitting.

VD(T)=VDO(T0)+bD·(T-T0)+Rd(T)·ID 2 V D (T)=V DO (T 0 )+b D ·(TT 0 )+R d (T)·I D 2

计算得到通态损耗,其中DT和DD为IGBT和FWD在单位开关周期内的占空比:Calculate the on-state loss, where D T and D D are the duty cycle of IGBT and FWD in the unit switching period:

PIGBT_con=(VCEO(T)·IC+Rch(T)IC 2)·DT P IGBT_con =(V CEO (T)·I C +R ch (T)I C 2 )·D T

PFWD_con=(VDO(T)ID+Rd(T)ID 2)·DD P FWD_con =(V DO (T)I D +R d (T)I D 2 )·D D

在开关频率为fsw时,IGBT的开通功率损耗PIGBT_on、关断功率损耗PIGBT_off及FWD的反向恢复功率损耗PFWD_re可以表示如下:When the switching frequency is f sw , the turn-on power loss P IGBT_on of the IGBT, the turn-off power loss P IGBT_off and the reverse recovery power loss P FWD_re of the FWD can be expressed as follows:

PIGBT_on=fsw·EIGBT_on P IGBT_on = f sw E IGBT_on

PIGBT_off=fsw·EIGBT_off P IGBT_off = f sw E IGBT_off

PFWD_re=fsw·EFWD_reP FWD_re = f sw · E FWD_re ;

其中,in,

其中,EIGBT_on为IGBT的开通能量损耗、EIGBT_off为IGBT的关断能量损耗、EFWD_re为FWD的反向恢复能量损耗,aon、bon、con、aoff、boff、coff、are、bre、cre为拟合常数,kon、koff、kre为温度相关项,Eon(Rg)、Eoff(Rg)、Eoff(Rg)和Eon(Rrated)、Eoff(Rrated)、Eoff(Rrated)分别为实际栅极电阻和参考栅极电阻下对应的IGBT的开通与关断能量能耗、FWD的反向恢复能量损耗,VDC_rated为参考直流母线值。Among them, E IGBT_on is the turn-on energy loss of IGBT, E IGBT_off is the turn-off energy loss of IGBT, E FWD_re is the reverse recovery energy loss of FWD, a on , b on , c on , a off , b off , c off , a re , b re , cre are fitting constants, k on , k off , k re are temperature-related items, E on (R g ), E off (R g ), E off (R g ) and E on ( R rated ), E off (R rated ), E off (R rated ) are the turn-on and turn-off energy consumption of the corresponding IGBT under the actual gate resistance and the reference gate resistance, and the reverse recovery energy loss of FWD, V DC_rated is the reference DC bus value.

进一步地,所述步骤4中所述的建立IGBT功率模块的热阻网络模型,具体包括:所述模型基于以下几点假设:Further, the establishment of the thermal resistance network model of the IGBT power module described in step 4 specifically includes: the model is based on the following assumptions:

(1)忽略热辐射和热对流的影响,模块内的传热形式为热传导:(1) Neglecting the influence of heat radiation and heat convection, the form of heat transfer in the module is heat conduction:

(2)由于绝热硅胶的填充,热量传递路径为自芯片至基板进行:(2) Due to the filling of insulating silica gel, the heat transfer path is from the chip to the substrate:

(3)芯片与芯片间的热耦合影响忽略不计:(3) The influence of thermal coupling between chips is negligible:

(4)忽略单一芯片的局部温度差异,采用集中参数法;(4) Neglecting the local temperature difference of a single chip, using the lumped parameter method;

基于上述假设建立四阶Foster热阻网络模型。Based on the above assumptions, a fourth-order Foster thermal resistance network model is established.

进一步地,所述当前电机工作点所对应的结温通过以下方式计算:Further, the junction temperature corresponding to the current motor working point is calculated in the following manner:

设铜基板的底面温度恒定为TC,IGBT和FWD从各自芯片到底壳的热阻为Rjc_IGBT和Rjc_FWD,IGBT和反并联二极管FWD的结温Tj_IGBT、Tj_FWD可以分别表示如下:Assuming that the bottom surface temperature of the copper substrate is constant as T C , the thermal resistances of the IGBT and FWD from their respective chips to the bottom case are R jc_IGBT and R jc_FWD , and the junction temperatures T j_IGBT and T j_FWD of the IGBT and the antiparallel diode FWD can be expressed as follows:

Tj_IGBT=Tc+Rjc_IGBT·PIGBT T j_IGBT =T c +R jc_IGBT P IGBT

Tj_FWD=Tc+Rjc_FWD·PFWD T j_FWD =T c +R jc_FWD ·P FWD

其中,PIGBT包括PIGBT_con、PIGBT_on以及PIGBT_off,PFWD包括PFWD_con以及PFWD_rrWherein, P IGBT includes P IGBT_con , P IGBT_on and P IGBT_off , and P FWD includes P FWD_con and P FWD_rr .

本发明所提供的上述方法解决了目前为避免IGBT功率模块结温过高及波动过大引起失效而进行的过度降额使用和不合理热设计的问题。其根据电机的运行状态进行包括调制比、输出电流、输出电压、输出频率等电路参数的动态解析,将解析值输入到考虑电热耦合的结温计算模型中,实现工况下的动态结温预测。相对于现有技术具有诸多非显而易见的有益效果。The above-mentioned method provided by the present invention solves the current problems of excessive derating and unreasonable thermal design to avoid failure caused by excessively high junction temperature and excessive fluctuation of the IGBT power module. It performs dynamic analysis of circuit parameters including modulation ratio, output current, output voltage, output frequency, etc. according to the operating state of the motor, and inputs the analytical values into the junction temperature calculation model considering electrothermal coupling to realize dynamic junction temperature prediction under working conditions . Compared with the prior art, it has many non-obvious beneficial effects.

附图说明Description of drawings

图1是根据本发明所提供的方法流程示意图Fig. 1 is a schematic flow chart of the method provided according to the present invention

图2是IGBT功率模块的半桥结构示意图Figure 2 is a schematic diagram of the half-bridge structure of the IGBT power module

图3是IGBT的开关暂态过程示意图Figure 3 is a schematic diagram of the switching transient process of the IGBT

图4是IGBT功率模块的内部封装等效示意图Figure 4 is an equivalent schematic diagram of the internal package of the IGBT power module

图5是SPWM双极性调制原理(规则采样法)示意图Figure 5 is a schematic diagram of the principle of SPWM bipolar modulation (regular sampling method)

图6是Foster等效热阻网络模型Figure 6 is Foster's equivalent thermal resistance network model

图7是电机的弱磁区、非弱磁区的判断逻辑Figure 7 is the judgment logic of the motor's field-weakening area and non-field-weakening area

图8是SWPM调制下的开关信号示意图Figure 8 is a schematic diagram of the switching signal under SWPM modulation

具体实施方式Detailed ways

下面结合附图对本发明的技术方案做出进一步详尽阐释。The technical solutions of the present invention will be further explained in detail below in conjunction with the accompanying drawings.

如图1所示,本发明提供了一种IGBT功率模块结温动态预测方法,具体包括以下步骤:As shown in Figure 1, the present invention provides a method for dynamically predicting the junction temperature of an IGBT power module, which specifically includes the following steps:

步骤1、根据电机的运行状态得到电机第一个工作点下的转矩和转速;Step 1. Obtain the torque and speed at the first working point of the motor according to the running state of the motor;

步骤2、建立电机工作点解析模型;将所述步骤1中得到的所述转矩和转速输入所建立的电机工作点解析模型,得到dq轴电流电压值,继而获得逆变器输出三相电流电压、开关信号。储存驱动端栅极电阻、开关频率及DC端直流母线电压信息;Step 2. Establish an analytical model of the motor operating point; input the torque and rotational speed obtained in the step 1 into the established analytical model of the motor operating point to obtain dq axis current and voltage values, and then obtain the inverter output three-phase current Voltage, switching signal. Store the grid resistance of the driving end, the switching frequency and the DC bus voltage information of the DC end;

步骤3、建立IGBT功率模块的损耗计算模型;设定所述功率模块中的IGBT以及反并联二极管FWD的初始温度,并将所述步骤2中所述的各参数输入所建立的所述损耗计算模型,得到所述IGBT以及反并联二极管FWD的损耗值;Step 3. Establish a loss calculation model of the IGBT power module; set the initial temperature of the IGBT in the power module and the anti-parallel diode FWD, and input the parameters described in step 2 into the established loss calculation Model, obtain the loss value of described IGBT and anti-parallel diode FWD;

步骤4、建立IGBT功率模块的热阻网络模型;将所述步骤3中得到的所述损耗值输入所述热阻网络模型,得到当前电机工作点所对应的结温;Step 4, establishing a thermal resistance network model of the IGBT power module; inputting the loss value obtained in the step 3 into the thermal resistance network model to obtain the junction temperature corresponding to the current motor operating point;

步骤5、将所述步骤4中得到的结温反馈输入所述IGBT功率模块的损耗计算模型,实现工况应用下的动态结温预测。Step 5. Feedback the junction temperature obtained in step 4 into the loss calculation model of the IGBT power module to realize dynamic junction temperature prediction under working conditions.

在本申请的一个优选实施例中,所述步骤2中所述的建立电机工作点解析模型,具体包括:In a preferred embodiment of the present application, the establishment of the motor operating point analysis model described in step 2 specifically includes:

对于表贴式电机而言,d、q轴的电感相同且与相电感相同,所以其电磁转矩Tem表达如下For the surface-mounted motor, the inductance of the d and q axes is the same as that of the phase inductance, so its electromagnetic torque T em is expressed as follows

其中,p为极对数,ψf为永磁体磁链,iq为q轴电流;Among them, p is the number of pole pairs, ψ f is the flux linkage of the permanent magnet, and i q is the q-axis current;

或者,采用由电机常数kt和iq表示电磁转矩的方式:Or, in terms of expressing the electromagnetic torque by the motor constants k t and i q :

判断电机处于非弱磁区还是弱磁区,如图7所示:在非弱磁区一般采用id=0即可满足控制需求。但是当电压到达极限ulim,如果电机想要运行在更高的转速下,则需要降低励磁电流,也就是进行弱磁控制,即使id变小为负值,在SPWM调制下逆变器可以输出的最大相电压的幅值为0.5UDCIt is judged whether the motor is in the non-field-weakening area or the field-weakening area, as shown in Figure 7: In the non-field-weakening area, id=0 is generally used to meet the control requirements. But when the voltage reaches the limit u lim , if the motor wants to run at a higher speed, it is necessary to reduce the excitation current, that is, to perform field-weakening control. Even if id becomes smaller and negative, the inverter can output under SPWM modulation The amplitude of the maximum phase voltage is 0.5U DC .

因此,若电机在非弱磁区,则id=0,此时的输出相电压的幅值可以表示为:Therefore, if the motor is in the non-field weakening area, then id=0, the amplitude of the output phase voltage at this time can be expressed as:

而如果已经进入弱磁区,则输出相电压的幅值则表示如下:And if it has entered the field weakening area, the amplitude of the output phase voltage is expressed as follows:

因而在进行是否进行弱磁的时候,需要依据一定的逻辑进行判别。在任意给定转速转矩下,可先对id进行已经进入弱磁区时的计算。随后结合上述弱磁判别,若为非弱磁,则意味着id=0即可,将所计算值重置为0,若在弱磁区则按照上试计算结果保持不变。Therefore, when performing field weakening, it needs to be judged based on certain logic. At any given speed and torque, the id can be calculated when it has entered the field weakening zone. Then combined with the above-mentioned field-weakening discrimination, if it is not field-weakening, it means id=0, and the calculated value is reset to 0. If it is in the field-weakening area, it remains unchanged according to the calculation results of the above test.

在得到id、iq后,就可以通过恒幅值变换得到对应转矩转速下的三相A、B、C的输出。其中dq轴向αβ旋转坐标系的变化为Park变换,其转换公式如下所示:After obtaining id and iq, the output of three-phase A, B, and C at the corresponding torque speed can be obtained through constant amplitude conversion. Among them, the change of the dq axial αβ rotating coordinate system is Park transformation, and its conversion formula is as follows:

αβ向三相A、B、C的变换为Clark变换,转换公式如下。The conversion of αβ to three-phase A, B, C is Clark transformation, and the conversion formula is as follows.

以A相为例,设其相电压UA,三角载波Utriangle,信号输出1代表上桥臂开通,下桥臂关断;0代表下桥臂开通,上桥臂关断。以A相为例,其开关信号的输出规律如下:UA>Utriangle时,开关信号输出1,上桥臂导通,并结合相电压iA的正负进行IGBT还是同桥臂FWD工作的判别;当UA<Utriangle时,开关信号输出0,下桥臂导通,对应的IGBT及FWD工作判别也是通过iA的正负判断并与上桥臂情况相反。该判别下的开关信号输出示意如图:Taking phase A as an example, assuming its phase voltage U A and triangular carrier wave U triangle , the signal output 1 means that the upper bridge arm is on and the lower bridge arm is off; 0 means that the lower bridge arm is on and the upper bridge arm is off. Taking phase A as an example, the output rule of the switching signal is as follows: When U A > U triangle , the switching signal outputs 1, the upper bridge arm is turned on, and the IGBT or the same bridge arm FWD works in combination with the positive and negative phase voltage i A Discrimination; when U A < U triangle , the switch signal outputs 0, the lower bridge arm is turned on, and the corresponding IGBT and FWD work discrimination is also based on the positive and negative judgment of i A and is opposite to the upper bridge arm. The switch signal output under this discrimination is shown in the figure:

该模型可实现模块在不同负载工况下输出电压、电流、频率、开关信号等的电路参数的状态解析。This model can realize the state analysis of circuit parameters such as output voltage, current, frequency, switching signal, etc. of the module under different load conditions.

在本申请的一个优选实施例中,所述步骤3中所述的建立IGBT功率模块的损耗计算模型,具体包括:In a preferred embodiment of the present application, the loss calculation model of establishing the IGBT power module described in step 3 specifically includes:

在IGBT功率模块通常包含IGBT及其反并联的一个二极管FWD,由此构成如图2所示的具有典型半桥结构的功率模块,包含上下两个桥臂。IGBT功率模块的损耗PModule包括:IGBT的暂态过程如图3所示,其工作时产生的通态损耗PIGBT_con和开关暂态时候的开通损耗PIGBT_on、关断损耗PIGBT_off;FWD工作时的通态损耗PFWD_con以及反向恢复损耗PFWD_rrThe IGBT power module usually includes an IGBT and a diode FWD connected in antiparallel, thereby forming a power module with a typical half-bridge structure as shown in Figure 2, including two upper and lower bridge arms. The loss P Module of the IGBT power module includes: the transient process of the IGBT is shown in Figure 3, the on-state loss P IGBT_con generated during its operation, the turn-on loss P IGBT_on and the turn-off loss P IGBT_off during the switching transient state ; when the FWD is working On-state loss P FWD_con and reverse recovery loss P FWD_rr :

PModule=PIGBT_con+PIGBT_on+PIGBT_off+PFWD_con+PFWD_re P Module =P IGBT_con +P IGBT_on +P IGBT_off +P FWD_con +P FWD_re

IGBT和FWD导通时的通态压降VCE和VD由各自的门槛电压VCEO、VDO以及通态电阻Rch、Rd产生的压降两部分组成,且与温度T相关,其关系表示如下,T0为参考温度,IC和ID分别为通过IGBT和FWD的电流,其中,bT、m和bD均为可以通过曲线拟合出的温度相关项。The on-state voltage drops V CE and V D when the IGBT and FWD are turned on are composed of two parts: the voltage drops generated by their respective threshold voltages V CEO , V DO and the on-state resistances R ch and R d , and are related to the temperature T. The relationship is expressed as follows, T0 is the reference temperature, I C and I D are the currents passing through the IGBT and FWD respectively, where b T , m and b D are all temperature-related items that can be obtained through curve fitting.

VD(T)=VDO(T0)+bD·(T-T0)+Rd(T)·ID 2 V D (T)=V DO (T 0 )+b D ·(TT 0 )+R d (T)·I D 2

计算得到通态损耗,其中DT和DD为IGBT和FWD在单位开关周期内的占空比:Calculate the on-state loss, where D T and D D are the duty cycle of IGBT and FWD in the unit switching period:

PIGBT_con=(VCEO(T)·IC+Rch(T)IC 2)·DT P IGBT_con =(V CEO (T)·I C +R ch (T)I C 2 )·D T

PFWD_con=(VDO(T)ID+Rd(T)ID 2)·DD P FWD_con =(V DO (T)I D +R d (T)I D 2 )·D D

IGBT的开通过程包括开通延迟td(on)、电流上升tri、电压下降tfv三个阶段,每开通一次IGBT会产生的开通能量EIGBT_on表示如下:The turn-on process of the IGBT includes three stages: turn-on delay t d(on) , current rise t ri , and voltage drop t fv . The turn-on energy E IGBT_on generated by each turn-on of the IGBT is expressed as follows:

其中,VDC为直流母线电压,IRM为二极管反向恢复峰值电流Among them, V DC is the DC bus voltage, I RM is the diode reverse recovery peak current

IGBT的关断过程是由导通状态转为正向阻断状态。该过程包括电压上升trv、电流下降tfi和拖尾ttail三个阶段。每关断一次IGBT会产生的关断能量EIGBT_off表示如下,Itail为拖尾电流。The turn-off process of the IGBT is from the conduction state to the forward blocking state. This process includes three stages: voltage rising t rv , current falling t fi and tailing t tail . The turn-off energy E IGBT_off generated every time the IGBT is turned off is expressed as follows, and I tail is the tail current.

其中,△V为附加电压尖峰。Among them, △V is the additional voltage spike.

由于开关过程中各个阶段的时间难以确定,将电压电流变化率进行线性近似处理,可得到其IGBT开关能量损耗与直流母线电压VDC呈线性关系,与集电极电流IC为二次方关系.考虑到栅极电阻和温度的影响,上述式可以变换为:Since the time of each stage in the switching process is difficult to determine, the linear approximation of the voltage and current change rate can be obtained. The IGBT switching energy loss has a linear relationship with the DC bus voltage V DC , and a quadratic relationship with the collector current IC. Considering the influence of gate resistance and temperature, the above formula can be transformed into:

同理,二极管的反向恢复损耗可以表示如下Similarly, the reverse recovery loss of a diode can be expressed as follows

在如图5、8所示的SPWM双极性调制时,IGBT工作在电流的正半周期,FWD工作在电流的负半周期。通过几何的相似关系可以得到上桥臂的IGBT和FWD器件在第k个调制波周期内的脉冲宽度δ可以表示如下,其中T0为调制波周期,TC为开关周期。In the SPWM bipolar modulation shown in Figures 5 and 8, the IGBT works in the positive half cycle of the current, and the FWD works in the negative half cycle of the current. Through the geometric similarity relationship, the pulse width δ of the IGBT and FWD devices of the upper bridge arm in the kth modulation wave period can be expressed as follows, where T 0 is the modulation wave period, and T C is the switching period.

由此可以得到在SPWM调制下上桥臂IGBT和FWD的导通损耗PIGBT_con和PFWD_con在第k个调制波周期内的通态功率损耗为Therefore, under SPWM modulation, the conduction loss P IGBT_con and P FWD_con of the upper bridge arm IGBT and FWD in the kth modulation wave cycle can be obtained as

在开关频率为fsw时,IGBT的开通功率损耗PIGBT_on、关断功率损耗PIGBT_off及FWD的反向恢复功率损耗PFWD_re可以表示如下:When the switching frequency is f sw , the turn-on power loss P IGBT_on of the IGBT, the turn-off power loss P IGBT_off and the reverse recovery power loss P FWD_re of the FWD can be expressed as follows:

PIGBT_on=fsw·EIGBT_on P IGBT_on = f sw E IGBT_on

PIGBT_off=fsw·EIGBT_off P IGBT_off = f sw E IGBT_off

PFWD_re=fsw·EFWD_reP FWD_re = f sw · E FWD_re .

在本申请的一个优选实施例中,所述步骤4中所述的建立IGBT功率模块的热阻网络模型,具体包括:如图4所示,所述模型基于以下几点假设:In a preferred embodiment of the present application, the establishment of the thermal resistance network model of the IGBT power module described in step 4 specifically includes: as shown in Figure 4, the model is based on the following assumptions:

(1)忽略热辐射和热对流的影响,模块内的传热形式为热传导:(1) Neglecting the influence of heat radiation and heat convection, the form of heat transfer in the module is heat conduction:

(2)由于绝热硅胶的填充,热量传递路径为自芯片至基板进行:(2) Due to the filling of insulating silica gel, the heat transfer path is from the chip to the substrate:

(3)芯片与芯片间的热耦合影响忽略不计:(3) The influence of thermal coupling between chips is negligible:

(4)忽略单一芯片的局部温度差异,采用集中参数法。(4) Neglecting the local temperature difference of a single chip, the lumped parameter method is adopted.

IGBT模块每层材料可视为材料为各向同性的薄平壁。且其Bi数很小,可使用集中参数法进行非稳态分析。其一维的非稳态导热方程可以表示如下:Each layer of material in the IGBT module can be regarded as an isotropic thin flat wall. And its Bi number is very small, and the lumped parameter method can be used for unsteady analysis. Its one-dimensional unsteady heat conduction equation can be expressed as follows:

式中,ρ为材料密度,CP为其热容值。描述一维热传导物理过程的微分方程与电In the formula, ρ is the material density, and C P is its heat capacity. Differential equations and electrical equations describing the physical process of one-dimensional heat conduction

传导的方程组有相同的形式。因而通过电热比拟可以将关于热学的问题转换为电学The equations for conduction have the same form. Therefore, through the electrothermal analogy, the problems about heat can be converted into electrical

的问题,即将热阻类比为电阻,热容类比为电容,功率类似为电流。而系统随时间The problem is that thermal resistance is compared to resistance, thermal capacity is compared to capacitor, and power is similar to current. And the system over time

变化的热阻抗值,可以表达成一个简单的解析式如下,表达式中τ为热时间常数,The changing thermal impedance value can be expressed as a simple analytical formula as follows, where τ is the thermal time constant,

从公式可以看出,热阻R热容C值决定了系统对功率损耗的阶梯函数的响应。It can be seen from the formula that the value of thermal resistance R and thermal capacity C determines the response of the system to the step function of power loss.

τi=Ri·Ci τ i =R i ·C i

通过对瞬态热阻抗曲线进行拟合即可以得到与该模型其相匹配的参数,其具体计The parameters matching the model can be obtained by fitting the transient thermal impedance curve, and the specific calculation

算公式如下所示,其中n为拟合的阶数。由此得到四阶Foster热阻网络模型,如图6所示。The calculation formula is as follows, where n is the order of fitting. The fourth-order Foster thermal resistance network model is thus obtained, as shown in Figure 6.

在本申请的一个优选实施例中,所述当前电机工作点所对应的结温通过以下方式计算:In a preferred embodiment of the present application, the junction temperature corresponding to the current motor operating point is calculated in the following manner:

对于单个IGBT功率模块,设铜基板的底面温度恒定为TC,IGBT和FWD从各自芯片到底壳的热阻为Rjc_IGBT和Rjc_FWD,IGBT和反并联二极管FWD的结温Tj_IGBT、Tj_FWD可以分别表示如下:For a single IGBT power module, assume that the bottom surface temperature of the copper substrate is constant as T C , the thermal resistances of the IGBT and FWD from their respective chips to the case are R jc_IGBT and R jc_FWD , and the junction temperature T j_IGBT and T j_FWD of the IGBT and the antiparallel diode FWD can be They are expressed as follows:

Tj_IGBT=Tc+Rjc_IGBT·PIGBT T j_IGBT =T c +R jc_IGBT P IGBT

Tj_FWD=Tc+Rjc_FWD·PFWD T j_FWD =T c +R jc_FWD ·P FWD

其中,PIGBT包括PIGBT_con、PIGBT_on以及PIGBT_off,PFWD包括PFWD_con以及PFWD_reWherein, P IGBT includes P IGBT_con , P IGBT_on and P IGBT_off , and P FWD includes P FWD_con and P FWD_re .

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.

Claims (5)

1.一种IGBT功率模块结温动态预测方法,其特征在于:具体包括以下步骤:1. A method for dynamic prediction of IGBT power module junction temperature, characterized in that: specifically comprise the following steps: 步骤1、根据电机的运行状态得到电机第一个工作点下的转矩和转速;Step 1. Obtain the torque and speed at the first working point of the motor according to the running state of the motor; 步骤2、建立电机工作点解析模型;将所述步骤1中得到的所述转矩和转速输入所建立的电机工作点解析模型,得到dq轴电流电压值,继而获得逆变器输出三相电流电压、开关信号。储存驱动端栅极电阻、开关频率及DC端直流母线电压信息;Step 2. Establish an analytical model of the motor operating point; input the torque and rotational speed obtained in the step 1 into the established analytical model of the motor operating point to obtain dq axis current and voltage values, and then obtain the inverter output three-phase current Voltage, switching signal. Store the grid resistance of the driving end, the switching frequency and the DC bus voltage information of the DC end; 步骤3、建立IGBT功率模块的损耗计算模型;设定所述功率模块中的IGBT以及反并联二极管FWD的初始温度,并将所述步骤2中所述的各参数输入所建立的所述损耗计算模型,得到所述IGBT以及反并联二极管FWD的损耗值;Step 3. Establish a loss calculation model of the IGBT power module; set the initial temperature of the IGBT in the power module and the anti-parallel diode FWD, and input the parameters described in step 2 into the established loss calculation Model, obtain the loss value of described IGBT and anti-parallel diode FWD; 步骤4、建立IGBT功率模块的热阻网络模型;将所述步骤3中得到的所述损耗值输入所述热阻网络模型,得到当前电机工作点所对应的结温;Step 4, establishing a thermal resistance network model of the IGBT power module; inputting the loss value obtained in the step 3 into the thermal resistance network model to obtain the junction temperature corresponding to the current motor operating point; 步骤5、将所述步骤4中得到的结温反馈输入所述IGBT功率模块的损耗计算模型,实现工况应用下的动态结温预测。Step 5. Feedback the junction temperature obtained in step 4 into the loss calculation model of the IGBT power module to realize dynamic junction temperature prediction under working conditions. 2.如权利要求1所述的方法,其特征在于:所述步骤2中所述的建立电机工作点解析模型,具体包括:2. The method according to claim 1, characterized in that: the establishment of the motor operating point analysis model described in the step 2 specifically includes: 对于表贴式电机而言,d轴电感Ld与q轴电感Lq相同,并等于相电感,所以其电磁转矩Tem表达如下:For surface-mounted motors, the d-axis inductance L d is the same as the q-axis inductance L q and is equal to the phase inductance, so its electromagnetic torque T em is expressed as follows: <mrow> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mi>p</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>i</mi> <mi>q</mi> </msub> </mrow> <mrow><msub><mi>T</mi><mrow><mi>e</mi><mi>m</mi></mrow></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>p</mi><mo>&amp;CenterDot;</mo><msub><mi>&amp;psi;</mi><mi>f</mi></msub><mo>&amp;CenterDot;</mo><msub><mi>i</mi><mi>q</mi></msub></mrow> 其中,p为极对数,ψf为永磁体磁链,iq为q轴电流;Among them, p is the number of pole pairs, ψ f is the flux linkage of the permanent magnet, and i q is the q-axis current; 或者,采用由电机常数Kt和iq表示电磁转矩的方式:Or, in the form of expressing the electromagnetic torque by the motor constants K t and i q : <mrow> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mi>q</mi> </msub> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mo>;</mo> </mrow> <mrow><msub><mi>T</mi><mrow><mi>e</mi><mi>m</mi></mrow></msub><mo>=</mo><msub><mi>K</mi><mi>t</mi></msub><mo>&amp;CenterDot;</mo><mfrac><msub><mi>i</mi><mi>q</mi></msub><msqrt><mn>2</mn></msqrt></mfrac><mo>;</mo></mrow> 判断电机处于非弱磁区还是弱磁区:在非弱磁区采用id=0,此时的输出相电压的幅值表示如下,其中ω为电角速度;Judging whether the motor is in the non-field-weakening area or the field-weakening area: use id = 0 in the non-field-weakening area, and the amplitude of the output phase voltage at this time is expressed as follows, where ω is the electrical angular velocity; <mrow> <mi>u</mi> <mo>=</mo> <mfrac> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> <mn>2</mn> </msup> </mrow> </msqrt> <mi>&amp;omega;</mi> </mfrac> </mrow> <mrow><mi>u</mi><mo>=</mo><mfrac><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>L</mi><mi>q</mi></msub><msub><mi>i</mi><mi>q</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><msub><mi>&amp;psi;</mi><mi>f</mi></msub><mn>2</mn></msup></mrow></msqrt><mi>&amp;omega;</mi></mfrac></mrow> 在弱磁区时,输出相电压的幅值表示如下,ulim为电压极限,VDC为直流母线电压:In the field weakening area, the amplitude of the output phase voltage is expressed as follows, u lim is the voltage limit, and V DC is the DC bus voltage: <mrow> <mi>u</mi> <mo>=</mo> <msub> <mi>u</mi> <mi>lim</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>i</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>&amp;psi;</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mi>&amp;omega;</mi> </mfrac> <mo>.</mo> </mrow> <mrow><mi>u</mi><mo>=</mo><msub><mi>u</mi><mi>lim</mi></msub><mo>=</mo><mfrac><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi></mrow></msub><mn>2</mn></mfrac><mo>=</mo><mfrac><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>L</mi><mi>q</mi></msub><msub><mi>i</mi><mi>q</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msub><mi>L</mi><mi>d</mi></msub><msub><mi>i</mi><mi>d</mi></msub><mo>+</mo><msub><mi>&amp;psi;</mi><mi>f</mi>mi></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><mi>&amp;omega;</mi></mfrac><mo>.</mo></mrow> 在得到id、iq后,通过恒幅值变换得到对应转矩转速下A、B、C三相的输出,其中,dq轴向αβ旋转坐标系的变化应用Park变换,具有如下转换关系:After obtaining id and iq, the output of the three phases A, B, and C at the corresponding torque speed is obtained through constant amplitude transformation. Among them, the change of dq axial αβ rotating coordinate system applies Park transformation, which has the following conversion relationship: <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>&amp;beta;</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>q</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>i</mi><mi>&amp;alpha;</mi></msub></mtd></mtr><mtr><mtd><msub><mi>i</mi><mi>&amp;beta;</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;theta;</mi></mrow></mtd><mtd><mrow><mo>-</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;theta;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;theta;</mi></mrow></mtd><mtd><mrow><mi>cos</mi><mi>&amp;theta;</mi></mrow></mtd></mtr></mtable></mfenced><mo>&amp;CenterDot;</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>i</mi><mi>d</mi></msub></mtd></mtr><mtr><mtd><msub><mi>i</mi><mi>q</mi></msub></mtd></mtr></mtable></mfenced></mrow> 其中,θ为相角;Among them, θ is the phase angle; αβ旋转坐标系向三相A、B、C的变换为Clark变换,转换关系如下:The transformation from the αβ rotating coordinate system to the three-phase A, B, and C is Clark transformation, and the transformation relationship is as follows: <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>A</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>B</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>C</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msqrt> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </msqrt> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>q</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>i</mi><mi>A</mi></msub></mrow>mtd></mtr><mtr><mtd><msub><mi>i</mi><mi>B</mi></msub></mtd></mtr><mtr><mtd><msub><mi>i</mi><mi>C</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt><mfenced open = "[" close = "]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mtd><mtd><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mtd><mtd><mrow><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mrow></mtd></mtr></mtable></mfenced><mo>&amp;CenterDot;</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>i</mi><mi>d</mi></msub></mtd></mtr><mtr><mtd><msub><mi>i</mi><mi>q</mi></msub></mtd></mtr></mtable></mfenced></mrow> 其中,iA、iB、iC分别为各相电流。Among them, i A , i B , and i C are the currents of each phase respectively. 3.如权利要求2所述的方法,其特征在于:所述步骤3中所述的建立IGBT功率模块的损耗计算模型,具体包括:3. The method according to claim 2, characterized in that: the loss calculation model of setting up the IGBT power module described in the step 3 specifically includes: IGBT功率模块的损耗PModule包括:IGBT工作时产生的通态损耗PIGBT_con和开关暂态时候的开通损耗PIGBT_on、关断损耗PIGBT_off;FWD工作时的通态损耗PFWD_con以及反向恢复损耗PFWD_reThe loss P Module of the IGBT power module includes: the on-state loss P IGBT_con generated during the IGBT operation, the turn-on loss P IGBT_on and the turn-off loss P IGBT_off during the switching transient state; the on-state loss P FWD_con and the reverse recovery loss during the FWD operation P FWD_re : PModule=PIGBT_con+PIGBT_on+PIGBT_off+PFWD_con+PFWD_re P Module =P IGBT_con +P IGBT_on +P IGBT_off +P FWD_con +P FWD_re IGBT和FWD导通时的通态压降VCE和VD由各自的门槛电压VCEO、VDO以及通态电阻Rch、Rd产生的压降两部分组成,且与温度实际温度T相关,其关系表示如下:T0为参考温度,IC和ID分别为通过IGBT和FWD的电流,其中,bT、m和bD均为可以通过曲线拟合出的温度相关项;The on-state voltage drops V CE and V D when the IGBT and FWD are turned on are composed of two parts: the respective threshold voltages V CEO , V DO and the voltage drops generated by the on-state resistances R ch and R d , and are related to the actual temperature T , the relationship is expressed as follows: T 0 is the reference temperature, I C and I D are the currents passing through the IGBT and FWD respectively, where b T , m and b D are temperature-related items that can be obtained by curve fitting; <mrow> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> <mi>O</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mi>T</mi> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>T</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <msub> <mi>I</mi> <mi>C</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow><msub><mi>V</mi><mrow><mi>C</mi><mi>E</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>V</mi><mrow><mi>C</mi><mi>E</mi><mi>O</mi></mrow></msub><mrow><mo>(</mo><msub><mi>T</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>b</mi><mi>T</mi></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>T</mi><mo>-</mo><msub><mi>T</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>R</mi><mrow><mi>c</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><msub><mi>T</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><msup><mrow><mo>(</mo><mfrac><mi>T</mi><msub><mi>T</mi><mn>0</mn></msub></mfrac><mo>)</mo></mrow><mi>m</mi></msup><mo>&amp;CenterDot;</mo><msup><msub><mi>I</mi><mi>C</mi></msub><mn>2</mn></msup></mrow> VD(T)=VDO(T0)+bD·(T-T0)+Rd(T)·ID 2 V D (T)=V DO (T 0 )+b D ·(TT 0 )+R d (T)·I D 2 计算得到通态损耗,其中DT和DD为IGBT和FWD在单位开关周期内的占空比:Calculate the on-state loss, where D T and D D are the duty cycle of IGBT and FWD in the unit switching period: PIGBT_con=(VCEO(T)·IC+Rch(T)IC 2)·DT P IGBT_con =(V CEO (T)·I C +R ch (T)I C 2 )·D T PFWD_con=(VDO(T)ID+Rd(T)ID 2)·DD P FWD_con =(V DO (T)I D +R d (T)I D 2 )·D D 在开关频率为fsw时,IGBT的开通功率损耗PIGBT_on、关断功率损耗PIGBT_off及FWD的反向恢复功率损耗PFWD_re可以表示如下:When the switching frequency is f sw , the turn-on power loss P IGBT_on of the IGBT, the turn-off power loss P IGBT_off and the reverse recovery power loss P FWD_re of the FWD can be expressed as follows: PIGBT_on=fsw·EIGBT_on P IGBT_on = f sw E IGBT_on PIGBT_off=fsw·EIGBT_off P IGBT_off = f sw E IGBT_off PFWD_re=fsw·EFWD_reP FWD_re = f sw · E FWD_re ; 其中,in, <mrow> <msub> <mi>E</mi> <mrow> <mi>I</mi> <mi>G</mi> <mi>B</mi> <mi>T</mi> <mo>_</mo> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <msup> <msub> <mi>I</mi> <mi>c</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>I</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>k</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> <mo>_</mo> <mi>R</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mfrac> </mrow> <mrow><msub><mi>E</mi><mrow><mi>I</mi><mi>G</mi><mi>B</mi><mi>T</mi><mo>_</mo><mi>o</mi><mi>n</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>a</mi><mrow><mi>o</mi><mi>n</mi></mrow></msub><msup><msub><mi>I</mi><mi>c</mi></msub><mn>2</mn></msup><mo>+</mo><msub><mi>b</mi><mrow><mi>o</mi><mi>n</mi></mrow></msub><msub><mi>I</mi><mi>c</mi></msub><mo>+</mo><msub><mi>c</mi><mrow><mi>o</mi><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><msub><mi>k</mi><mrow><mi>o</mi><mi>n</mi></mrow></mrow></mrow>msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mfrac><mrow><msub><mi>E</mi><mrow><mi>o</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mi>R</mi><mi>g</mi></msub><mo>)</mo></mrow></mrow><mrow><msub><mi>E</mi><mrow><mi>o</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mi>R</mi><mrow><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></mfrac><mo>&amp;CenterDot;</mo><mfrac><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi></mrow></msub><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi><mo>_</mo><mi>R</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></msub></mfrac></mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>I</mi> <mi>G</mi> <mi>B</mi> <mi>T</mi> <mo>_</mo> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <msup> <msub> <mi>I</mi> <mi>c</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <msub> <mi>I</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>k</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> <mo>_</mo> <mi>R</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mfrac> </mrow> <mrow><msub><mi>E</mi><mrow><mi>I</mi><mi>G</mi><mi>B</mi><mi>T</mi><mo>_</mo><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>a</mi><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><msup><msub><mi>I</mi><mi>c</mi></msub><mn>2</mn></msup><mo>+</mo><msub><mi>b</mi><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><msub><mi>I</mi><mi>c</mi></msub><mo>+</mo><msub><mi>c</mi><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><msub><mi>k</mi><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mfrac><mrow><msub><mi>E</mi><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><msub><mi>R</mi><mi>g</mi></msub><mo>)</mo></mrow></mrow><mrow><msub><mi>E</mi><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><msub><mi>R</mi><mrow><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></msub><mo>)</mi>mo></mrow></mrow></mfrac><mo>&amp;CenterDot;</mo><mfrac><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi></mrow></msub><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi><mo>_</mo><mi>R</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></msub></mfrac></mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>F</mi> <mi>W</mi> <mi>D</mi> <mo>_</mo> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <msup> <msub> <mi>I</mi> <mi>D</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>I</mi> <mi>D</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mi>C</mi> <mo>_</mo> <mi>R</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mfrac> </mrow> <mrow><msub><mi>E</mi><mrow><mi>F</mi><mi>W</mi><mi>D</mi><mo>_</mo><mi>r</mi><mi>e</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>a</mi><mrow><mi>r</mi><mi>e</mi></mrow></msub><msup><msub><mi>I</mi><mi>D</mi>mi></msub><mn>2</mn></msup><mo>+</mo><msub><mi>b</mi><mrow><mi>r</mi><mi>e</mi></mrow></msub><msub><mi>I</mi><mi>D</mi></msub><mo>+</mo><msub><mi>c</mi><mrow><mi>r</mi><mi>e</mi></mrow></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><msub><mi>k</mi><mrow><mi>r</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mfrac><mrow><msub><mi>E</mi><mrow><mi>r</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><msub><mi>R</mo>mi><mi>g</mi></msub><mo>)</mo></mrow></mrow><mrow><msub><mi>E</mi><mrow><mi>r</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><msub><mi>R</mi><mrow><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></msub><mo>)</mi>mo></mrow></mrow></mfrac><mo>&amp;CenterDot;</mo><mfrac><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi></mrow></msub><msub><mi>V</mi><mrow><mi>D</mi><mi>C</mi><mo>_</mo><mi>R</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></msub></mfrac></mi>mrow> 其中,EIGBT_on为IGBT的开通能量损耗、EIGBT_off为IGBT的关断能量损耗、EFWD_re为FWD的反向恢复能量损耗,aon、bon、con、aoff、boff、coff、are、bre、cre为拟合常数,kon、koff、kre为温度相关项,Eon(Rg)、Eoff(Rg)、Eoff(Rg)和Eon(Rrated)、Eoff(Rrated)、Eoff(Rrated)分别为实际栅极电阻和参考栅极电阻下对应的IGBT的开通与关断能量能耗、FWD的反向恢复能量损耗,VDC_rated为参考直流母线值。Among them, E IGBT_on is the turn-on energy loss of IGBT, E IGBT_off is the turn-off energy loss of IGBT, E FWD_re is the reverse recovery energy loss of FWD, a on , b on , c on , a off , b off , c off , a re , b re , cre are fitting constants, k on , k off , k re are temperature-related items, E on (R g ), E off (R g ), E off (R g ) and E on ( R rated ), E off (R rated ), E off (R rated ) are the turn-on and turn-off energy consumption of the corresponding IGBT under the actual gate resistance and the reference gate resistance, and the reverse recovery energy loss of FWD, V DC_rated is the reference DC bus value. 4.如权利要求3所述的方法,其特征在于:进一步地,所述步骤4中所述的建立IGBT功率模块的热阻网络模型,具体包括:所述模型基于以下几点假设:4. The method according to claim 3, characterized in that: further, the establishment of the thermal resistance network model of the IGBT power module described in step 4 specifically includes: the model is based on the following assumptions: (1)忽略热辐射和热对流的影响,模块内的传热形式为热传导:(1) Neglecting the influence of heat radiation and heat convection, the form of heat transfer in the module is heat conduction: (2)由于绝热硅胶的填充,热量传递路径为自芯片至基板进行:(2) Due to the filling of insulating silica gel, the heat transfer path is from the chip to the substrate: (3)芯片与芯片间的热耦合影响忽略不计:(3) The influence of thermal coupling between chips is negligible: (4)忽略单一芯片的局部温度差异,采用集中参数法;(4) Neglecting the local temperature difference of a single chip, using the lumped parameter method; 基于上述假设建立四阶Foster热阻网络模型。Based on the above assumptions, a fourth-order Foster thermal resistance network model is established. 5.如权利要求4所述的方法,其特征在于:所述当前电机工作点所对应的结温通过以下方式计算:设铜基板的底面温度恒定为TC,IGBT和FWD从各自芯片到底壳的热阻为Rjc_IGBT和Rjc_FWD,IGBT和反并联二极管FWD的结温Tj_IGBT、Tj_FWD可以分别表示如下:5. The method according to claim 4, characterized in that: the junction temperature corresponding to the current motor operating point is calculated by the following method: assuming that the bottom surface temperature of the copper substrate is constant as T C , the IGBT and FWD are connected from the respective chips to the bottom case The thermal resistances are R jc_IGBT and R jc_FWD , and the junction temperature T j_IGBT and T j_FWD of the IGBT and the anti-parallel diode FWD can be expressed as follows: Tj_IGBT=Tc+Rjc_IGBT·PIGBT T j_IGBT =T c +R jc_IGBT P IGBT Tj_FWD=Tc+Rjc_FWD·PFWD T j_FWD =T c +R jc_FWD ·P FWD 其中,PIGBT包括PIGBT_con、PIGBT_on以及PIGBT_off,PFWD包括PFWD_con以及PFWD_rrWherein, P IGBT includes P IGBT_con , P IGBT_on and P IGBT_off , and P FWD includes P FWD_con and P FWD_rr .
CN201810036617.7A 2018-01-15 2018-01-15 IGBT power module junction temperature dynamic prediction method Expired - Fee Related CN108108573B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810036617.7A CN108108573B (en) 2018-01-15 2018-01-15 IGBT power module junction temperature dynamic prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810036617.7A CN108108573B (en) 2018-01-15 2018-01-15 IGBT power module junction temperature dynamic prediction method

Publications (2)

Publication Number Publication Date
CN108108573A true CN108108573A (en) 2018-06-01
CN108108573B CN108108573B (en) 2022-05-10

Family

ID=62218808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810036617.7A Expired - Fee Related CN108108573B (en) 2018-01-15 2018-01-15 IGBT power module junction temperature dynamic prediction method

Country Status (1)

Country Link
CN (1) CN108108573B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504844A (en) * 2019-09-17 2019-11-26 国电南瑞科技股份有限公司 A temperature optimization method for large-capacity shore power system
CN111090940A (en) * 2019-12-17 2020-05-01 南方电网科学研究院有限责任公司 MMC submodule crimping type IGBT short-term failure analysis method based on ANSYS
CN112329244A (en) * 2020-11-09 2021-02-05 西南交通大学 Optimal power loss equivalent modeling method for IGBT junction temperature estimation
CN112986707A (en) * 2019-12-02 2021-06-18 北京新能源汽车股份有限公司 Service life assessment method and device of power module and automobile
CN113030683A (en) * 2021-03-15 2021-06-25 五羊—本田摩托(广州)有限公司 Method, medium and computer equipment for measuring temperature of power switch device
CN113343449A (en) * 2021-05-26 2021-09-03 上海电力大学 Method, system and medium for identifying solder cavities of IGBT module of wind power converter
US11543305B2 (en) 2019-01-24 2023-01-03 Wuhan University Method for estimating junction temperature online on IGBT power module
WO2023128737A1 (en) * 2022-01-03 2023-07-06 엘지이노텍 주식회사 Power conversion device
CN116467985A (en) * 2023-06-19 2023-07-21 湖南大学 IGBT dynamic avalanche current wire prediction method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443400A (en) * 2016-09-14 2017-02-22 河北工业大学 Electric-heat-aging junction temperature calculation model establishing method of IGBT module
CN107025364A (en) * 2017-05-12 2017-08-08 西安交通大学 A kind of junction temperature Forecasting Methodology of IGBT module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443400A (en) * 2016-09-14 2017-02-22 河北工业大学 Electric-heat-aging junction temperature calculation model establishing method of IGBT module
CN107025364A (en) * 2017-05-12 2017-08-08 西安交通大学 A kind of junction temperature Forecasting Methodology of IGBT module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAIXIN WEI,ETC: "The IGBT Losses Analysis and Calculation of Inverter for Two-seat Electric Aircraft Application", 《THE 8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY-ICAE2016》 *
XIN XIN,ETC: "Electro-thermal based junction temperature estimation model and thermal performance analysis for IGBT module", 《2017 20TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS,ICEMS 2017》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543305B2 (en) 2019-01-24 2023-01-03 Wuhan University Method for estimating junction temperature online on IGBT power module
CN110504844A (en) * 2019-09-17 2019-11-26 国电南瑞科技股份有限公司 A temperature optimization method for large-capacity shore power system
CN112986707A (en) * 2019-12-02 2021-06-18 北京新能源汽车股份有限公司 Service life assessment method and device of power module and automobile
CN111090940A (en) * 2019-12-17 2020-05-01 南方电网科学研究院有限责任公司 MMC submodule crimping type IGBT short-term failure analysis method based on ANSYS
CN111090940B (en) * 2019-12-17 2023-04-14 南方电网科学研究院有限责任公司 MMC sub-module crimping type IGBT short-term failure analysis method based on ANSYS
CN112329244A (en) * 2020-11-09 2021-02-05 西南交通大学 Optimal power loss equivalent modeling method for IGBT junction temperature estimation
CN112329244B (en) * 2020-11-09 2022-06-14 西南交通大学 Optimal power loss equivalent modeling method for IGBT junction temperature estimation
CN113030683A (en) * 2021-03-15 2021-06-25 五羊—本田摩托(广州)有限公司 Method, medium and computer equipment for measuring temperature of power switch device
CN113343449A (en) * 2021-05-26 2021-09-03 上海电力大学 Method, system and medium for identifying solder cavities of IGBT module of wind power converter
WO2023128737A1 (en) * 2022-01-03 2023-07-06 엘지이노텍 주식회사 Power conversion device
CN116467985A (en) * 2023-06-19 2023-07-21 湖南大学 IGBT dynamic avalanche current wire prediction method and system
CN116467985B (en) * 2023-06-19 2023-08-29 湖南大学 IGBT dynamic avalanche current filament prediction method and system

Also Published As

Publication number Publication date
CN108108573B (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN108108573B (en) IGBT power module junction temperature dynamic prediction method
CN110765601B (en) IGBT junction temperature estimation method based on IGBT thermoelectric coupling model
Xun et al. Application of SiC power electronic devices in secondary power source for aircraft
Ding et al. Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles
Xu et al. Power loss and junction temperature analysis of power semiconductor devices
CN105577069B (en) The active thermal optimal control method and device of a kind of drive system of electric automobile
Kersten et al. Efficiency of active three-level and five-level npc inverters compared to a two-level inverter in a vehicle
Wang et al. The loss analysis and efficiency optimization of power inverter based on SiC mosfet s under the high-switching frequency
KR102520851B1 (en) Apparatus for estimating junction temperature of IGBT module
Islam et al. Power loss and thermal impedance modeling of multilevel power converter with discontinuous modulation
Yang et al. Transient electro-thermal analysis for a MOSFET based traction inverter
Ma et al. Method of junction temperature estimation and over temperature protection used for electric vehicle's IGBT power modules
Satpathy et al. Comprehensive loss analysis of two-level and three-level inverter for electric vehicle using drive cycle models
Qiu et al. Lifetime evaluation of inverter IGBT modules for electric vehicles mission-profile
Ye et al. A drive cycle based electro-thermal analysis of traction inverters
Zhong et al. Design & analysis of a novel IGBT package with double-sided cooling
JP2020141457A (en) Power conversion device and temperature detection method for power conversion device
CN109669112A (en) The junction temperature monitoring method and device of the converter of the fan and the IGBT module
Davletzhanova et al. Electrothermal stresses in SiC MOSFET and Si IGBT 3L-NPC converters for motor drive applications
Wang et al. A dual fuzzy logic controller‐based active thermal control strategy of SiC power inverter for electric vehicles
Hepp et al. Power electronics for automotive electric drivetrains–design and optimization
Wang et al. Thermal performance investigation of three-dimensional structure unit in double-sided cooling IGBT module
CN115078948A (en) Accelerated aging electrothermal comprehensive working condition simulation test system and method
Resutik et al. Estimation of power losses and temperature distribution in three-phase inverter
Lu et al. Mission profile-based lifetime estimation and its system-controlled improvement method of IGBT modules for electric vehicle converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220510

CF01 Termination of patent right due to non-payment of annual fee