CN108101338B - Sludge dewatering device based on the principle of electroosmosis - Google Patents
Sludge dewatering device based on the principle of electroosmosis Download PDFInfo
- Publication number
- CN108101338B CN108101338B CN201711418318.1A CN201711418318A CN108101338B CN 108101338 B CN108101338 B CN 108101338B CN 201711418318 A CN201711418318 A CN 201711418318A CN 108101338 B CN108101338 B CN 108101338B
- Authority
- CN
- China
- Prior art keywords
- sludge
- anode plate
- lifting
- insulating
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 165
- 238000005370 electroosmosis Methods 0.000 title claims abstract description 14
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 208000005156 Dehydration Diseases 0.000 claims description 24
- 230000018044 dehydration Effects 0.000 claims description 24
- 238000006297 dehydration reaction Methods 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 15
- 239000012466 permeate Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 2
- 230000005684 electric field Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 10
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000010865 sewage Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/006—Electrochemical treatment, e.g. electro-oxidation or electro-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
技术领域technical field
本发明涉及污泥脱水技术领域,尤其是一种采用电渗透原理对污泥深度脱水的设备。The invention relates to the technical field of sludge dewatering, in particular to a device for deeply dewatering sludge by adopting the principle of electroosmosis.
背景技术Background technique
近年来,随着国内城镇生活污水处理厂的迅速发展,污水处理厂产生的剩余活性污泥快速增加,正逐渐成为一种公害。这种污泥由于活性菌多,处于胶体状态,机械脱水困难。目前普遍使用的离心式污泥脱水机和带式污泥脱水机只能将污泥脱水到含水率80%左右的污泥。这种脱水污泥由于含水率依然较高,不利于固化填埋、生物发酵或焚烧等后续处理。In recent years, with the rapid development of domestic urban domestic sewage treatment plants, the excess activated sludge produced by sewage treatment plants has increased rapidly and is gradually becoming a public hazard. Due to the large number of active bacteria, this kind of sludge is in a colloidal state, and it is difficult to dehydrate it mechanically. The centrifugal sludge dewatering machine and belt sludge dewatering machine commonly used at present can only dehydrate the sludge to the sludge with a moisture content of about 80%. Due to the high water content of this dewatered sludge, it is not conducive to subsequent treatment such as solidification landfill, biological fermentation or incineration.
目前国家要求城镇污水处理厂的剩余活性污泥的脱水含水率小于60%,出现了以厢式压滤机为主的机械脱水技术、污泥固化填埋技术等,但是这些技术的运作成本较高、效率低,有些技术通过增加无机固体物质来降低含水率,使得有机质的含量降低,不利于后续的资源化利用,尤其是用于生物发酵制肥料应用,更甚者会污染填埋土壤。At present, the state requires that the dehydration water content of the remaining activated sludge in urban sewage treatment plants be less than 60%. There have been mechanical dehydration technologies based on box filter presses, sludge solidification and landfill technologies, etc., but the operating costs of these technologies are relatively high. High and low efficiency. Some technologies reduce the moisture content by increasing inorganic solid matter, which reduces the content of organic matter, which is not conducive to subsequent resource utilization, especially for the application of bio-fermentation fertilizers, and even pollutes landfill soil.
电渗透污泥脱水作为一种利用电场作用进行污泥深度脱水的一种可靠稳定技术,逐步被关注和认可。其原理是给污泥施加一定的直流电压,利用污泥粒子和水分子相互向相反的极性方向分离移动的现象进行脱水,在脱水时没有必要施加高机械压力。Electro-osmotic sludge dewatering, as a reliable and stable technology for deep sludge dewatering using electric field, has gradually been concerned and recognized. The principle is to apply a certain DC voltage to the sludge, and use the phenomenon that the sludge particles and water molecules separate and move in the opposite polarity direction for dehydration. It is not necessary to apply high mechanical pressure during dehydration.
影响电渗透污泥脱水效率的一个重要因素是靠近阳极侧污泥含水率快速降低低,低含水率污泥引起局部电阻值加大,作用于电渗透效应的电场快速减少,直接导致电渗透整体效率快速下降,脱水时间加长。现有的电渗透污泥脱水装置都没有有效关注并解决此问题。An important factor affecting the dewatering efficiency of electroosmotic sludge is the rapid decrease of the moisture content of the sludge near the anode side. The sludge with low moisture content increases the local resistance value, and the electric field acting on the electroosmotic effect decreases rapidly, which directly leads to the overall electroosmotic dehydration. The efficiency drops rapidly and the dehydration time is prolonged. None of the existing electro-osmotic sludge dewatering devices has effectively paid attention to and solved this problem.
发明内容Contents of the invention
为解决上述问题,本发明的目的在于提供一种基于电渗透原理的污泥脱水装置,通过结合电渗透脱水方式和机械运动方式,使得作用于电渗透效应的电场能够保持稳定的强度,避免出现污泥局部电阻值加大的问题,从而有效提高污泥脱水的效率。In order to solve the above problems, the object of the present invention is to provide a sludge dewatering device based on the principle of electroosmosis. By combining the electroosmosis dewatering method and the mechanical movement method, the electric field acting on the electroosmosis effect can maintain a stable intensity and avoid occurrence of The problem of increasing the local resistance value of sludge can effectively improve the efficiency of sludge dewatering.
本发明解决其问题所采用的技术方案是:The technical scheme that the present invention solves its problem adopts is:
基于电渗透原理的污泥脱水装置,包括用于装载污泥的绝缘污泥槽、用于对处于绝缘污泥槽中的污泥进行电渗透脱水处理的脱水机构和用于抬升处于绝缘污泥槽中的污泥的升降机构;绝缘污泥槽包括侧壁和可沿着侧壁进行升降移动的底板,升降机构设置于底板下方;脱水机构包括设置于底板之上的阴极网控板、设置于绝缘污泥槽的上方开口处并与绝缘污泥槽的上方开口平齐的阳极板和用于驱动阳极板进行转动的驱动装置,阳极板和阴极网控板之间导通电流从而对污泥进行电渗透脱水处理,阳极板中与污泥接触的一面设置有用于排出污泥的呈阿基米德螺线设置的刮刀。A sludge dewatering device based on the principle of electroosmosis, including an insulating sludge tank for loading sludge, a dehydration mechanism for electroosmotic dehydration of the sludge in the insulating sludge tank, and a dewatering mechanism for lifting the sludge in the insulating sludge tank. The lifting mechanism of the sludge in the tank; the insulating sludge tank includes a side wall and a bottom plate that can be moved up and down along the side wall, and the lifting mechanism is arranged under the bottom plate; An anode plate located at the upper opening of the insulating sludge tank and flush with the upper opening of the insulating sludge tank and a driving device for driving the anode plate to rotate, and a current is conducted between the anode plate and the cathode network control board to control the sewage The mud is subjected to electroosmotic dehydration treatment, and the side of the anode plate in contact with the sludge is provided with a scraper arranged in an Archimedes spiral for discharging the sludge.
进一步,脱水机构还包括用于与阳极板、污泥和阴极网控板构成电源回路的直流电源,直流电源的正极端和负极端分别连接于阳极板和阴极网控板。Further, the dehydration mechanism also includes a DC power supply for forming a power circuit with the anode plate, the sludge and the cathode network control board, and the positive and negative terminals of the DC power supply are respectively connected to the anode plate and the cathode network control board.
进一步,升降机构包括连接于底板下方的升降螺杆、用于驱动升降螺杆进行升降移动的升降驱动轮和用于驱动升降驱动轮进行转动的升降电机,升降驱动轮连接于升降电机的转轴,升降驱动轮与升降螺杆相互啮合。Further, the lifting mechanism includes a lifting screw connected to the bottom of the base plate, a lifting drive wheel for driving the lifting screw to lift and move, and a lifting motor for driving the lifting drive wheel to rotate. The lifting drive wheel is connected to the rotating shaft of the lifting motor, and the lifting drive The wheels mesh with the lifting screw.
进一步,底板的下方还设置有用于收集从污泥中得到的渗透液的液体收集室。Further, a liquid collection chamber for collecting permeate obtained from the sludge is also provided under the bottom plate.
进一步,液体收集室的底部设置有用于排出渗透液的真空抽吸模块。Further, the bottom of the liquid collection chamber is provided with a vacuum suction module for discharging the permeate.
进一步,驱动装置为旋转电机。Further, the driving device is a rotary motor.
进一步,刮刀的截面呈三角形。Further, the cross section of the scraper is triangular.
进一步,阳极板呈圆形。Further, the anode plate is circular.
进一步,阳极板的直径大于绝缘污泥槽上方开口的直径。Further, the diameter of the anode plate is larger than the diameter of the opening above the insulating sludge tank.
进一步,由刮刀形成的阿基米德螺线有若干条,阳极板等分由刮刀形成的阿基米德螺线。Further, there are several Archimedes spirals formed by scrapers, and the anode plate equally divides the Archimedes spirals formed by scrapers.
本发明的有益效果是:基于电渗透原理的污泥脱水装置,绝缘污泥槽能够有效装载含水的污泥,而当污泥处于绝缘污泥槽之中时,升降机构会持续驱动底板带动污泥沿着侧壁进行抬升,从而使得处于最顶层的污泥能够与阳极板良好接触,而当污泥同时与阳极板和阴极网控板相接触时,电流会从阳极板通过污泥传导到阴极网控板,从而对污泥进行电渗透脱水处理;而当最顶层的污泥在阳极板的作用下脱水干燥时,不断进行转动的阳极板会利用处于其表面的呈阿基米德螺线设置的刮刀不断地把干燥的污泥排出,而随着干燥污泥的不断排出,升降机构会同步抬升处于绝缘污泥槽之中的污泥,由于处于阳极板和阴极网控板之间的污泥都是处于湿润的状态,因此不会出现污泥局部电阻值增大的问题,从而使得作用于电渗透效应的电场能够在污泥之中时刻保持稳定的强度,进而使得污泥能够被持续有效地进行脱水处理。因此,本发明的污泥脱水装置,通过结合电渗透脱水方式和机械运动方式,使得作用于电渗透效应的电场能够保持稳定的强度,避免出现污泥局部电阻值加大的问题,从而有效提高污泥脱水的效率。The beneficial effects of the present invention are: the sludge dewatering device based on the principle of electroosmosis, the insulating sludge tank can effectively load the sludge containing water, and when the sludge is in the insulating sludge tank, the lifting mechanism will continue to drive the bottom plate to drive the sludge. The mud is lifted along the side wall, so that the sludge on the top layer can be in good contact with the anode plate, and when the sludge is in contact with the anode plate and the cathode grid control plate at the same time, the current will be conducted from the anode plate through the sludge to the anode plate. The cathode grid control plate is used to dehydrate the sludge by electroosmosis; when the sludge on the top layer is dehydrated and dried under the action of the anode plate, the constantly rotating anode plate will use the Archimedes screw on its surface to dehydrate the sludge. The scraper set on the line continuously discharges the dried sludge, and with the continuous discharge of the dried sludge, the lifting mechanism will synchronously lift the sludge in the insulating sludge tank, because it is between the anode plate and the cathode network control plate The sludge is in a wet state, so there will be no increase in the local resistance of the sludge, so that the electric field acting on the electroosmotic effect can maintain a stable strength in the sludge at all times, and the sludge can It is continuously and effectively dehydrated. Therefore, the sludge dewatering device of the present invention, by combining the electroosmotic dehydration method and the mechanical movement method, enables the electric field acting on the electroosmotic effect to maintain a stable strength, avoiding the problem of increasing the local resistance value of the sludge, thereby effectively improving The efficiency of sludge dewatering.
附图说明Description of drawings
下面结合附图和实例对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing and example.
图1是本发明的污泥脱水装置的示意图;Fig. 1 is the schematic diagram of sludge dewatering device of the present invention;
图2是阳极板中刮刀的示意图。Figure 2 is a schematic diagram of the scraper in the anode plate.
具体实施方式Detailed ways
参照图1-图2,本发明的基于电渗透原理的污泥脱水装置,包括用于装载污泥的绝缘污泥槽1、用于对处于绝缘污泥槽1中的污泥进行电渗透脱水处理的脱水机构和用于抬升处于绝缘污泥槽1中的污泥的升降机构;绝缘污泥槽1包括侧壁和可沿着侧壁进行升降移动的底板,升降机构设置于底板下方;脱水机构包括设置于底板之上的阴极网控板2、设置于绝缘污泥槽1的上方开口处并与绝缘污泥槽1的上方开口平齐的阳极板3和用于驱动阳极板3进行转动的驱动装置4,阳极板3和阴极网控板2之间导通电流从而对污泥进行电渗透脱水处理,阳极板3中与污泥接触的一面设置有用于排出污泥的呈阿基米德螺线设置的刮刀31。其中,驱动装置4为旋转电机。具体地,绝缘污泥槽1能够有效装载含水的污泥,而当污泥处于绝缘污泥槽1之中时,升降机构会持续驱动底板带动污泥沿着侧壁进行抬升,从而使得处于最顶层的污泥能够与阳极板3良好接触,而当污泥同时与阳极板3和阴极网控板2相接触时,电流会从阳极板3通过污泥传导到阴极网控板2,从而对污泥进行电渗透脱水处理;而当最顶层的污泥在阳极板3的作用下脱水干燥时,不断进行转动的阳极板3会利用处于其表面的呈阿基米德螺线设置的刮刀31不断地把干燥的污泥排出,而随着干燥污泥的不断排出,升降机构会同步抬升处于绝缘污泥槽1之中的污泥,由于处于阳极板3和阴极网控板2之间的污泥都是处于湿润的状态,因此不会出现污泥局部电阻值增大的问题,从而使得作用于电渗透效应的电场能够在污泥之中时刻保持稳定的强度,进而使得污泥能够被持续有效地进行脱水处理。因此,本发明的污泥脱水装置,通过结合电渗透脱水方式和机械运动方式,使得作用于电渗透效应的电场能够保持稳定的强度,避免出现污泥局部电阻值加大的问题,从而有效提高污泥脱水的效率。Referring to Fig. 1-Fig. 2, the sludge dewatering device based on the principle of electroosmosis of the present invention includes an
其中,参照图1,脱水机构还包括用于与阳极板3、污泥和阴极网控板2构成电源回路的直流电源5,直流电源5的正极端和负极端分别连接于阳极板3和阴极网控板2。具体地,直流电源5向阳极板3输出稳定的电源,从而在污泥之中产生稳定的电场,保证电场有效施加在含水率尚未达到要求的污泥上。阳极板3和阴极网控板2对污泥进行电渗透脱水处理时,阳极板3和阴极网控板2之间产生的电场强度在3-8V/mm之间。直流电源5为脉动开关直流可调电源,通过根据电子尺测量的污泥厚度而调节直流电源5的输出电压,从而保证污泥能够处于强度合适的电场之中。Wherein, with reference to Fig. 1, the dehydration mechanism also includes a
其中,参照图1-图2,升降机构包括连接于底板下方的升降螺杆6、用于驱动升降螺杆6进行升降移动的升降驱动轮7和用于驱动升降驱动轮7进行转动的升降电机8,升降驱动轮7连接于升降电机8的转轴,升降驱动轮7与升降螺杆6相互啮合。具体地,当本发明的污泥脱水装置进行工作时,升降电机8能够随着阳极板3中刮刀31排出污泥的速度而对应地进行转动,从而驱动升降驱动轮7进行转动而带动升降螺杆6进行转动,使得升降螺杆6能够随着升降驱动轮7的转动作用而抬升底板,使得处于底板之上的污泥能够以适合的速度不断靠近并与阳极板3相接触,从而保证了污泥能够稳定地被脱水及排出,防止被排出的污泥的含水率出现不符合要求的情况。Wherein, referring to FIG. 1-FIG. 2, the lifting mechanism includes a
其中,参照图1,底板的下方还设置有用于收集从污泥中得到的渗透液的液体收集室9。具体地,液体收集室9能够有效接收从污泥中脱出的液体,从而做到污泥与液体的有效分离,保证被脱出的液体不会二次浸染污泥,从而提高污泥的脱水效果和效率。Wherein, referring to FIG. 1 , a
其中,参照图1,液体收集室9的底部设置有用于排出渗透液的真空抽吸模块10。具体地,当液体收集室9之中收集到一定程度的液体后,真空抽吸模块10会进行工作,利用真空的吸力作用而快速有效地把处于液体收集室9之中的液体排出,从而不会影响对后续液体的有效收集。Wherein, referring to FIG. 1 , the bottom of the
其中,参照图1-图2,刮刀31的截面呈三角形;阳极板3呈圆形;阳极板3的直径大于绝缘污泥槽1上方开口的直径。具体地,阳极板3的直径优选为1m,由石墨板构成,并且阳极板3的直径大于绝缘污泥槽1上方开口的直径;截面呈三角形的刮刀31的底边尺寸为5mm,刀刃的高度为2.5mm,由硬质绝缘陶瓷构成,并且通过粘合的方式固定在阳极板3之上。由石墨板构成的阳极板3具有良好的导电性能,因此能够对污泥产生稳定的电场,并且阳极板3的直径大于绝缘污泥槽1上方开口的直径,因此当阳极板3进行转动而排出污泥时,能够保证污泥可以被有效排出,从而不会出现污泥回落到绝缘污泥槽1之中的问题。呈阿基米德螺线设置的刮刀31,能够在阳极板3进行转动的时候把污泥推出到绝缘污泥槽1的外部,并且不会出现污泥阻塞堆积的现象。Wherein, referring to Fig. 1-Fig. 2, the section of the
其中,参照图1-图2,由刮刀31形成的阿基米德螺线有若干条,阳极板3等分由刮刀31形成的阿基米德螺线。具体地,刮刀31呈阿基米德螺线设置,即刮刀31的形状为等速螺线,由于阳极板3的直径优选为1m,因此刮刀31的极坐标方程为r=100*(1+t),其中r为每一点位置刮刀31的半径值,t为构成该等速螺线的时间。优选地,由刮刀31形成的阿基米德螺线有四条,呈圆形的阳极板3等分四条呈阿基米德螺线设置的刮刀31,当阳极板3带动刮刀31进行转动而排出污泥时,构成四条呈阿基米德螺线设置的刮刀31能够以最优的效果排出污泥,并且其防止污泥出现阻塞堆积的效果更好。当阳极板3进行转动时,靠近阳极板3一侧的含水率低的污泥能够在刮刀31的作用下沿着刮刀31之间的缝隙排出,不仅保证了污泥能够高效地被排出,并且不会出现污泥堵塞阿基米德螺线的问题,因此,本发明的污泥脱水装置,能够使得电渗透脱水效率提高一倍以上,从而能够满足用户对污泥的脱水处理需求。Wherein, referring to FIG. 1-FIG. 2 , there are several Archimedes spirals formed by
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the present invention is not limited to the above-mentioned implementation, and those skilled in the art can also make various equivalent deformations or replacements without violating the spirit of the present invention. Equivalent modifications or replacements are all within the scope defined by the claims of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711418318.1A CN108101338B (en) | 2017-12-22 | 2017-12-22 | Sludge dewatering device based on the principle of electroosmosis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711418318.1A CN108101338B (en) | 2017-12-22 | 2017-12-22 | Sludge dewatering device based on the principle of electroosmosis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108101338A CN108101338A (en) | 2018-06-01 |
CN108101338B true CN108101338B (en) | 2023-05-30 |
Family
ID=62212802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711418318.1A Active CN108101338B (en) | 2017-12-22 | 2017-12-22 | Sludge dewatering device based on the principle of electroosmosis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108101338B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110240388B (en) * | 2019-06-06 | 2023-09-12 | 河南工程学院 | Exchange electrode electroosmotic sludge dehydration system and method based on voltage classification detection |
CN111574004A (en) * | 2020-05-19 | 2020-08-25 | 哈工大机电工程(嘉善)研究院 | A comprehensive experimental device for oily sludge reduction |
CN116903223A (en) * | 2023-08-03 | 2023-10-20 | 浙大城市学院 | Integrated device for continuous suction, conditioning and dehydration of river bottom sludge and its use method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000317345A (en) * | 1999-05-11 | 2000-11-21 | Hideo Murakami | Dry separation method and apparatus of heavy metals from heavy metal-containing matter |
CN102503070A (en) * | 2011-11-11 | 2012-06-20 | 河海大学 | Device for reducing water ratio of sludge |
CN106746465A (en) * | 2017-01-18 | 2017-05-31 | 河南工程学院 | A kind of sludge dewatering system and its mud dewatering method of continuous electro-osmosis |
JP2017196574A (en) * | 2016-04-27 | 2017-11-02 | 株式会社エイブル | Electroosmosis dehydrator |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114560A (en) * | 1989-08-28 | 1992-05-19 | Nagabhusan Senapati | Apparatus and method for removal of liquids |
RU2058887C1 (en) * | 1992-06-15 | 1996-04-27 | Кочедыков Анатолий Константинович | Chipping machine |
BE1006394A3 (en) * | 1992-11-20 | 1994-08-09 | Dredging Int | DEVICE FOR DREDGING OF RIVER BASINS UNDER, AND dredging FOR SUCH DEVICE. |
CN1047154C (en) * | 1993-06-22 | 1999-12-08 | 林清锋 | Wastewater Treatment Plant |
EP1642868A1 (en) * | 2004-09-29 | 2006-04-05 | Les Technologies Elcotech Inc. | Process and apparatus for treating sludge |
CN101891365B (en) * | 2010-07-20 | 2011-09-21 | 浙江大学 | Mobile electrode electroosmotic dehydration device for municipal sewage sludge dewatering |
JP2014104461A (en) * | 2012-11-27 | 2014-06-09 | Koa Gijutsu Kk | Method and equipment for electroosmosis and dehydration of hydrated compound |
CN104163557B (en) * | 2014-08-12 | 2015-10-07 | 嘉兴学院 | A kind of for containing can the successively electroosmosis method of sludge dewatering and device |
WO2017155040A1 (en) * | 2016-03-11 | 2017-09-14 | 株式会社エイブル | Electric osmosis dehydration device and method for operating same |
CN207828082U (en) * | 2017-12-22 | 2018-09-07 | 佛山科学技术学院 | A kind of electro-osmosis sludge dehydration device |
CN207939113U (en) * | 2018-03-01 | 2018-10-02 | 徐州领君仁驰自动化设备有限公司 | A kind of Novel wire-stripping machine rotary cutter |
-
2017
- 2017-12-22 CN CN201711418318.1A patent/CN108101338B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000317345A (en) * | 1999-05-11 | 2000-11-21 | Hideo Murakami | Dry separation method and apparatus of heavy metals from heavy metal-containing matter |
CN102503070A (en) * | 2011-11-11 | 2012-06-20 | 河海大学 | Device for reducing water ratio of sludge |
JP2017196574A (en) * | 2016-04-27 | 2017-11-02 | 株式会社エイブル | Electroosmosis dehydrator |
CN106746465A (en) * | 2017-01-18 | 2017-05-31 | 河南工程学院 | A kind of sludge dewatering system and its mud dewatering method of continuous electro-osmosis |
Also Published As
Publication number | Publication date |
---|---|
CN108101338A (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108101338B (en) | Sludge dewatering device based on the principle of electroosmosis | |
CN102060427B (en) | Electroosmosis dewatering method and device of water-containing material | |
CN103253841A (en) | Electroosmotic coiled sludge dehydrator | |
CN207154372U (en) | A kind of garbage dewatering crushes environment-friendly processing unit | |
CN209940819U (en) | A device for removing heavy metals from sludge with high moisture content | |
CN104926066B (en) | It is a kind of that innoxious and deep dehydration the method for heavy metal is realized simultaneously to dewatered sludge | |
CN207828082U (en) | A kind of electro-osmosis sludge dehydration device | |
CN101891365B (en) | Mobile electrode electroosmotic dehydration device for municipal sewage sludge dewatering | |
CN204752505U (en) | Efficient sludge dewaterer | |
CN211035588U (en) | Shield mud dewatering device | |
KR20030021788A (en) | Electrodewareting Belt Press equipped with Anode Electric Drum | |
CN206289151U (en) | A kind of reservoir sludge concentration device | |
CN102506569B (en) | A kind of electroosmotic dewatering method of water-containing materials and device | |
CN201697428U (en) | Extruding-desiccation machine for refuse treatment | |
CN201737821U (en) | Mobile electrode type electroosmosis dehydration device for dehydration of urban sewage sludge | |
CN101423319B (en) | Novel dehydration system | |
CN109574462A (en) | A kind of continous way electro-osmosis mud drying device | |
CN204434445U (en) | A kind of sludge concentration and dewatering all-in-one | |
Mujumdar et al. | Electro-osmotic dewatering (EOD) of bio-materials | |
CN210085229U (en) | Sludge electro-osmosis belt filter press with integrated cathode and press belt | |
CN208814872U (en) | A kind of electro-osmosis mud drying device | |
CN216998123U (en) | Electroosmosis sludge dewatering device | |
CN216863972U (en) | A water-containing solid slag treatment device based on electroosmotic pulse dehumidification | |
CN201338982Y (en) | Novel dehydration device | |
CN201678579U (en) | A sludge ultrasonic drum dryer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 528000 Foshan Institute of science and technology, Xianxi reservoir West Road, Shishan town, Nanhai District, Foshan City, Guangdong Province Patentee after: Foshan University Country or region after: China Address before: 528000 Foshan Institute of science and technology, Xianxi reservoir West Road, Shishan town, Nanhai District, Foshan City, Guangdong Province Patentee before: FOSHAN University Country or region before: China |