CN108097281A - 一种MnPS3纳米片及其制备方法和应用 - Google Patents

一种MnPS3纳米片及其制备方法和应用 Download PDF

Info

Publication number
CN108097281A
CN108097281A CN201711123563.XA CN201711123563A CN108097281A CN 108097281 A CN108097281 A CN 108097281A CN 201711123563 A CN201711123563 A CN 201711123563A CN 108097281 A CN108097281 A CN 108097281A
Authority
CN
China
Prior art keywords
temperature
nanometer sheet
preparation
phosphorus
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711123563.XA
Other languages
English (en)
Other versions
CN108097281B (zh
Inventor
何军
陶菲克·艾哈迈德希法
爱迪尔·该
阿米尔·玛杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Nanosccience and Technology China
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN201711123563.XA priority Critical patent/CN108097281B/zh
Publication of CN108097281A publication Critical patent/CN108097281A/zh
Application granted granted Critical
Publication of CN108097281B publication Critical patent/CN108097281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/187Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种MnPS3纳米片的制备方法,包括如下步骤:1)以锰源和乌洛托品为原料,通过水热反应制备得到负载于基底上的MnO(OH)2前驱体;2)通过化学气相沉积法将所述前驱体磷硫化,得到MnPS3纳米片。本发明的方法合成步骤简单、操作方便,成本低,绿色环保、速度快,大约在几小时内即可完成物质的合成。现有技术的化学气相传输法,需要两周甚至更长的时间,本申请的方法与现有技术相比,制备效率大大提高。上述方法合成的纳米片成分均匀,结晶性优良,其能带为2~3eV,在可见光的催化作用下可对水进行分解,具有广阔的应用前景。

Description

一种MnPS3纳米片及其制备方法和应用
技术领域
本发明属于无机半导体纳米材料技术领域,具体涉及一种MnPS3纳米片及其制备方法和用途。
背景技术
利用太阳能分解水产生氢气和氧气,被认为是清洁能源领域最有前途的技术研究。其中,材料的能带位置是一个基本的要求。水的分解最少需要1.23eV的能量,并且要求材料的导带底相对于H+/H2具有更负的电位,这样产生的光电子才能还原H+产生H2;同时,材料的价带顶相对于H2O/O2具有更正的电位,这样光生空穴才能氧化H2O产生O2。目前,已发现一系列材料如TiO2、ZnO、CdS和C3N4等同时满足这两个要求,但由于种种原因,如带隙过宽,光腐蚀等,同时在可见光下分解水产生摩尔比的H2和O2仍旧是一个极大的挑战。探索新的带隙合适的稳定高效的催化剂,仍是研究的热点和前沿。
最近,一系列的金属磷硫(硒)化物(MPTx,如MPS3和MPSe3,M=Fe,Mn,Ni,Co,Zn等)以其二维层状特性和合适的能带位置受到广泛的关注。通过元素选择,MPTx材料的带隙可以在1.3eV到3.5eV变化。并且,进一步的带隙研究表明,这些材料的导带位置多数比H+/H2电位更负,能够应用于光催化分解水。同时,它们还具有极高的载流子迁移率。例如,单层MnPSe3的电子迁移率在室温下被计算为高达625.9cm2V-1s-1,高于许多二维材料,如单层MoS2(200cm2V-1s-1)和WS2(214cm2V-1s-1)。此外,在各向异性的Heisenberg模型和Ising模型下,单层的MnPS3或FePS3是一个二维的磁系统,这对于理解低维磁场的机理以及构建铁磁-反铁磁异质结构等磁性器件具有重要意义。
最近,块体的MPTx材料MPS3(M=Mn,Fe,Co,Ni,Zn,Cd,Sn)和MPS4(M=Cr,Ga,Bi)已经被报道合成,其磁性能和电化学性能,例如析氢反应(HER),析氧反应(OER)和氧还原反应(ORR)被研究。同时,横向尺寸大于15微米的少层(<10层)NiPS3纳米片也已经通过化学气相沉积(CVD)方法生长,并用于高光谱选择性和高检测性紫外光检测器,结晶性优良,化学性质稳定,对可见光吸收性能良好,其带隙为2.5eV,可以用于光催化水分解。
发明内容
本发明的第一个目的是提供本发明所述MnPS3纳米片的制备方法,包括如下步骤:
1)以锰源和乌洛托品为原料,通过水热反应制备得到负载于基底上的MnO(OH)2前驱体;
2)通过化学气相沉积法将所述前驱体磷硫化,得到MnPS3纳米片。
优选的,所述锰源为高锰酸钾、二氯化锰、硫酸锰或醋酸锰中的一种或至少两种的混合物;
优选的,水热反应的过程中,所述锰源中锰的浓度为20~100mM/L,所述乌洛托品的浓度为40~200mM/L。
进一步优选的,所述锰源中锰的浓度为50mM/L,所述乌洛托品的浓度为100mM/L。
优选的,所述水热反应的温度为60~180℃,时间为3~24h;
优选的,水热反应的温度可为60℃、80℃、100℃、120℃、140℃、160℃或180℃,优选为120℃。
优选的,所述基底为ITO玻璃、FTO玻璃、碳布、泡沫镍中的一种或至少两种的组合,优选为碳布。
优选的,通过化学气相沉积法进行磷硫化的过程中,所使用的载气为氩气;
和/或,磷硫混合物处于上游低温区,所述负载于基底上的MnO(OH)2前驱体位于下游高温区。
优选的,所述磷与硫的质量比为P:S=1:2~6;所述磷与Mn的质量比为1:0.1~0.5。
进一步优选的,所述磷与硫的质量配比为1:4,所述磷与Mn的质量比为1:0.2。
优选的,所述上游低温区的温度为100~500℃,所述下游高温区的温度为500~800℃,所述载气流量为20~100sccm;
进一步优选的,所述上游低温区的温度为200~400℃,下游高温区的温度为450~600℃,所述载气流量为80~100sccm。
具体的,在实际操作中,所述上游低温区采用下述方法进行升温,30分钟由室温升至200~350℃,然后经过120分钟升至250~400℃;所述上游高温区采用下述方法进行升温,30分钟由室温升至450~550℃,然后经过120分钟升至550~600℃。
作为优选的方案,本发明的方法包括如下步骤:
1)将碳布浸入锰源和乌洛托品的溶液中,且锰源和乌洛托品的浓度分别为50mM和100mM,于120℃水热反应10h,得到生长于碳布上的MnO(OH)2前驱体;
2)将步骤1)得到0.2重量份的的垂直生长于碳布上的MnO(OH)2前驱体置入CVD炉子的下游温区;将1重量份的磷粉和4重量份的硫粉研磨均匀,置入CVD炉子的上游温区;下游温度设定为30分钟由室温升至450~550℃,然后经过120分钟升至550~600℃,上游温度设定为30分钟由室温升至200~250℃,然后经过120分钟升至250~400℃;上下游的升温操作同时进行。载气为氩气,流量为100scc,反应结束后,待炉子自然冷却至室温方可取出。
由上述方法制备得到的纳米片的带隙Eg=2.5eV,催化作用良好。
作为最优的方案,本发明的方法包括如下步骤:
1)将碳布浸入锰源和乌洛托品的溶液中,且锰源和乌洛托品的浓度分别为48~52mM和95~105mM,于120℃水热反应10h,得到生长于碳布上的MnO(OH)2前驱体;
2)将步骤1)得到0.2重量份的的垂直生长于碳布上的MnO(OH)2前驱体置入CVD炉子的下游温区;将1重量份的磷粉和4重量份的硫粉研磨均匀,置入CVD炉子的上游温区;下游温度设定为30分钟由室温升至550℃,然后经过120分钟升至600℃,上游温度设定为30分钟由室温升至350℃,然后经过120分钟升至400℃;上下游的升温操作同时进行。载气为氩气,流量为100scc,反应结束后,待炉子自然冷却至室温方可取出。
本发明的方法具有合成步骤简单、操作方便,成本低,绿色环保、速度快,大约在几小时内即可完成物质的合成。比起现有技术需要两周甚至更长的时间,制备效率大大提高。合成的纳米片成分均匀,结晶性优良,其能带为2~3eV,在可见光的催化作用下可对水进行分解,具有广阔的应用前景。
本发明的另一个目的是保护本发明所述方法制备得到的MnPS3纳米片。所述纳米片呈六边形,其横向尺寸大小为5~15微米,其厚度为20~70纳米;所述纳米片中Mn、P、S原子的物质的量之比为1:0.8~1.2:2.8~3.2,所述纳米片的带隙为2~3eV。
优选的,所述纳米片的尺寸可为5微米、7微米、9微米、10微米、11微米、12微米、13微米或15微米等,优选为10微米。
本发明的最后一个目的是保护本申请所述的纳米片在光催化分解水中的应用。将本发明的产品应用于光催化分解纯水,在模拟太阳光下,纯水完全分解为摩尔比的H2和O2
附图说明
图1a是本发明的MnPS3纳米片的结构示意图;
图1b是合成的MnPS3纳米片的扫描电镜(SEM)图;
图1c是MnPS3纳米片的透射电镜(TEM)图;
图1d-1f是对应的Mn、P、S的元素分布(mapping);
图1g是MnPS3纳米片的高分辨透射电镜(HRTEM)图;
图1h是对应的选取电子衍射谱(SAED);
图2a是合成的MnPS3纳米片的能谱分析(EDS);
图2b是MnPS3纳米片的X射线衍射谱(XRD)及与标准卡片对比;
图2c是MnPS3纳米片的拉曼(Raman)分析图;
图2d-2f是MnPS3纳米片中Mn、P、S元素的高分辨XPS图谱;
图3a是合成的MnPS3纳米片的紫外可见红外漫反射吸收光谱(DRS);
图3b是由图3a转化而来的物质吸收系数与光子能量关系图;
图3c是合成的MnPS3纳米片的光电子能谱(UPS);
图3d是图3c中低结合能部分(小于4eV)的放大图;
图3e是本发明的MnPS3纳米片在光照下带隙跃迁催化分解水示意图;
图4a是本发明的MnPS3纳米片的光催化分解水析氢测试图;
图4b是产生气体的色谱信号。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例涉及一种纳米片的制备方法,包括如下步骤:
(1)将碳布浸入氯化锰和乌洛托品的溶液中,且锰源和乌洛托品的浓度分别为50mM/L和100mM/L,于120℃水热反应10h,得到生长于碳布上的MnO(OH)2前驱体;
(2)步骤(1)得到的生长于碳布上的MnO(OH)2前驱体置入CVD炉子的下游温区,将0.1g磷粉和0.4g硫粉研磨均匀,置入CVD炉子的上游温区,下游温度设定为30分钟由室温升至550℃,保温120分钟至600℃,上游温度设定为30分钟由室温升至350℃,保温120分钟至400℃,在操作的过程中,上下游同时升温,载气为氩气,流量为100scc,反应结束后,待炉子自然冷却至室温方可取出。
实施例2
本实施例涉及一种纳米片的制备方法,包括如下步骤:
(1)将碳布浸入醋酸锰和乌洛托品的溶液中,且锰源和乌洛托品的浓度分别为50mM/L和100mM/L,于120℃水热反应10h,得到生长于碳布上的MnO(OH)2前驱体;
(2)步骤(1)得到的生长于碳布上的MnO(OH)2前驱体置入CVD炉子的下游温区,将0.1g磷粉和0.4g硫粉研磨均匀,置入CVD炉子的上游温区,下游温区的温度设定为30分钟由室温升至450℃,保温120分钟至500℃,上游温区的温度设定为30分钟由室温升至350℃,保温120分钟至400℃,载气为氩气,流量为100scc,反应结束后,待炉子自然冷却至室温方可取出。
实施例3
本实施例涉及一种纳米片的制备方法,包括如下步骤:
(1)将碳布浸入氯化锰和乌洛托品的溶液中,且锰源和乌洛托品的浓度分别为50mM/L和100mM/L,于70℃水热反应10h,得到生长于碳布上的MnO(OH)2前驱体;
(2)步骤(1)得到的生长于碳布上的MnO(OH)2前驱体置入CVD炉子的下游温区,将0.1g磷粉和0.4g硫粉研磨均匀,置入CVD炉子的上游温区;下游温区的温度设定为30分钟由室温升至550℃,保温120分钟至600℃,上游温区的温度设定为30分钟由室温升至200℃,保温120分钟至250℃,载气为氩气,流量为100scc,反应结束后,待炉子自然冷却至室温方可取出。
实施例4
本实施例涉及一种MnPS3纳米片,由实施例1所述的方法制备而成。所述纳米片呈六边形,其横向大小为7微米,厚度为约40纳米;所述纳米片中Mn、P、S原子的物质的量之比为1:0.8~1.2:2.8~3.2,纳米片的带隙Eg=2.5eV;
图1a是本发明的MnPS3纳米片的结构示意图,其中,每一个单层MnPS3由五层原子构成,层中间的Fe原子以六边形排列,每个Fe原子被六个S原子立体包围,每个P原子分别与三个S原子相连,单层MnPS3之间以范德华力结合,构成单斜晶型;
图1b是合成的MnPS3纳米片的扫描电镜(SEM)图,可以看到,图中纳米片呈六边形,表面光滑均匀,横向尺寸标尺约为7μm;
图1c是MnPS3纳米片的透射电镜(TEM)图,图1d-1f是对应的Mn、P、S的元素分布(mapping),可以看到,Mn、P、S元素均匀地分布在纳米片上,没有偏析与团聚;
图1g是MnPS3纳米片的高分辨透射电镜(HRTEM)图,图1h是对应的选取电子衍射谱(SAED),从清晰的晶格条纹和衍射斑点可以看出,纳米片结晶性优良,呈现为单晶结构;
图2a是纳米片的能谱分析(EDS),可以看到Mn、P、S三种元素罗列,其原子含量百分比为1:1:3(参见表1);
表一
图2b是MnPS3纳米片的X射线衍射谱(XRD)及与标准卡片对比,可以看到,除去碳布的衍射谱(25°附近的鼓包),其余所有衍射峰与MnPS3的标准卡片严格对准,没有杂峰出现,说明合成的MnPS3纳米片纯度极高;
图2c是MnPS3纳米片的拉曼(Raman)分析图,可以看到,属于D3d点群的六个不可约振动模式(3个A1g和3个Eg)呈现于图中,这是纳米片中P2S6的全部振动模式;
图2d-2f是MnPS3纳米片中Mn、P、S元素的高分辨XPS图谱,可以看到,Mn 2p、P 2p和S 2p峰位清晰明确;
图3a是合成的MnPS3纳米片的紫外可见红外漫反射吸收光谱(DRS),图3b是由图3a转化而来的物质吸收系数与光子能量关系图,由此可以得到物质带隙(Eg)信息,可以得出,纳米片的带隙Eg=2.5eV;
图3c是合成的MnPS3纳米片的光电子能谱(UPS),图3d是图3c中低结合能部分(小于4eV)的放大图,由此可以得出物质价带位置(Evb)信息,计算可得,相对于真空能级,纳米片的价带顶位置Evb=(17.09-1.76)-21.22=-5.89eV,其中,(17.09-1.76)eV为从图中两端截止能量计算出的最大光电子能量,21.22eV为激发光子能量(He I灯),同时,纳米片的导带底位置Ecb=Evb+Eg=-3.39eV;
图3e是本发明的MnPS3纳米片在光照下带隙跃迁催化分解水示意图,可以看到,纳米片具有比H+/H2更负的导带位置,同时也具有比H2O/O2更正的价带位置,从而,在可见光的照射下,到达导带位置的光生电子可以还原H+产生H2,同时,留在价带位置的光生空穴可以氧化H2O产生O2
图4a是纳米片的光催化分解水析氢测试图,图4b是10h时产生的气体的色谱信号,可以看出,前16h的测试中,纳米片可以在模拟太阳光下完全分解水产生摩尔比的H2和O2,色谱载气为氩气,信号显示,没有N2峰(约6分钟附近)出现,排出了系统漏气的可能,说明O2来源于水的分解。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种MnPS3纳米片的制备方法,其特征在于,包括如下步骤:
1)以锰源和乌洛托品为原料,通过水热反应制备得到负载于基底上的MnO(OH)2前驱体;
2)通过化学气相沉积法将所述前驱体磷硫化,得到MnPS3纳米片。
2.根据权利要求1所述的制备方法,其特征在于,所述锰源为高锰酸钾、二氯化锰、硫酸锰或醋酸锰中的一种或至少两种的混合物;
和/或,水热反应的过程中,所述锰源中锰的浓度为20~100mM/L,所述乌洛托品的浓度为40~200m/L。
3.根据权利要求1或2所述的制备方法,其特征在于,所述水热反应的温度为60~180℃,时间为3~24h。
4.根据权利要求2所述的制备方法,其特征在于,所述基底为ITO玻璃、FTO玻璃、碳布、泡沫镍中的一种或至少两种的组合,优选为碳布。
5.根据权利要求2所述的制备方法,其特征在于,通过化学气相沉积法进行磷硫化的过程中,所使用的载气为氩气;
和/或,磷硫混合物处于上游低温区,所述负载于基底上的MnO(OH)2前驱体位于下游高温区。
6.根据权利要求2或5所述的制备方法,其特征在于,所述磷与硫的质量比为P:S=1:2~6;所述磷与Mn的质量比为1:0.1~0.5。
7.根据权利要求5或6所述的制备方法,其特征在于,所述上游低温区的温度为100~500℃,所述下游高温区的温度为500~800℃,所述载气流量为20~100sccm;优选的,所述上游低温区的温度为200~400℃,下游高温区的温度为450~600℃,所述载气流量为80~100sccm。
8.根据权利要求5或7所述的制备方法,其特征在于,所述上游低温区采用下述方法进行升温,30分钟由室温升至200~350℃,然后经过120分钟升至250~400℃;所述上游高温区采用下述方法进行加热,30分钟由室温升至450~550℃,然后经过120分钟升至550~600℃。
9.根据权利要求1~8任一项方法制备得到的纳米片;优选的,所述纳米片的横向尺寸大小为5~15微米,其厚度为20~70纳米;所述纳米片中Mn、P、S原子的物质的量之比为1:0.8~1.2:2.8~3.2。
10.权利要求9所述的纳米片在光催化分解水中的应用。
CN201711123563.XA 2017-11-14 2017-11-14 一种MnPS3纳米片及其制备方法和应用 Active CN108097281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711123563.XA CN108097281B (zh) 2017-11-14 2017-11-14 一种MnPS3纳米片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711123563.XA CN108097281B (zh) 2017-11-14 2017-11-14 一种MnPS3纳米片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108097281A true CN108097281A (zh) 2018-06-01
CN108097281B CN108097281B (zh) 2021-04-27

Family

ID=62206431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711123563.XA Active CN108097281B (zh) 2017-11-14 2017-11-14 一种MnPS3纳米片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108097281B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203255A (zh) * 2020-01-16 2020-05-29 西安交通大学 一种N掺杂CdPS3二维纳米片光催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714934A (zh) * 2001-06-14 2006-01-04 罗姆和哈斯公司 催化剂的制备方法
CN104511029A (zh) * 2015-01-08 2015-04-15 上海师范大学 水溶性MnPS3纳米片及其制备方法和应用
CN105948126A (zh) * 2016-04-26 2016-09-21 国家纳米科学中心 钴掺杂硫化钨纳米片、其制备方法及电化学析氢的用途
EP3114252A1 (en) * 2014-03-06 2017-01-11 True 2 Materials Pte Ltd Method for manufacture of films and foams
CN107117659A (zh) * 2017-06-08 2017-09-01 国家纳米科学中心 高质量超薄六方NiPS3纳米片及其大面积制备方法
WO2018054464A1 (en) * 2016-09-21 2018-03-29 Toyota Motor Europe Multilayer thin film and the preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714934A (zh) * 2001-06-14 2006-01-04 罗姆和哈斯公司 催化剂的制备方法
EP3114252A1 (en) * 2014-03-06 2017-01-11 True 2 Materials Pte Ltd Method for manufacture of films and foams
CN104511029A (zh) * 2015-01-08 2015-04-15 上海师范大学 水溶性MnPS3纳米片及其制备方法和应用
CN105948126A (zh) * 2016-04-26 2016-09-21 国家纳米科学中心 钴掺杂硫化钨纳米片、其制备方法及电化学析氢的用途
WO2018054464A1 (en) * 2016-09-21 2018-03-29 Toyota Motor Europe Multilayer thin film and the preparation thereof
CN107117659A (zh) * 2017-06-08 2017-09-01 国家纳米科学中心 高质量超薄六方NiPS3纳米片及其大面积制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENGMEI WANG ET AL.: ""Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity"", 《NANO ENERGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203255A (zh) * 2020-01-16 2020-05-29 西安交通大学 一种N掺杂CdPS3二维纳米片光催化剂的制备方法
CN111203255B (zh) * 2020-01-16 2021-05-28 西安交通大学 一种N掺杂CdPS3二维纳米片光催化剂的制备方法

Also Published As

Publication number Publication date
CN108097281B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Wang et al. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation
Su et al. Ultrathin mesoporous g-C3N4/NH2-MIL-101 (Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance
Wu et al. In situ preparation and analysis of bimetal Co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity
Hu et al. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation
Wang et al. Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation
Opoku et al. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6 (010) and g-C3N4/Bi2WO6 (010) heterostructures: a hybrid density functional theory study
Ji et al. Graphene-like boron nitride induced accelerated charge transfer for boosting the photocatalytic behavior of Bi4O5I2 towards bisphenol a removal
Jia et al. Constructing 2D BiOIO3/MoS2 Z-scheme heterojunction wrapped by C500 as charge carriers transfer channel: Enhanced photocatalytic activity on gas-phase heavy metal oxidation
Lu et al. Synthesis and photocatalytic activities of a CuO/TiO 2 composite catalyst using aquatic plants with accumulated copper as a template
Li et al. In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance
Zeng et al. Isotype heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: generalized self-assembly and its high photocatalytic activity
Chen et al. Facile synthesis of visible-light-active BiOI modified Bi2MoO6 photocatalysts with highly enhanced photocatalytic activity
Leary et al. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis
Ojha et al. Amine-assisted synthesis of FeWO4 nanorodg-C3N4 for enhanced visible light-driven Z-scheme photocatalysis
Jia et al. A low temperature situ precipitation route to designing Zn-doped SnO2 photocatalyst with enhanced photocatalytic performance
Zhang et al. Carbon-incorporated TiO2 microspheres: facile flame assisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production
Yu et al. Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance
Li et al. Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
Li et al. The in-built bionic “MoFe cofactor” in Fe-doped two-dimensional MoTe 2 nanosheets for boosting the photocatalytic nitrogen reduction performance
Peng et al. Construction of (001) facets exposed ZnO nanosheets on magnetically driven cilia film for highly active photocatalysis
Li et al. Phosphated 2D MoS2 nanosheets and 3D NiTiO3 nanorods for efficient photocatalytic hydrogen evolution
Fang et al. Phosphorus-doping CdS@ NiFe layered double hydroxide as Z-Scheme heterojunction for enhanced photocatalytic and photo-fenton degradation performance
Zhang et al. Hydrothermal synthesis of Bi2O4/NaBiO3 heterostructures with enhanced visible light photocatalytic properties
Cheng et al. Achieving phase transformation and structure control of crystalline anatase TiO2@ C hybrids from titanium glycolate precursor and glucose molecules

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant