CN108101517A - 一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料 - Google Patents

一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料 Download PDF

Info

Publication number
CN108101517A
CN108101517A CN201611045672.XA CN201611045672A CN108101517A CN 108101517 A CN108101517 A CN 108101517A CN 201611045672 A CN201611045672 A CN 201611045672A CN 108101517 A CN108101517 A CN 108101517A
Authority
CN
China
Prior art keywords
fibre
wear
alumina silicate
steel
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611045672.XA
Other languages
English (en)
Inventor
刘芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611045672.XA priority Critical patent/CN108101517A/zh
Publication of CN108101517A publication Critical patent/CN108101517A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like
    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Braking Arrangements (AREA)

Abstract

一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料,纤维增强陶瓷基复合材料因具有优异的耐高温、抗氧化性、耐磨损及热稳定性能,作为高温摩擦材料具有广阔的应用前景。利用热压烧结法制备了钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料。随硅酸铝纤维含量的增加,复合材料的摩擦因数增大;高温下复合材料的耐磨性能随硅酸铝纤维含量的增大而降低;未添加硅酸铝纤维复合材料的磨损形式主要表现为脆性脱落和疲劳磨损,并伴有磨粒磨损;添加了硅酸铝纤维的陶瓷基摩擦材料的磨损形式均以粘着磨损为主。

Description

一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料
技术领域
本发明涉及一种粉末冶金材料,尤其涉及一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料。
背景技术
纤维增强陶瓷基复合材料因具有优异的耐高温、抗氧化性、耐磨损及热稳定性能,作为高温摩擦材料具有广阔的应用前景。增强纤维是摩擦材料中重要的组元之一,其对摩擦材料的力学性能和摩擦磨损性能具有重要影响。目前,摩擦材料中常用的增强纤维主要为钢纤维, 其在半金属摩擦材料甚至是铜基粉末冶金摩擦材料中也取得了良好的效果。
钢纤维存在易生锈、锈蚀后出现粘着或刮伤对偶的问题,使得摩擦材料的制动性能不稳定,磨损也较大。硅酸铝陶瓷纤维具有密度低、耐高温和抗氧化能力强等特点,可以作为增强纤维来增强陶瓷基复合材料。添加硅酸铝纤维能够降低Al2O3-SiO2系陶瓷基复合材料的脆性,并提高其强度和热稳定性能。此外,硅氧铝陶瓷纤维能够显著提高树脂基摩擦材料的抗热衰退性能,当添加质量分数为5%-10%时,摩擦材料具有较好的摩擦和磨损性能。然而,硅酸铝陶瓷纤维韧性较差,而钢纤维作为一种金属纤维,其韧性较高,如果将钢纤维和硅酸铝陶瓷纤维混杂来增强陶瓷基摩擦材料,就可以起到互补作用,其摩擦磨损性能可能会更好。
发明内容
本发明的目的是为了改善陶瓷基复合材料的耐磨效果,设计了一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料。
本发明解决其技术问题所采用的技术方案是:
钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的制备原料包括:陶瓷基体原料由氧化铝(江都市新晶辉特种耐火材料有限公司)、粘土(武钢集团矿业有限责任公司焦作矿)和钾长石(临湘市天信矿石有限公司)组成,其颗粒大小分别为120-150,80μm和45μm,质量配比为29:20:15,以45μm碳化硅(淄博国凯铝业有限公司)、75μm鳞状石墨(山东省南墅石墨矿)和还原铁粉(上海纪东粉末冶金厂生产并过200目筛)作为摩擦调节剂,其质量配比为1:1:1;以钢纤维(珠海大正金属纤维有限公司,D3-52F型,等效直径为60-180μm,长度为1-3mm)和硅酸铝纤维(山东鲁阳有限公司,直径5-10μm,长度3-5mm)作为增强材料。
钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的制备步骤为:在保持陶瓷基体组分、钢纤维及摩擦调节剂相对比例不变(16:6:3)的前提下,分别加入质量分数为0%,8%,16%,24%的硅酸铝陶瓷纤维。用精密天平称量各组分后,用LVH-0.1型高速混料机混料,混料时间为15min,然后在混料中添加质量分数为1.7%的聚乙烯醇溶液,搅拌均匀,最终将混料烘干。用YX32-500型油压机在25MPa压制力下压制成尺寸为200mmX100mmX10mm的样块,并在氮气作保护气氛的DGNL-300型多功能烧结炉中于1100℃烧结,压力为2MPa,保温2h,最后将烧结体机加工成尺寸为25mmX25mmX6mm的试样。
钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的检测步骤为:采用XD-MSM型自动控制定速摩擦磨损试验机测摩擦磨损性能,对偶摩擦盘为45钢,其硬度为35-45HRC,转速恒定为480r/min,载荷为1225N,依 照GB5763-2008测定在100,150,200,250,300,350 ℃的摩擦因数和磨损率;利用HR-150DT型洛氏硬度计测试样的硬度;试样切割成尺寸为20mmX20mmX10mm的板材,按照GB/T2611-2007,采用WAW型液压万能试验机测抗剪强度;将磨损后试样的磨损表面在108MANUAL型真空镀膜仪上镀金, 时间为40s,采用ZEISS型场发射扫 描电子显微镜(SEM)观察磨损表面的形貌。
本发明的有益效果是:
以廉价且来源广泛的氧化铝、粘土和钾长石为原料,采用热压烧结方法制备了钢纤维和硅酸铝纤维混杂增强的陶瓷基复合材料。随硅酸铝纤维含量的增加,复合材料的硬度逐渐增大,抗剪强度先增大后减小;纤维的积聚造成陶瓷基体界面的结合变弱,是钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料力学性能降低的主要原因。随着硅酸铝纤维含量的增加,陶瓷基复合材料的摩擦因数增大;硅酸铝纤维的加入能够提高陶瓷基复合材料在低温下的耐磨性能,但对其在高温下的耐磨性不利。
具体实施方式
实施案例1:
钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的制备原料包括:陶瓷基体原料由氧化铝(江都市新晶辉特种耐火材料有限公司)、粘土(武钢集团矿业有限责任公司焦作矿)和钾长石(临湘市天信矿石有限公司)组成,其颗粒大小分别为120-150,80μm和45μm,质量配比为29:20:15,以45μm碳化硅(淄博国凯铝业有限公司)、75μm鳞状石墨(山东省南墅石墨矿)和还原铁粉(上海纪东粉末冶金厂生产并过200目筛)作为摩擦调节剂,其质量配比为1:1:1;以钢纤维(珠海大正金属纤维有限公司,D3-52F型,等效直径为60-180μm,长度为1-3mm)和硅酸铝纤维(山东鲁阳有限公司,直径5-10μm,长度3-5mm)作为增强材料。钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的制备步骤为:在保持陶瓷基体组分、钢纤维及摩擦调节剂相对比例不变(16:6:3)的前提下,分别加入质量分数为0%,8%,16%,24%的硅酸铝陶瓷纤维。用精密天平称量各组分后,用LVH-0.1型高速混料机混料,混料时间为15min,然后在混料中添加质量分数为1.7%的聚乙烯醇溶液,搅拌均匀,最终将混料烘干。用YX32-500型油压机在25MPa压制力下压制成尺寸为200mmX100mmX10mm的样块,并在氮气作保护气氛的DGNL-300型多功能烧结炉中于1100℃烧结,压力为2MPa,保温2h,最后将烧结体机加工成尺寸为25mmX25mmX6mm的试样。钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的检测步骤为:采用XD-MSM型自动控制定速摩擦磨损试验机测摩擦磨损性能,对偶摩擦盘为45钢,其硬度为35-45HRC,转速恒定为480r/min,载荷为1225N,依照GB5763-2008测定在100,150,200,250,300,350 ℃的摩擦因数和磨损率;利用HR-150DT型洛氏硬度计测试样的硬度;试样切割成尺寸为20mmX20mmX10mm的板材,按照GB/T2611-2007,采用WAW型液压万能试验机测抗剪强度;将磨损后试样的磨损表面在108MANUAL型真空镀膜仪上镀金,时间为40s,采用ZEISS型场发射扫描电子显微镜(SEM)观察磨损表面的形貌。
实施案例2:
随硅酸铝纤维含量的增加,复合材料的硬度逐渐增大,而其抗剪强度则先升后降,在硅酸铝纤维含量为8%(质量分数,下同)时达到最大值,与未加硅酸铝纤维的相比提高了50%;当硅酸铝含量达到24% 时,抗剪强度最低,与未加入硅酸铝纤维的相比降低了18.7%。当硅酸铝纤维含量为8%时,纤维与陶瓷基体界面结合较好,所以复合材料的抗剪强度较高;硅酸铝纤维含量增大至24% 时,纤维在基体中分散不均匀,出现局部聚积,与陶瓷基体界面结合弱,因此纤维的增强效果减弱,复合材料的抗剪强度降低。
实施案例3:
硅酸铝纤维含量对复合材料摩擦因数的影响较为明显,添加了硅酸铝纤维的复合材料在各个温度下的摩擦因数均高于未添加硅酸铝纤维复合材料的,且其摩擦因数随硅酸铝纤维含量的增加而增大。值得注意的是,当硅酸铝纤维含量为8%时,其摩擦因数随温度升高先降后升,且在100℃时为0.44,而到350℃时就恢复到了0.42,这表明该材料具有较好的高温抗热衰退性能。当摩擦温度在100-250℃时,不同硅酸铝纤维复合材料的磨损率均随温度升高以缓慢的速度增大,且磨损量均低于0.6X10-7cm3/(N·m),属轻微磨损;当摩擦温度超过250℃后, 磨损率都剧烈增加,说明发生了严重磨损。需要注意的是,摩擦温度低于200℃时,添加了硅酸铝纤维复合材料的磨损率均低于未添加硅酸铝纤维复合材料的;摩擦温度高于250℃后,添加了硅酸铝纤维复合材料的磨损率均高于未添加硅酸铝纤维复合材料的,这说明添加硅酸铝纤维能够提高陶瓷基复合材料在低温下的耐磨性能,但对其在较高温度下的耐磨性能不利。
实施案例4:
随着硅酸铝纤维含量的增加,复合材料的磨损表面逐渐变得粗糙不平。在摩擦过程中,复合材料磨损表面上的高强度增强纤维起主要的承载作用。未添加硅酸铝纤维时,磨损表面上的钢纤维起主要承载作用,磨合一段时间后,钢纤维产生塑性变形,并涂覆、镶嵌在磨损表面上,使磨损表面相对较平滑,因此摩擦表面相对滑动阻力减小,摩擦因数较低。当加入硅酸铝纤维后,磨损表面上钢纤维与硅酸铝纤维共同承担载荷作用,由于硅酸铝纤维脆性大, 不易塑性变形,在摩擦力作用下易发生脆性断裂、脱落,从而使得磨损表面变得粗糙,摩擦表面相对滑动阻力增大,摩擦因数增大,且硅酸铝含量越大,断裂、脱落的纤维越多,其摩擦因数增大越明显。其摩擦表面除了出现平行于摩擦方向的犁沟痕迹外,还存在较大的剥落凹坑,并且剥落凹坑周围产生了较明显的微裂纹。分析认为,在摩擦压力和温度的连续作用下,摩擦表面将形成不稳定的压力场和温度场;又由于复合材料中各组分的热膨胀系数有所差异,使得受热摩擦表面层、亚表层中不同区域的热膨胀率不同,导致摩擦表面产生了热应力微裂纹。微裂纹的存在将使摩擦表面在摩擦力作用下被撕裂并且局部剥落,形成剥落坑,从而加速材料的脆性脱落,部分脱落后的颗粒在摩擦表面起到磨料作用,刮擦摩擦表面,出现犁沟痕迹。因此,对未含有硅酸铝纤维的复合材料,其磨损形式主要是脆性脱落和疲劳磨损,并伴有磨粒磨损。
实施案例5:
当添加8%硅酸铝纤维时,摩擦表面上存在粘着坑,这意味着此时摩擦材料产生了明显的粘着磨损。当硅酸铝纤维含量为16%时,摩擦表面上出现了一些大小不等的剥落坑,并且摩擦表面有少量裸露的纤维存在。当硅酸铝纤维含量增至24%时,摩擦表面除了有较明显的剥落坑之外,裸露的纤维增多;由于硅酸铝纤维较脆,在摩擦力作用下,裸露于摩擦表面上的纤维易剥落,尤其是与摩擦表面平行的增强纤维更易从陶瓷基体中剥落,并与周围发生塑性变形的陶瓷基体一起剥落,从而产生剥落坑。随着硅酸铝纤维含量的增加,其在陶瓷基体中分散得越不均匀,更易团聚,使得硅酸铝纤维与陶瓷基体界面结合性能弱, 剥落出现的可能性增大,从而因纤维剥落引起的磨损也越大。此外,硅铝纤维的导热性低于钢纤维的,添加硅酸铝纤维必定会减少摩擦表面钢纤维的相对含量,导致复合材料热传导性能降低,摩擦温度越高,摩擦表面瞬间温度相对也越高,根据“相亲相容”原则,摩擦表面中钢纤维与对偶摩擦盘越易发生粘着而形成粘着磨损,材料的抗粘着磨损能力降低,加剧了材料的磨损。综合分析可知,高温下粘着磨损为含硅酸铝纤维复合材料的主要磨损形式。

Claims (4)

1.一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料,制备原料包括:陶瓷基体原料由氧化铝(江都市新晶辉特种耐火材料有限公司)、粘土(武钢集团矿业有限责任公司焦作矿)和钾长石(临湘市天信矿石有限公司)组成,其颗粒大小分别为120-150,80μm和45μm,质量配比为29:20:15,以45μm碳化硅(淄博国凯铝业有限公司)、75μm鳞状石墨(山东省南墅石墨矿)和还原铁粉(上海纪东粉末冶金厂生产并过200目筛)作为摩擦调节剂,其质量配比为1:1:1;以钢纤维(珠海大正金属纤维有限公司,D3-52F型,等效直径为60-180μm,长度为1-3mm) 和硅酸铝纤维(山东鲁阳有限公司,直径5-10μm,长度3-5mm)作为增强材料。
2.根据权利要求1所述的钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料,其特征是钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的制备步骤为:在保持陶瓷基体组分、钢纤维及摩擦调节剂相对比例不变(16:6:3)的前提下,分别加入质量分数为0%,8%,16%,24%的硅酸铝陶瓷纤维;用精密天平称量各组分后,用LVH-0.1型高速混料机混料,混料时间为15min,然后在混料中添加质量分数为1.7%的聚乙烯醇溶液,搅拌均匀,最终将混料烘干;用YX32-500型油压机在25MPa压制力下压制成尺寸为200mmX100mmX10mm的样块,并在氮气作保护气氛的DGNL-300型多功能烧结炉中于1100℃烧结,压力为2MPa,保温2h,最后将烧结体机加工成尺寸为25mmX25mmX6mm的试样。
3.根据权利要求1所述的钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料,其特征是钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料的检测步骤为:采用XD-MSM型自动控制定速摩擦磨损试验机测摩擦磨损性能,对偶摩擦盘为45钢,其硬度为35-45HRC,转速恒定为480r/min,载荷为1225N,依 照GB5763-2008测定在100,150,200,250,300,350 ℃的摩擦因数和磨损率;利用HR-150DT型洛氏硬度计测试样的硬度;试样切割成尺寸为20mmX20mmX10mm的板材,按照GB/T2611-2007,采用WAW型液压万能试验机测抗剪强度;将磨损后试样的磨损表面在108MANUAL型真空镀膜仪上镀金, 时间为40s,采用ZEISS型场发射扫 描电子显微镜(SEM)观察磨损表面的形貌。
4.根据权利要求1所述的钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料,其特征是以廉价且来源广泛的氧化铝、粘土和钾长石为原料,采用热压烧结方法制备了钢纤维和硅酸铝纤维混杂增强的陶瓷基复合材料;随硅酸铝纤维含量的增加,复合材料的硬度逐渐增大,抗剪强度先增大后减小;纤维的积聚造成陶瓷基体界面的结合变弱,是钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料力学性能降低的主要原因;随着硅酸铝纤维含量的增加,陶瓷基复合材料的摩擦因数增大;硅酸铝纤维的加入能够提高陶瓷基复合材料在低温下的耐磨性能,但对其在高温下的耐磨性不利。
CN201611045672.XA 2016-11-24 2016-11-24 一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料 Pending CN108101517A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611045672.XA CN108101517A (zh) 2016-11-24 2016-11-24 一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611045672.XA CN108101517A (zh) 2016-11-24 2016-11-24 一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料

Publications (1)

Publication Number Publication Date
CN108101517A true CN108101517A (zh) 2018-06-01

Family

ID=62203888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611045672.XA Pending CN108101517A (zh) 2016-11-24 2016-11-24 一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料

Country Status (1)

Country Link
CN (1) CN108101517A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755085A (zh) * 2020-06-23 2020-10-09 西安科技大学 高温自补偿耐磨材料、设计方法及制备方法
CN111910136A (zh) * 2020-06-23 2020-11-10 西安理工大学 一种三维纤维骨架韧化金属陶瓷及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755085A (zh) * 2020-06-23 2020-10-09 西安科技大学 高温自补偿耐磨材料、设计方法及制备方法
CN111910136A (zh) * 2020-06-23 2020-11-10 西安理工大学 一种三维纤维骨架韧化金属陶瓷及其制备方法
CN111755085B (zh) * 2020-06-23 2024-02-09 西安科技大学 高温自补偿耐磨材料、设计方法及制备方法

Similar Documents

Publication Publication Date Title
Ramnath et al. Aluminium metal matrix composites–a review
Ramesh et al. Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites
Xavier et al. Wear behavior of aluminium metal matrix composite prepared from industrial waste
Ipek Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C–Al/SiC)
Zhang et al. Dry sliding wear properties of high volume fraction SiCp/Cu composites produced by pressureless infiltration
Li et al. Characterizations and mechanical properties of impregnated diamond segment using Cu-Fe-Co metal matrix
Vijaya Ramnath et al. ALUMINIUM METAL MATRIX COMPOSITES-A REVIEW.
Shyu et al. In situ reacted titanium carbide-reinforced aluminum alloys composite
JIANG et al. Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe–40Cr against SiC/2618 Al alloy composites
Guo et al. Tribological properties of titanium aluminides coatings produced on pure Ti by laser surface alloying
Huang et al. Microstructure and wear properties of SiC woodceramics reinforced high-chromium cast iron
CN108101517A (zh) 一种钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料
Naplocha et al. Dry sliding wear of Al/Saffil/C hybrid metal matrix composites
CN104862695A (zh) 一种复合涂层、钛合金基复合材料及其制备方法
Wang et al. Microstructure and tribological properties of SiC matrix composites infiltrated with an aluminium alloy
Wang et al. Effect of strength and toughness of ceramic particles on impact abrasive wear resistance of iron matrix composites
Liu et al. Regulating the grinding performance of grindstones via using basalt fibers
Bhaskar et al. Effect of graphite particulates on sliding wear performance of hybrid AA2024 alloy composites
CN111072389B (zh) 一种SiC陶瓷颗粒表面改性工艺
Song et al. Effect of hot pressing temperature on microstructure, mechanical properties and grinding performance of vitrified-metal bond diamond wheels
Hou et al. Synthesis of diamond composites via microwave sintering and the improvement of mechanical properties induced by in-situ decomposition of Ti3AlC2
Zhao et al. Effect of quenched-tempered heat treatment on the wear resistance mechanism of zirconia toughened alumina ceramic reinforced high chromium cast iron architecture composite
Wang et al. Tribological properties and wear mechanisms of hot-pressed sintering mesocarbon microbeads (MCMBs)-SiC composites against different counterparts
Frolova et al. Silicon carbide ceramics reinforced SiC fibers
Lu et al. Microstructure, mechanical and tribological properties of multilayer graphene reinforced WC-10Ni3Al prepared by microwave sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180601

WD01 Invention patent application deemed withdrawn after publication