CN108093175A - A kind of adaptive defogging method of real-time high-definition video and device - Google Patents

A kind of adaptive defogging method of real-time high-definition video and device Download PDF

Info

Publication number
CN108093175A
CN108093175A CN201711419404.4A CN201711419404A CN108093175A CN 108093175 A CN108093175 A CN 108093175A CN 201711419404 A CN201711419404 A CN 201711419404A CN 108093175 A CN108093175 A CN 108093175A
Authority
CN
China
Prior art keywords
mrow
image
msub
video
defogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711419404.4A
Other languages
Chinese (zh)
Other versions
CN108093175B (en
Inventor
张弘
李亚伟
杨帆
杨一帆
袁丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201711419404.4A priority Critical patent/CN108093175B/en
Publication of CN108093175A publication Critical patent/CN108093175A/en
Application granted granted Critical
Publication of CN108093175B publication Critical patent/CN108093175B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种实时高清视频自适应去雾方法及装置,该装置包括视频图像采集模块,视频图像去雾处理模块,通讯接口模块,视频图像编码与显示模块;视频图像采集模块实现视频信号的采集与解码,视频图像去雾处理模块实现视频信号的去雾处理,通讯接口模块实现装置与上位机的指令交换,视频图像编码与显示模块实现视频的编码输出与显示。该方法是根据高清图像数据量大的特点,采用合理的假设,提出了一种计算量较小的透射率与大气光强的估计方法;在提高去雾效果的同时大大降低了计算量,保证去雾算法的实时性,同时使图像更加平滑,更加自然。本发明结构简单,易于实现,可以根据雾、霾的浓度自适应选择去雾强度,更加的智能化和人性化。

The invention relates to a real-time high-definition video adaptive defogging method and device. The device includes a video image acquisition module, a video image defogging processing module, a communication interface module, a video image encoding and display module; the video image acquisition module realizes video signal processing. Acquisition and decoding, the video image defogging processing module realizes the defogging processing of the video signal, the communication interface module realizes the command exchange between the device and the host computer, and the video image coding and display module realizes the video coding output and display. This method is based on the characteristics of large amount of high-definition image data, and adopts reasonable assumptions to propose a method for estimating the transmittance and atmospheric light intensity with a small amount of calculation; it greatly reduces the amount of calculation while improving the effect of defogging, ensuring The real-time performance of the dehazing algorithm makes the image smoother and more natural. The invention has a simple structure and is easy to realize, and can adaptively select the defogging intensity according to the concentration of fog and haze, and is more intelligent and humanized.

Description

一种实时高清视频自适应去雾方法及装置A real-time high-definition video adaptive defogging method and device

技术领域technical field

本发明涉及一种实时高清视频自适应去雾方法及装置,可用于验证包括实时高清视频自适应去雾算法在内的多种去雾方法;针对不同的雾、霾情况提出了一种实时高清视频自适应去雾算法,该方法能针对高清视频实现实时自适应的去雾功能,能够显著改善视频的采集与观测效果,属于视频/图像处理、计算机视觉领域。The invention relates to a real-time high-definition video adaptive defogging method and device, which can be used to verify various defogging methods including real-time high-definition video adaptive defogging algorithms; a real-time high-definition real-time high-definition video is proposed for different fog and haze conditions Video adaptive defogging algorithm, this method can realize real-time adaptive defogging function for high-definition video, can significantly improve the video collection and observation effect, belongs to the field of video/image processing and computer vision.

背景技术Background technique

随着计算机视觉系统的发展及其在军事、交通以及安全监控等领域的应用,图像去雾已成为计算机视觉的重要研究方向。在雾、霾之类的恶劣天气下采集的图像会由于大气散射的作用而被严重降质,使图像颜色偏灰白色,对比度降低,物体特征难以辨认,不仅使视觉效果变差,图像观赏性降低,还会影响图像后期的处理,更会影响各类依赖于光学成像仪器的系统工作,如卫星遥感系统、航拍系统、室外监控和目标识别系统等。With the development of computer vision system and its application in military, transportation and security monitoring and other fields, image defogging has become an important research direction of computer vision. Images collected in severe weather such as fog and haze will be seriously degraded due to atmospheric scattering, which will make the image color off-white, reduce the contrast, and make it difficult to identify object features, which not only deteriorates the visual effect, but also reduces the appreciation of the image. , It will also affect the post-processing of the image, and it will also affect the work of various systems that rely on optical imaging instruments, such as satellite remote sensing systems, aerial photography systems, outdoor monitoring and target recognition systems, etc.

去雾装置已经在实际中得到了广泛应用。但现有的去雾装置通常只能实现标清视频的实时去雾,或者根本无法满足实时性的要求,或者无法满足去雾强度的自适应选择。为了解决这一系列问题,本发明设计了一种实时高清视频自适应去雾装置及方法,该装置能够自动判断雾、霾浓度的大小,自适应选择去雾强度,实现实时高清视频自适应去雾功能。Defogging devices have been widely used in practice. However, the existing defogging devices usually can only achieve real-time defogging of SD video, or cannot meet the real-time requirements at all, or cannot meet the adaptive selection of defogging intensity. In order to solve this series of problems, the present invention designs a real-time high-definition video adaptive defogging device and method. Fog function.

实时高清视频自适应去雾方法依然采取了逐帧计算图像透射率与大气光强的思路,但是为了实时性的要求,采用上一帧图像计算的大气光强度和透射率来近似当前帧图像的大气光强度和透射率。利用FPGA的并行计算特点,通过设计并行算计方法,提高计算去雾算法的运行速度,保证在高清视频下仍能保证实时性;The real-time high-definition video adaptive defogging method still adopts the idea of calculating the image transmittance and atmospheric light intensity frame by frame, but for real-time requirements, the atmospheric light intensity and transmittance calculated by the previous frame image are used to approximate the current frame image. Atmospheric light intensity and transmittance. Utilizing the parallel computing characteristics of FPGA, by designing a parallel computing method, the running speed of the computing defogging algorithm is improved to ensure real-time performance under high-definition video;

去雾方法的研究是目前机器视觉领域的热点之一,吸引了国内外多家研究机构的关注;2009年发表于国际顶级会议CVPR的文献《Single Image Haze Removal Using DarkChannel Prior》对去雾方法进行了研究,取得了较好的实际效果,但是该方法对于存在大面积天空的雾化图像处理时,出现失真,这是由于天空区域不满足暗通道先验导致的,同时文章提出的计算透射率的soft matting方法虽然能够得到较为精细的透射率图,但是计算复杂,无法满足实时性的要求。能够自适应各种自然场景,自动选择去雾算法强度,以及满足实时性要求对于实现实时高清去雾功能至关重要,因此研究针对实时高清视频的自适应去雾方法及装置具有重要意义。The research on haze removal method is one of the hotspots in the field of machine vision at present, which has attracted the attention of many research institutions at home and abroad; the document "Single Image Haze Removal Using DarkChannel Prior" published in the top international conference CVPR in 2009 carried out the research on the dehaze method. After research, good practical results have been achieved. However, when this method processes foggy images with a large area of sky, distortion occurs. This is because the sky area does not satisfy the dark channel prior. At the same time, the calculated transmittance Although the soft matting method can obtain a relatively fine transmittance map, the calculation is complex and cannot meet the real-time requirements. Being able to adapt to various natural scenes, automatically select the strength of the defogging algorithm, and meet the real-time requirements are very important to realize the real-time high-definition defogging function. Therefore, it is of great significance to study the adaptive defogging method and device for real-time high-definition video.

公布号为CN 107071353 A的中国专利文件公开了一种图像去雾装置。该方法选用TMS320DM6437芯片作为处理器,解码芯片选用TVP5150模数转换器,只能对标清图像数据进行处理,并且对于不同强度的雾图像只能通过人工选择的方法选择不同去雾算法,不能自适应选择去雾算法。The Chinese patent document with publication number CN 107071353 A discloses an image defogging device. This method uses the TMS320DM6437 chip as the processor, and the TVP5150 analog-to-digital converter as the decoding chip, which can only process standard-definition image data, and for fog images of different intensities, only different defogging algorithms can be selected manually, and cannot be self-adapted Select a defogging algorithm.

公布号为CN 107194894 A的中国专利文件公开了一种视频去雾方法及其系统。该方法采用基于Dark Channel Prior的去雾方法,能够实现对监控视频的有效去雾,但是无法保证实时性。The Chinese patent document with publication number CN 107194894 A discloses a video defogging method and system thereof. This method adopts the defogging method based on Dark Channel Prior, which can effectively defog the surveillance video, but cannot guarantee real-time performance.

发明内容Contents of the invention

本发明技术解决问题:克服现有技术的不足,提供一种实时高清视频自适应去雾方法及装置,以解决现有实时摄像系统所提取的图像质量退化,图像模糊不清,图像视觉效果不佳等问题。The technical problem of the present invention is to overcome the deficiencies of the prior art and provide a real-time high-definition video self-adaptive defogging method and device to solve the image quality degradation, blurred image and poor visual effect of the image extracted by the existing real-time camera system Good and other issues.

本发明所采用的技术方案是:发明了一种图像去雾装置,该装置包括视频图像采集模块,视频图像去雾处理模块,通讯接口模块,视频图像编码与显示模块。The technical solution adopted by the present invention is: an image defogging device is invented, which includes a video image acquisition module, a video image defogging processing module, a communication interface module, and a video image encoding and display module.

所述视频图像采集模块包括视频信号接收装置、视频解码芯片,所述视频信号接收装置一般为CCD高清摄像机,所述解码芯片选用GS2971A 3G-SDI视频解码芯片。The video image acquisition module includes a video signal receiving device and a video decoding chip. The video signal receiving device is generally a CCD high-definition camera, and the decoding chip is a GS2971A 3G-SDI video decoding chip.

所述视频图像去雾处理模块包括处理器和与之连接的外扩,所述处理器选用XC7K325T FPGA芯片,所述外扩为与之连接的DDR3、SRAM、FLASH、通信芯片等。The video image defogging processing module includes a processor and an external expansion connected thereto. The processor is an XC7K325T FPGA chip, and the external expansion is a DDR3, SRAM, FLASH, communication chip, etc. connected thereto.

所述通信接口模块包括通信芯片与通信协议,所述通信芯片选用MAX3077E,通信协议选用工业上十分成熟的RS422总线。The communication interface module includes a communication chip and a communication protocol. The communication chip is MAX3077E, and the communication protocol is an industrially mature RS422 bus.

所述视频图像显示模块包括编码芯片、高清视频图像显示器,所述编码芯片选用GS2972数模转换器。The video image display module includes an encoding chip and a high-definition video image display, and the encoding chip uses a GS2972 digital-to-analog converter.

基于该装置的实时高清视频自适应去雾方法包括以下步骤:The real-time high-definition video adaptive defogging method based on the device comprises the following steps:

第一步,对于像素点x,原图像J(x)的降质模型为:In the first step, for a pixel x, the degraded model of the original image J(x) is:

I(x)=J(x)t(x)+A(1-t(x))I(x)=J(x)t(x)+A(1-t(x))

其中I(x)表示有雾图像,J(x)表示原始无雾图像,t(x)表示透射率,A表示大气光强度。图像降质程度与距离有关,远距离降质图像可以看成是在原始清晰图像上不同局部区域都掩盖了一层了均匀的雾,因此图像去雾算法通常假设图像局部景深相同,即t(x)通过局部图像块求取,而大气光强度A为常量。where I(x) represents the foggy image, J(x) represents the original fog-free image, t(x) represents the transmittance, and A represents the atmospheric light intensity. The degree of image degradation is related to the distance. The long-distance degraded image can be regarded as a layer of uniform fog covering different local areas on the original clear image. Therefore, the image defogging algorithm usually assumes that the local depth of field of the image is the same, that is, t( x) is obtained through local image blocks, and the atmospheric light intensity A is constant.

第二步,可对每个像素点处J(x)的求解过程进行简化:In the second step, the solution process of J(x) at each pixel can be simplified:

其中C=A(1-t(x))。in C=A(1-t(x)).

第三步,利用暗通道先验算法,计算暗通道图像,并且通过选取暗通道中亮度最高的0.1%的像素值对应位置原始图像亮度值作为大气光强度A的估计值;The third step is to use the dark channel prior algorithm to calculate the dark channel image, and select the original image brightness value corresponding to the position of the pixel value with the highest brightness of 0.1% in the dark channel as the estimated value of the atmospheric light intensity A;

其中Idark(x)表示暗通道图像,Ic(y)表示彩色图像的每个通道,Ω(x)表示以像素x为中心的图像块,c表示图像的r,g,b三个彩色通道。表示暗通道中亮度最高的0.1%的像素值,I(x)表示原始输入图像,Ac与A均表示大气光强度;Where I dark (x) represents the dark channel image, I c (y) represents each channel of the color image, Ω(x) represents the image block centered on pixel x, and c represents the r, g, b three colors of the image aisle. Indicates the pixel value with the highest brightness of 0.1% in the dark channel, I(x) indicates the original input image, and both A c and A indicate the intensity of atmospheric light;

第四步,通过上述计算的大气光强A,则透射率t(x)的估计公式为:The fourth step, through the atmospheric light intensity A calculated above, the estimation formula of the transmittance t(x) is:

其中ω=0.95,在现实生活中,即使是晴天,空气中也存在着一些颗粒,因此,有必要在去雾的时候保留一定程度的雾,这可以引入一个在[0,1]之间的因子ω。Where ω=0.95, in real life, even in sunny days, there are some particles in the air, therefore, it is necessary to retain a certain degree of fog when defogging, which can introduce a value between [0,1] Factor ω.

第五步,通过上述求得的透射率t(x),计算档位选择参数α,The fifth step is to calculate the gear selection parameter α through the transmittance t(x) obtained above,

其中β1,β2表示透射率阈值,α123为档位控制参数,||t(x)||表示透射率1范数;Among them, β 1 and β 2 represent the transmittance threshold, α 1 , α 2 , α 3 are gear control parameters, and ||t(x)|| represents the transmittance 1 norm;

第六步,通过上述计算求得t(x)、A及α,在去雾处理时采用过参数抑制的算法,具体为:The sixth step is to obtain t(x), A and α through the above calculation, and use the algorithm of over-parameter suppression in the dehazing process, specifically:

其中,x表示图像上像素点位置坐标,I(x)表示带雾图像,t(x)表示透射率,t0表示透射率下限,J(x)表示要恢复的无雾图像,A表示大气光强度,A0表示大气光强上限,参数α为去雾档位选择参数;当投射图t(x)的值很小时,会导致J(x)的值偏大,从而使得图像整体偏白,为了避免这一问题,设置一个阈值t0,当t值小于t0时,采用t0进行运算;当大气光强A的值很大时,会导致处理后的图像偏色并且出现大量色斑,为了避免这一问题,设置一个阈值A0,当A值大于A0时,采用A0进行运算。Among them, x represents the position coordinates of pixels on the image, I(x) represents the foggy image, t(x) represents the transmittance, t 0 represents the lower limit of transmittance, J(x) represents the fog-free image to be restored, and A represents the atmosphere Light intensity, A 0 represents the upper limit of atmospheric light intensity, and parameter α is the selection parameter for the defogging gear; when the value of the projection map t(x) is small, the value of J(x) will be too large, so that the overall image is white , in order to avoid this problem, set a threshold t 0 , when the value of t is less than t 0 , use t 0 for calculation; when the value of the atmospheric light intensity A is large, it will cause the processed image to have a color cast and a large number of colors Spot, in order to avoid this problem, set a threshold A 0 , when the value of A is greater than A 0 , use A 0 for calculation.

与现有技术相比,本发明的特点是:Compared with prior art, the characteristics of the present invention are:

(1)系统实现简单,实时性好,能够针对雾浓度自适应去雾。相比传统单一的Gain/off方法,去雾能力得到了提升,主要原因有:(1)采用简化的计算方法,包括大气光强与透射率的合理估计算法,能够在提升去雾效果的同时,降低运算量,保证去雾算法的实时性。(2)采用过参数抑制的方法,增加A0与t0对计算的大气光强和透射率进行过参数抑制,防止图像出现偏白、偏色、色斑等失真的情况,使图像更加平滑,更加自然。(1) The system is simple to implement, has good real-time performance, and can adaptively defog according to the fog concentration. Compared with the traditional single Gain/off method, the defogging ability has been improved. The main reasons are as follows: (1) Using a simplified calculation method, including a reasonable estimation algorithm for atmospheric light intensity and transmittance, can improve the defogging effect at the same time , reduce the amount of computation, and ensure the real-time performance of the dehazing algorithm. (2) Adopt the method of over-parameter suppression, increase A 0 and t 0 to perform over-parameter suppression on the calculated atmospheric light intensity and transmittance, prevent the image from being distorted such as white, color, and color spots, and make the image smoother , more naturally.

(2)专利CN102017000379449提出了一种视频去雾方法及其系统,但未明确使用的硬件系统,因此无法判断能否实现实时的图像去雾操作,同时该专利中对同一参数使用了多种近似求解方法,导致求解精度大幅度下降,去雾效果差;本方案采用FPGA作为主控芯片,能够充分发挥并行计算的优势,采用少量合理近似,既有效降低运算量,又能保证计算精度与实现效果,本发明去雾方法与装置能够实现分辨率为1080P图像的实时去雾。(2) Patent CN102017000379449 proposes a video defogging method and its system, but the hardware system used is not specified, so it is impossible to judge whether real-time image defogging operation can be realized. At the same time, the patent uses various approximations for the same parameter The solution method leads to a significant drop in solution accuracy and poor defogging effect; this solution uses FPGA as the main control chip, which can give full play to the advantages of parallel computing, and uses a small amount of reasonable approximation, which not only effectively reduces the amount of calculation, but also ensures the calculation accuracy and realization As a result, the defogging method and device of the present invention can realize real-time defogging of images with a resolution of 1080P.

附图说明Description of drawings

图1为本发明的一种实时高清视频自适应去雾装置流程图;Fig. 1 is a flow chart of a real-time high-definition video adaptive defogging device of the present invention;

图2为本发明的一种实时高清视频自适应去雾方法流程图;Fig. 2 is a flow chart of a real-time high-definition video adaptive defogging method of the present invention;

图3为本发明的一种实时高清视频自适应去雾方法及装置的仿真测试图,其中a为有雾图像,b为经过去雾操作之后的图像。Fig. 3 is a simulation test diagram of a real-time high-definition video adaptive defogging method and device of the present invention, wherein a is a foggy image, and b is an image after a defogging operation.

具体实施方式Detailed ways

下面结合附图对本发明的具体实施方式做进一步详细说明。The specific implementation manner of the present invention will be described in further detail below in conjunction with the accompanying drawings.

如图1所示为本发明的一种实时高清视频自适应去雾装置流程图,该装置包括视频图像采集模块,视频图像去雾处理模块,通讯接口模块,视频图像编码与显示模块。Figure 1 is a flow chart of a real-time high-definition video adaptive defogging device of the present invention, which includes a video image acquisition module, a video image defogging processing module, a communication interface module, and a video image encoding and display module.

所述视频图像采集模块包括视频信号接收装置、解码芯片,视频信号接收装置一般为CCD摄像机,解码芯片选用GS2971A SDI信号解码芯片;具体过程为由CCD摄像机采集到的图像数据经过解码芯片GS2971A,将输入的串行信号转换成并行数字图像码流,解码芯片GS2971A与XC7K325T芯片相连;Described video image acquisition module comprises video signal receiving device, decoding chip, and video signal receiving device is generally CCD camera, and decoding chip selects GS2971A SDI signal decoding chip for use; Concrete process is that the image data collected by CCD camera passes through decoding chip GS2971A, will The input serial signal is converted into a parallel digital image stream, and the decoding chip GS2971A is connected to the XC7K325T chip;

所述视频图像去雾处理模块包括处理器和与之连接的外扩,处理器选用Xilinx公司的XC7K325T FPGA芯片,外扩为与之连接的SRAM、DDR3、FLASH、通信芯片等;具体过程为经过解码芯片GS2971A处理后的数字图像码流存储到DDR3中,对视频数据进行缓存,通过计算得到的参数存储到SRAM中,XC7K325T中的程序存储在外部存储器FLASH中,每次上电从FLASH中加载程序,通信芯片实现XC7K325T FPGA芯片与外部计算机的通信;Described video image defogging processing module comprises processor and the external expansion that is connected with it, processor selects the XC7K325T FPGA chip of Xilinx Company for use, external expansion is SRAM, DDR3, FLASH, communication chip etc. that are connected with it; Concrete process is through The digital image code stream processed by the decoding chip GS2971A is stored in DDR3, the video data is cached, and the parameters obtained through calculation are stored in SRAM. Program, communication chip realizes communication between XC7K325T FPGA chip and external computer;

所述通信接口模块包括通信芯片,所述通信芯片选用MAX3077E,通信协议选用工业上十分成熟的RS422总线;The communication interface module includes a communication chip, the communication chip selects MAX3077E, and the communication protocol selects the very mature RS422 bus in the industry;

所述视频图像显示模块包括编码芯片、视频图像显示器,所述编码芯片选用GS2972。具体过程为经过上述模块处理后的数字图像码流,经过编码芯片GS2972编码后,转换成串行视频信号,通过视频图像显示器显示出来;The video image display module includes an encoding chip and a video image display, and the encoding chip is GS2972. The specific process is that the digital image code stream processed by the above modules is converted into a serial video signal after being encoded by the encoding chip GS2972, and displayed on the video image display;

以上所述即为本发明的一种实时高清视频自适应去雾装置的全过程,但上述实施过程并非用以限制本发明,本领域的技术人员在不脱离本发明的前提下,均可做出相应的改进,本发明的保护范围以权利要求界定的范围为准。The above is the whole process of a real-time high-definition video adaptive defogging device of the present invention, but the above-mentioned implementation process is not intended to limit the present invention, and those skilled in the art can do it without departing from the present invention. Corresponding improvements have been made, and the protection scope of the present invention shall be determined by the scope defined in the claims.

如图2所示为本发明的一种实时高清视频自适应去雾方法流程图,具体实施步骤如下:As shown in Figure 2, it is a flow chart of a real-time high-definition video adaptive defogging method of the present invention, and the specific implementation steps are as follows:

(1)将输入的视频图像进行格式转换,有YUV422格式转换为RGB格式,方便后续数据处理;(1) Convert the format of the input video image, from YUV422 format to RGB format, to facilitate subsequent data processing;

(2)利用暗通道先验算法,计算暗通道 (2) Use the dark channel prior algorithm to calculate the dark channel

(3)通过选取暗通道中亮度最高的0.1%的像素值对应位置原始图像亮度值作为大气光强度A的估计值;(3) By selecting the original image brightness value corresponding to the position of the highest 0.1% pixel value in the dark channel as the estimated value of the atmospheric light intensity A;

透射率的估计公式为 The formula for estimating the transmittance is

(4)通过上述求得的透射率t(x),计算档位选择参数α,(4) Calculate the gear selection parameter α through the transmittance t(x) obtained above,

其中β1,β2表示透射率阈值,α123为档位控制参数,||t(x)||表示透射率1范数;Among them, β 1 and β 2 represent the transmittance threshold, α 1 , α 2 , α 3 are gear control parameters, and ||t(x)|| represents the transmittance 1 norm;

(5)通过上述计算求得t(x)、A及α,在去雾处理时采用过参数抑制的算法,具体为:(5) Obtain t(x), A and α through the above calculation, and use the algorithm of over-parameter suppression in the dehazing process, specifically:

其中,x表示图像上像素点位置坐标,I(x)表示带雾图像,t(x)表示透射率,t0表示透射率下限,J(x)表示要恢复的无雾图像,A表示大气光强度,A0表示大气光强上限,参数α为去雾档位选择参数;当投射图t(x)的值很小时,会导致J(x)的值偏大,从而使得图像整体偏白,为了避免这一问题,设置一个阈值t0,当t值小于t0时,采用t0进行运算;当大气光强A的值很大时,会导致处理后的图像偏色并且出现大量色斑,为了避免这一问题,设置一个阈值A0,当A值大于A0时,采用A0进行运算。Among them, x represents the position coordinates of pixels on the image, I(x) represents the foggy image, t(x) represents the transmittance, t 0 represents the lower limit of transmittance, J(x) represents the fog-free image to be restored, and A represents the atmosphere Light intensity, A 0 represents the upper limit of atmospheric light intensity, and parameter α is the selection parameter for the defogging gear; when the value of the projection map t(x) is small, the value of J(x) will be too large, so that the overall image is white , in order to avoid this problem, set a threshold t 0 , when the value of t is less than t 0 , use t 0 for calculation; when the value of the atmospheric light intensity A is large, it will cause the processed image to have a color cast and a large number of colors Spot, in order to avoid this problem, set a threshold A 0 , when the value of A is greater than A 0 , use A 0 for calculation.

如图3所示,为本发明的一种实时高清视频自适应去雾装置与方法的仿真测试图,其中a为空中拍摄的真实有雾图像,b为a图经过本发明去雾装置及去雾方法处理之后的图像。As shown in Figure 3, it is a simulation test diagram of a real-time high-definition video adaptive defogging device and method of the present invention, wherein a is a real foggy image taken in the air, and b is a picture through the defogging device and defogging device of the present invention Image after fog processing.

本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The contents not described in detail in the description of the present invention belong to the prior art known to those skilled in the art.

提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。The above embodiments are provided only for the purpose of describing the present invention, not to limit the scope of the present invention. The scope of the invention is defined by the appended claims. Various equivalent replacements and modifications made without departing from the spirit and principle of the present invention shall fall within the scope of the present invention.

Claims (7)

1.一种实时高清视频自适应去雾方法,其特征在于:实现步骤如下:1. A real-time high-definition video adaptive defogging method is characterized in that: the realization steps are as follows: (1)将采集的图像中暗通道中亮度最高的0.1%的像素值对应的原始图像亮度值作为大气光强度A的估计值,透射率t(x)的估计公式为(1) The brightness value of the original image corresponding to the pixel value with the highest brightness of 0.1% in the dark channel in the collected image is used as the estimated value of the atmospheric light intensity A, and the estimation formula of the transmittance t(x) is: <mrow> <mi>t</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;omega;</mi> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>y</mi> <mo>&amp;Element;</mo> <mi>&amp;Omega;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </munder> <mrow> <mo>(</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>c</mi> </munder> <mfrac> <mrow> <msup> <mi>I</mi> <mi>c</mi> </msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <msup> <mi>A</mi> <mi>c</mi> </msup> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow><mi>t</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>-</mo><mi>&amp;omega;</mi><munder><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mrow><mi>y</mi><mo>&amp;Element;</mo><mi>&amp;Omega;</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><munder><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mi>c</mi></munder><mfrac><mrow><msup><mi>I</mi><mi>c</mi></msup><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow><msup><mi>A</mi><mi>c</mi></msup></mfrac><mo>)</mo></mrow></mrow> 其中ω=0.95,x,y表示图像上像素点位置坐标,Ic(y)表示彩色图像的每个通道,Ω(x)表示以像素x为中心的图像块,c表示图像的r,g,b三个彩色通道Ac与A均表示大气光强度;Where ω=0.95, x, y represent the coordinates of pixel points on the image, I c (y) represents each channel of the color image, Ω(x) represents the image block centered on pixel x, and c represents the r, g of the image ,b The three color channels A c and A both represent the intensity of atmospheric light; (2)根据求得的透射率t(x),计算去雾档位选择参数α,(2) According to the obtained transmittance t(x), calculate the defogging gear selection parameter α, <mrow> <mi>&amp;alpha;</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <mo>|</mo> <mo>|</mo> <mi>t</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <mo>&amp;le;</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <mo>|</mo> <mo>|</mo> <mi>t</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <mo>&amp;le;</mo> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> </mtd> <mtd> <mrow> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mo>|</mo> <mo>|</mo> <mi>t</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mi>&amp;alpha;</mi><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><msub><mi>&amp;alpha;</mi><mn>1</mn></msub></mtd><mtd><mrow><mo>|</mo><mo>|</mo><mi>t</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>|</mo><mo>&amp;le;</mo><msub><mi>&amp;beta;</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><msub><mi>&amp;alpha;</mi><mn>2</mn></msub></mtd><mtd><mrow><msub><mi>&amp;beta;</mi><mn>1</mn></msub><mo>&amp;le;</mo><mo>|</mo><mo>|</mo><mi>t</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>|</mo><mo>&amp;le;</mo><msub><mi>&amp;beta;</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd><msub><mi>&amp;alpha;</mi><mn>3</mn></msub></mtd><mtd><mrow><msub><mi>&amp;beta;</mi><mn>2</mn></msub><mo>&amp;le;</mo><mo>|</mo><mo>|</mo><mi>t</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>|</mo></mrow></mtd></mtr></mtable></mfenced></mrow> 其中β1,β2表示透射率阈值,α123为档位控制参数,||t(x)||表示透射率1范数;Among them, β 1 and β 2 represent the transmittance threshold, α 1 , α 2 , α 3 are gear control parameters, and ||t(x)|| represents the transmittance 1 norm; (3)通过t(x)、A及α,在去雾处理时采用过参数抑制的算法,得到无雾图像J(x),公式为(3) Through t(x), A and α, the algorithm of over-parameter suppression is used in the dehazing process to obtain the fog-free image J(x), the formula is <mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <mi>min</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow><mi>J</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>I</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;alpha;</mi><mi>min</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><msub><mi>A</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mi>max</mi><mrow><mo>(</mo><mi>t</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>+</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><msub><mi>A</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow> 其中,I(x)表示带雾图像,t0表示透射率下限,J(x)表示要恢复的无雾图像,A0表示大气光强上限,参数α为去雾档位选择参数。Among them, I(x) represents the foggy image, t 0 represents the lower limit of the transmittance, J(x) represents the haze-free image to be restored, A 0 represents the upper limit of the atmospheric light intensity, and the parameter α is the selection parameter of the defogging gear. 2.根据权利要求1所述的实时高清视频自适应去雾方法,其特征在于:所述t(x)的值很小时,即t(x)<0.1时,会导致J(x)的值偏大,从而使得图像整体偏白,为了避免这一问题,设置一个阈值t0=0.1,当t值小于t0时,采用t0进行运算;当大气光强A的值很大时,即A>220时,会导致处理后的图像偏色并且出现大量色斑,设置一个阈值A0,当A值大于A0时,采用A0进行运算。2. the real-time high-definition video adaptive defogging method according to claim 1, is characterized in that: when the value of described t(x) is very small, when t(x)<0.1, can cause the value of J(x) is too large, so that the overall image is white, in order to avoid this problem, set a threshold t 0 =0.1, when the value of t is less than t 0 , use t 0 for calculation; when the value of the atmospheric light intensity A is large, that is When A>220, it will cause color cast and a lot of color spots in the processed image, set a threshold A 0 , when the A value is greater than A 0 , use A 0 for calculation. 3.一种实时高清视频自适应去雾装置,其特征在于:包括视频图像采集模块、视频图像去雾处理模块、通讯接口模块、视频图像编码与显示模块;所述视频图像采集模块包括视频信号接收装置、解码芯片,所述视频图像处理模块包括信号处理器和与之连接的外扩,所述通信接口模块包括主控芯片和与之连接的外扩,所述视频图像编码与显示模块包括编码芯片、视频图像显示器。3. A real-time high-definition video adaptive defogging device, characterized in that: it includes a video image acquisition module, a video image defogging processing module, a communication interface module, a video image encoding and display module; the video image acquisition module includes a video signal A receiving device and a decoding chip, the video image processing module includes a signal processor and an external expansion connected thereto, the communication interface module includes a main control chip and an external expansion connected thereto, and the video image encoding and display module includes Encoding chip, video image display. 4.根据权利要求3所述的一种实时高清视频自适应去雾装置,其特征在于:所述视频信号接收装置为CCD摄像机,实现实时视频信息采集功能,所述解码芯片选用GS2971A,实现实时高清视频信号解码功能,解码之后的图像信号传输到视频处理模块。4. A real-time high-definition video adaptive defogging device according to claim 3, characterized in that: the video signal receiving device is a CCD camera to realize real-time video information collection, and the decoding chip is GS2971A to realize real-time High-definition video signal decoding function, the decoded image signal is transmitted to the video processing module. 5.根据权利要求3所述的一种实时高清视频自适应去雾装置,其特征在于:所述视频图像处理模块包括处理器和与之连接的外扩,所述处理器选用XC7K325T FPGA芯片,实现高清视频自适应去雾算法与透雾档位计算,所述外扩为与之连接的DDR3、SRAM、FLASH、通信芯片,其中DDR3和SRAM用于图像数据的缓存,FLASH用于存储程序数据,通信芯片用于主程序通过串口与外部进行交互。5. A kind of real-time high-definition video adaptive defogging device according to claim 3, is characterized in that: described video image processing module comprises processor and the external expansion that is connected with it, and described processor selects XC7K325T FPGA chip for use, Realize high-definition video adaptive defogging algorithm and calculation of fog penetration gear, the external expansion is DDR3, SRAM, FLASH, communication chip connected to it, wherein DDR3 and SRAM are used for image data cache, FLASH is used for storing program data , the communication chip is used for the main program to interact with the outside through the serial port. 6.根据权利要求3所述的一种实时高清视频自适应去雾装置,其特征在于:所述视频图像编码与显示模块包括编码芯片、高清视频图像显示器,所述编码芯片选用GS2972,用于将并行图像数据转换成串行数据,以便于传输,所述高清视频图像显示器选用通用SDI高清视频显示器即可,用于实时显示处理之后的视频。6. A real-time high-definition video adaptive defogging device according to claim 3, characterized in that: the video image coding and display module includes a coding chip and a high-definition video image display, and the coding chip is GS2972 for use in The parallel image data is converted into serial data for easy transmission, and the high-definition video image display can be a general-purpose SDI high-definition video display for real-time display of the processed video. 7.根据权利要求3所述的一种实时高清视频自适应去雾装置,其特征在于:所述通信接口模块包括通信芯片与通信协议,所述通信芯片选用MAX3077E,通信协议选用工业上十分成熟的RS422总线,实现主程序与外部计算机的通信功能。7. A real-time high-definition video adaptive defogging device according to claim 3, characterized in that: the communication interface module includes a communication chip and a communication protocol, the communication chip is MAX3077E, and the communication protocol is very mature in industry The RS422 bus realizes the communication function between the main program and the external computer.
CN201711419404.4A 2017-12-25 2017-12-25 A kind of adaptive defogging method of real-time high-definition video and device Active CN108093175B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711419404.4A CN108093175B (en) 2017-12-25 2017-12-25 A kind of adaptive defogging method of real-time high-definition video and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711419404.4A CN108093175B (en) 2017-12-25 2017-12-25 A kind of adaptive defogging method of real-time high-definition video and device

Publications (2)

Publication Number Publication Date
CN108093175A true CN108093175A (en) 2018-05-29
CN108093175B CN108093175B (en) 2018-11-13

Family

ID=62179017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711419404.4A Active CN108093175B (en) 2017-12-25 2017-12-25 A kind of adaptive defogging method of real-time high-definition video and device

Country Status (1)

Country Link
CN (1) CN108093175B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109584186A (en) * 2018-12-25 2019-04-05 西北工业大学 A kind of unmanned aerial vehicle onboard image defogging method and device
CN110072107A (en) * 2019-04-25 2019-07-30 南京理工大学 A kind of haze video-frequency compression method shared based on estimation
CN111866516A (en) * 2020-06-24 2020-10-30 北京航空航天大学 A real-time image enhancement device and method for grayscale video
CN113628133A (en) * 2021-07-28 2021-11-09 武汉三江中电科技有限责任公司 Rain and fog removing method and device based on video image
CN114565519A (en) * 2022-01-13 2022-05-31 深圳市文立科技有限公司 Image fog penetration method and device and storage medium

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079062A (en) * 2013-02-05 2013-05-01 武汉科技大学 An Intelligent Video Surveillance System
CN103164845A (en) * 2011-12-16 2013-06-19 中国科学院沈阳自动化研究所 Real-time image mist elimination device and method
CN103218778A (en) * 2013-03-22 2013-07-24 华为技术有限公司 Image and video processing method and device
CN103347171A (en) * 2013-06-27 2013-10-09 河海大学常州校区 Foggy day video processing system and method based on DSPs
CN104008527A (en) * 2014-04-16 2014-08-27 南京航空航天大学 Method for defogging single image
CN104732497A (en) * 2015-03-31 2015-06-24 北京交通大学 Image defogging method, FPGA and defogging system including FPGA
CN106469440A (en) * 2016-09-08 2017-03-01 西安电子科技大学 Dark mist elimination parallel optimization method based on OpenCL
CN106530246A (en) * 2016-10-28 2017-03-22 大连理工大学 Image dehazing method and system based on dark channel and non-local prior
CN106548461A (en) * 2016-10-25 2017-03-29 湘潭大学 Image defogging method
CN106709901A (en) * 2016-11-10 2017-05-24 西安电子科技大学 Simulation fog image generation method based on depth priori
CN106709893A (en) * 2016-12-28 2017-05-24 西北大学 All-time haze image sharpness recovery method
CN106780384A (en) * 2016-12-15 2017-05-31 上海交通大学 A kind of the real-time of cold light source abdominal cavity image parameters self adaptation that be applicable goes smog method
CN106780380A (en) * 2016-12-09 2017-05-31 电子科技大学 A kind of image defogging method and system
CN107194894A (en) * 2017-05-25 2017-09-22 河南师范大学 A kind of video defogging method and its system
CN107451966A (en) * 2017-07-25 2017-12-08 四川大学 A kind of real-time video defogging method realized using gray-scale map guiding filtering

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164845A (en) * 2011-12-16 2013-06-19 中国科学院沈阳自动化研究所 Real-time image mist elimination device and method
CN103079062A (en) * 2013-02-05 2013-05-01 武汉科技大学 An Intelligent Video Surveillance System
CN103218778A (en) * 2013-03-22 2013-07-24 华为技术有限公司 Image and video processing method and device
CN103347171A (en) * 2013-06-27 2013-10-09 河海大学常州校区 Foggy day video processing system and method based on DSPs
CN104008527A (en) * 2014-04-16 2014-08-27 南京航空航天大学 Method for defogging single image
CN104732497A (en) * 2015-03-31 2015-06-24 北京交通大学 Image defogging method, FPGA and defogging system including FPGA
CN106469440A (en) * 2016-09-08 2017-03-01 西安电子科技大学 Dark mist elimination parallel optimization method based on OpenCL
CN106548461A (en) * 2016-10-25 2017-03-29 湘潭大学 Image defogging method
CN106530246A (en) * 2016-10-28 2017-03-22 大连理工大学 Image dehazing method and system based on dark channel and non-local prior
CN106709901A (en) * 2016-11-10 2017-05-24 西安电子科技大学 Simulation fog image generation method based on depth priori
CN106780380A (en) * 2016-12-09 2017-05-31 电子科技大学 A kind of image defogging method and system
CN106780384A (en) * 2016-12-15 2017-05-31 上海交通大学 A kind of the real-time of cold light source abdominal cavity image parameters self adaptation that be applicable goes smog method
CN106709893A (en) * 2016-12-28 2017-05-24 西北大学 All-time haze image sharpness recovery method
CN107194894A (en) * 2017-05-25 2017-09-22 河南师范大学 A kind of video defogging method and its system
CN107451966A (en) * 2017-07-25 2017-12-08 四川大学 A kind of real-time video defogging method realized using gray-scale map guiding filtering

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109584186A (en) * 2018-12-25 2019-04-05 西北工业大学 A kind of unmanned aerial vehicle onboard image defogging method and device
CN110072107A (en) * 2019-04-25 2019-07-30 南京理工大学 A kind of haze video-frequency compression method shared based on estimation
CN111866516A (en) * 2020-06-24 2020-10-30 北京航空航天大学 A real-time image enhancement device and method for grayscale video
CN111866516B (en) * 2020-06-24 2021-12-17 北京航空航天大学 A real-time image enhancement device and method for grayscale video
CN113628133A (en) * 2021-07-28 2021-11-09 武汉三江中电科技有限责任公司 Rain and fog removing method and device based on video image
CN114565519A (en) * 2022-01-13 2022-05-31 深圳市文立科技有限公司 Image fog penetration method and device and storage medium

Also Published As

Publication number Publication date
CN108093175B (en) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108093175B (en) A kind of adaptive defogging method of real-time high-definition video and device
CN101252687B (en) Method for Realizing Multi-channel Combined Region of Interest Video Coding and Transmission
CN110378849B (en) Image defogging and rain removing method based on depth residual error network
CN103198459B (en) Haze image rapid haze removal method
CN101950416B (en) Real-time image defogging enhancement method based on bilateral filtering
CN110148095A (en) A kind of underwater picture Enhancement Method and enhancement device
CN107895357B (en) A kind of real-time water surface thick fog scene image Enhancement Method based on FPGA
CN106530257A (en) Remote sensing image de-fogging method based on dark channel prior model
CN107451966B (en) A Real-time Video Dehazing Method Using Grayscale Guided Filtering
CN103164845B (en) A kind of real-time image mist elimination device and method
CN107301623A (en) A kind of traffic image defogging method split based on dark and image and system
CN104506755B (en) HD video based on FPGA automates defogging method in real time
CN102750674A (en) Video image defogging method based on self-adapting allowance
Zheng et al. Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction
CN107862672B (en) Image defogging method and device
CN104794688A (en) Single image defogging method and device based on depth information separation sky region
CN102289791B (en) A Fast Single Image Dehazing Method
CN109688382B (en) An underwater image processing system for an underwater robot
CN105976337B (en) A kind of image defogging method based on intermediate value guiding filtering
CN108154492B (en) An image haze removal method based on non-local mean filtering
CN103226816A (en) Haze image medium transmission rate estimation and optimization method based on quick gaussian filtering
CN107730472A (en) A kind of image defogging optimized algorithm based on dark primary priori
CN102014279A (en) Method and device for intensifying video image contrast
CN104899843A (en) Real-time haze-eliminating displayer and haze-eliminating display method thereof
CN111612725A (en) An Image Fusion Method Based on Visible Light Image Contrast Enhancement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant