CN108092736B - 一种基于小波变换的低检测概率波形方法 - Google Patents

一种基于小波变换的低检测概率波形方法 Download PDF

Info

Publication number
CN108092736B
CN108092736B CN201711427956.XA CN201711427956A CN108092736B CN 108092736 B CN108092736 B CN 108092736B CN 201711427956 A CN201711427956 A CN 201711427956A CN 108092736 B CN108092736 B CN 108092736B
Authority
CN
China
Prior art keywords
signal
interleaving
wavelet
orthogonal wavelet
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711427956.XA
Other languages
English (en)
Other versions
CN108092736A (zh
Inventor
谢映海
张全君
熊韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Haige Communication Group Inc Co
Original Assignee
Guangzhou Haige Communication Group Inc Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Haige Communication Group Inc Co filed Critical Guangzhou Haige Communication Group Inc Co
Priority to CN201711427956.XA priority Critical patent/CN108092736B/zh
Publication of CN108092736A publication Critical patent/CN108092736A/zh
Application granted granted Critical
Publication of CN108092736B publication Critical patent/CN108092736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/692Hybrid techniques using combinations of two or more spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Abstract

本发明公开了一种基于小波变换的低检测概率波形方法,包括以下步骤:预存正交小波函数集合与信号交织器为通信秘钥;发送方对发生信息进行信道编码和星座映射,产生调制符号;利用同步时间信息从集合中伪随机挑选正交小波函数对调制符号进行正交小波变换,产生类似高斯白噪声信号的信号;使用交织器对其信号进行交织处理;再结合扩频机制、跳频机制和随机时隙起始时间机制进行处理;接收方对接收信号进行逆解扩,逆交织,正交小波逆变换,再进行信号解调和译码,解析信号信息;整个过程结合快速功率控制;本发明采用小波变换使信号高斯白噪声化,并结合交织处理,扩频,快速功率控制使信号隐蔽性更强,降低被检测概率,保障了通信信号的隐蔽性。

Description

一种基于小波变换的低检测概率波形方法
技术领域
本发明涉及无线通信技术的研究领域,特别涉及一种基于小波变换的低检测概率波形方法。
背景技术
随着信号侦察技术、信号截获技术和信号干扰技术等的快速发展,军用无线通信信号的安全性和保密性正面临着极大挑战。隐蔽通信,即在保证可靠通信的前提下降低通信信号被检测概率是一种非常有效的技术解决方案,但目前广泛采用直接序列扩频或跳频等传统抗侦察和截获思路设计的通信系统已无法有效对抗高带宽、大动态截获接收机的信号检测与截获。
现有的一些信号检测技术原理,本质都是对接收信号进行各个维度的变换和数据分析,据此判断接收信号中是否存在有别于背景噪声的其它通信信号。隐蔽通信信号是隐蔽通信技术中的核心内容,国内外学者从不同角度提出了多种技术路线,主要采取以下设计思路:(1)将通信信号频谱尽可能扩散至更大的瞬时频谱中;(2)随机化通信信号的特征,防止敌方在动态非稳定的背景噪声环境中识别出信号的类型、发送源头或信号的存在性;(3)更好对抗通信信号与生俱来的由多径因素产生的信号衰弱问题,降低乙方通信接收机成功接收信号的解调门限。以前的许多军用通信系统是在窄带信道上通过采用跳频技术、跳时技术、和扩频技术相结合的方式来实现通信波形的低检测概率(LPD)特性,其在载波上一般通过相位调制方式来承载数据信息。
隐蔽通信和信号侦测是一对互为矛和盾的对立技术问题,由于扩频通信技术出现时间较早,相关研究已经非常充分,因此针对其检测手段也非常多,目前国外研制的宽带接收设备AMMS系统、PA2000系统、MRCM公司生产的自动接收测向一体化系统EPSILON和直接采样宽带接收机MRR8000系统都能对扩频、跳频信号进行非合作接收,而且还能完成测向定位等后续功能。
物理层的隐蔽波形设计是整个系统通信方案的基础,其设计理念是在敌方完全不知道或仅少量知道本方波形相关通信参数的前提下,尽量降低己方接收机在允许的错误性能内进行信号成功解析所需的信噪比,并同时最大化敌方接收机可以对通信信号存在性进行有效判断所需的信号接收能量,从而使的波形具备较高的通信距离/探测距离(C/I)比值性能。
考虑到随着数据库存储技术和芯片处理能力的不断提升,敌方接收机在不考虑成本的情况下,理论上会具备超大的信号数据库存储和信号多种机制的分析能力,因此对隐蔽波形算法设计而言,算法需要具备的特性:高保密性和抵抗穷举分析性。
发明内容
本发明的主要目的在于克服现有技术的缺点与不足,提供一种基于小波变换的低检测概率波形方法,实现通信信号在时域和频域上的“无特征性”,对信号进行白噪化隐藏处理,进一步结合跳频机制、扩频机制、随机时隙起始时间机制和快速功率控制机制增加其他方接收机的信号分析难度,提升通信信号的隐蔽性能。
本发明的目的通过以下的技术方案实现:一种基于小波变换的低检测概率波形方法,具体步骤如下:
S1、通信双方预存相同的正交小波函数集合和交织矩阵充当通信秘钥;
S2、发送方对发送信息进行信道编码和星座映射,产生调制信号;
S3、基于同步时间信息从正交小波函数集合中伪随机挑选一个正交小波函数对调制信号进行正交小波变换,产生在时域上类似于高斯白噪声信号的I路信号和Q路信号;
S4、使用预存的交织矩阵对I路信号和Q路信号进行交织处理;
S5、利用扩频机制、跳频机制和随机时隙起始时间机制对交织后的I路信号和交织后的Q路信号进行处理,得到跳扩信号;其中用随机时隙起始时间发送交织后的I路信号,用另外一个随机时间发送交织后的Q路信号;
S6、接收方对接收到的跳扩信号进行逆解扩,并利用预存的交织矩阵对逆解扩后的信号进行逆交织;随后利用同步时间信息产生与发送方相同的正交小波函数,并使用正交小波函数对逆交织后的信号进行正交小波逆变换;最后进行传统的信号解调和译码过程,解析信号信息。
步骤S1中,所述正交小波函数集合的正交小波函数具备将调制信号高斯白噪声化的能力;因为高斯白噪声信号具备无特征性,在背景是高斯白噪声信号情况下,一个伪高斯白噪声通信信号叠加背景噪声后,其混合信号还是高斯白噪声信号,从而增加侦测方对通信信号的存在性判断难度,使通信信号具备较高的隐蔽性能;
步骤S3中,挑选正交小波函数方式为利用同步时间信息的伪随机选择方式,通过不断时变的正交变换过程,有效增加侦测方对通信信号的解析计算复杂度;星座映射采用复数星座图而不是实数星座图,优选为QAM星座图,保证了接收信号在I路和Q路不出现明显差异,避免侦测方因I路接收信号和Q路接收信号的非对称性而产生警觉;
正交小波变换过程如下:
其中,X[n]为发送方调制后的信号,X[n]∈Q,n=1,2,...,N,Q为星座点集合,N为信号长度;数列p[n]为某一正交小波的尺度函数,数列q[n]为小波函数系数,为正交小波变换后的信号;N为正交小波函数对长度,且为偶数;k=1,...,N;
步骤S4中,使用预存的交织矩阵对I路信号和Q路信号进行交织处理,对信号的发送次序进行调整。因为交织矩阵为通信秘钥,侦测方在没有该秘钥信息的情况下无法对接收信号进行重新正确排序,即使使用相同的正交小波函数对接收信号进行逆变换,得到的信号仍然会是一些无序的噪声信号,保证了通信信号的隐蔽性;
步骤S5中,利用扩频机制大幅度降低发送信号在频域上的能量密度,保证信号淹没在噪声能量的水平线下;利用跳频机制大幅度降低信号在单个频点上的驻留时间,降低侦测方对信号的能量积累水平;其中随机时隙起始时间机制用随机时隙起始时间发送交织后的I路信号,用另外一个随机时间发送交织后的Q路信号,利用随机时隙起始时间机制大幅度降低信号的周期性特征,提升信号抗周期性检测类算法的能力;
步骤S6中,设为接收方进行逆交织后得到的信号,n=1,...,N,其对应的逆变换算法为:
逆变换完成后得到逆变换信号Y[l],n=1,...,N,接收方就基于信号Y[l]进行后续的传统信号解调和译码过程;N为正交小波函数对长度,且为偶数;p[l-2k]为所选择的正交小波的尺度系数;q[l-2k]为所选择的正交小波的小波系数。
进一步的,在通信过程中引入快速功率控制机制,对信号低检测概率进一步加强,具体为:
信号发送时参数携带发射功率水平信息,接收方根据发射功率水平信息,并结合信噪比和误比特率,得到自身数据成功发送的最小功率,从而对功率进行控制,基于虚拟反馈功率机制,使通信双方对信道时变性做出更快响应;根据不同情况,手动设置一个相适应的危险功率值,大于危险功率值的功率信号不能成功发送,保证通信过程不会出现大于危险功率值的功率信号发送。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明提供了基于小波正交变换的信号高斯白噪化处理技术,实现通信信号在时域和频域上的无特征性,增加了侦测方对获知的信号分析判断难度,在相同的通信环境下获得比传统的跳频和扩频相结合的隐蔽波形更好的抗侦测性能;
2、本发明还引入快速功率控制机制,通过信噪比和误比特率获取成功发送数据的最小功率,并根据不同场合设置一个危险功率值,保证通信双方对信道做出更快响应和避免大于危险功率值的功率信号发送。
3、本发明将信号进行高斯白噪声化,产生的信号具备无特征性(Featureless),其具备一个其它类型信号无法具备的特性,即一个高斯信号加上另一个高斯信号后还是高斯信号,因此产生一种在各个维度上的特征趋同于高斯白噪声,但能携带一定数量信息的通信信号,是一种能实现理论上的最佳隐蔽性能的技术方案,本发明将承载数据的调制信号白噪声化,在此基础上进一步结合跳频、扩频、跳时和功率控制技术,起到有效隐藏数据信号存在性的目的。
附图说明
图1为本发明的方法流程图。
图2为本发明的正交小波尺度函数系数示意图。
图3为本发明的正交小波函数系数示意图。
图4为本发明的4QAM的调制星座图。
图5为本发明的小波变换后高斯复信号图。
图6(a)为本发明的小波变换后均值为0,方差为1的高斯信号图。
图6(b)为本发明的小波变换后信号的实部信号图。
图6(c)为本发明的小波变换后信号的虚部信号图。
图7(a)为本发明均值为0,方差为1的高斯信号的信号幅度统计情况对比图。
图7(b)为本发明小波变换后信号的实部信号的信号幅度统计情况对比图。
图7(c)为本发明的小波变换后信号的虚部信号的信号幅度统计情况对比图。
图8(a)为本发明未采用小波变换的接受信号的信号分布图。
图8(b)为本发明采用小波变换和逆变换后的接受信号的信号分布图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种基于小波变换的低检测概率波形方法流程图如图1所示,具体步骤如下:
S1、通信双方预存相同的正交小波函数集合和交织矩阵充当通信秘钥;
S2、发送方对发送信息进行信道编码和星座映射,产生调制信号;
S3、基于同步时间信息从正交小波函数集合中伪随机挑选一个正交小波函数对调制信号进行正交小波变换,产生在时域上类似于高斯白噪声信号的I路信号和Q路信号;
S4、使用预存的交织矩阵对I路信号和Q路信号进行交织处理;
S5、利用扩频机制、跳频机制和随机时隙起始时间机制对交织后的I路信号和交织后的Q路信号进行处理,得到跳扩信号;其中用随机时隙起始时间发送交织后的I路信号,用另外一个随机时间发送交织后的Q路信号;
S6、接收方对接收到的跳扩信号进行逆解扩,并利用预存的交织矩阵对逆解扩后的信号进行逆交织;随后利用同步时间信息产生与发送方相同的正交小波函数,并使用正交小波函数对逆交织后的信号进行正交小波逆变换;最后进行传统的信号解调和译码过程,解析信号信息。
步骤S1中,所述正交小波函数集合的正交小波函数具备将调制信号高斯白噪声化的能力;因为高斯白噪声信号具备无特征性,在背景是高斯白噪声信号情况下,一个伪高斯白噪声通信信号叠加背景噪声后,其混合信号还是高斯白噪声信号,从而增加侦测方对通信信号的存在性判断难度,使通信信号具备较高的隐蔽性能;
步骤S3中,挑选正交小波函数方式为利用同步时间信息的伪随机选择方式,通过不断时变的正交变换过程,有效增加侦测方对通信信号的解析计算复杂度;星座映射采用复数星座图而不是实数星座图,这里优选为QAM星座图,保证了接收信号在I路和Q路不出现明显差异,避免侦测方因I路接收信号和Q路接收信号的非对称性而产生警觉;
正交小波变换过程如下:
其中,X[n]为发送方调制后的信号,X[n]∈Q,n=1,2,...,N,Q为星座点集合,N为信号长度;数列p[n]为某一正交小波的尺度函数,数列q[n]为小波函数系数,为正交小波变换后的信号;N为正交小波函数对长度,且为偶数;k=1,...,N;
图2为正交小波的尺度函数系数示意图,图3为正交小波的小波函数系数,图4为4QAM的调制星座图,使用正交小波函数对10000个4QAM符号进行变换后的信号分布情况如图5所示;
步骤S5中,使用预存的交织矩阵对I路信号和Q路信号进行交织处理,对信号的发送次序进行调整。交织矩阵为通信秘钥,侦测方在没有该秘钥信息的情况下无法对接收信号进行重新正确排序,即使使用相同的正交小波函数对接收信号进行逆变换,得到的信号仍然会是一些无序的噪声信号。
正交小波进行交换的目的是一个正交小波基对调制符号进行一次变换,使得变换后的通信信号具备类似高斯白噪声的信号特征;第三方获知本设计原理后能针对性的进行分析,因此,为了增加分析难度,建立一个具备将调制信号高斯白噪声化能力的正交小波基数据库,进行正交小波变换时是基于伪随机方式从数据库中选择一个正交小波基与调制符号进行正交变换;正交小波变换的本质是对调制符号进行一次正交变换,因此不会带来通信性能的损失。
进行小波变换后,均值为0,方差为1的高斯信号如图6(a)所示,小波变换信号的实部信号如图6(b)所示,小波变换信号的虚部信号如图6(c)所示,进行对比得出对比情况;虚部时域信号也与之类似;图7(a)为均值为0,方差为1的高斯信号的信号幅度统计情况,图7(b)为小波变换信号的实部信号的信号幅度统计情况,图7(c)为小波变换信号的虚部信号的信号幅度统计情况;由图可知,进行小波变换后的发送信号在时域上已经趋同于高斯白噪声信号,从而使得第三方接收机的接受信号也趋同于高斯白噪声信号,从而在没有具备小波变换和信号交织参数的情况下,第三方很难将该信号和纯背景噪声进行区分和识别。
步骤S6中,设为接收方进行逆交织后得到的信号,n=1,...,N,其对应的逆变换算法为:
逆变换完成后得到逆变换信号Y[l],n=1,...,N,接收方就基于信号Y[l]进行后续的传统信号解调和译码过程;N为正交小波函数对长度,且为偶数;p[l-2k]为所选择的正交小波的尺度系数;q[l-2k]为所选择的正交小波的小波系数。
在相同的信道和相同的信噪比情况下使用正交小波变换,并在接收端经过小波逆变换后的信号分布情况,即在4QAM调制,10dB接收信噪比,AWGN信道的相同情况下,图8(a)为未采用小波变换的接受信号的信号分布图,图8(b)为采用小波变换和逆变换后的接受信号的信号分布图,通过对比得出,两种通信性能是保持一致的。
在通信过程中引入快速功率控制机制,这也是保障信号低检测概率的一个重要技术手段,具体为:
接收方根据发射功率水平信息,并结合信噪比和误比特率,得到自身数据成功发送的最小功率,从而对功率进行控制,使通信双方对信道时变性做出更快响应;根据不同情况,手动设置一个相适应的危险功率值,大于危险功率值的功率信号不能成功发送,保证通信过程不会出现大于危险功率值的功率信号发送。
LPD/LPI波形的隐蔽性能和波形速率呈反比,即速率越低,隐蔽性越好;速率越高,则隐蔽性越差。用户根据应用场景的不同,选择不同的波形发送速率,如果接近危险场景,则选择隐蔽性好但速率较低的波形进行通信;LPD/LPI波形的三个典型应用场景包括:士兵系统;无人值守的地面传感器监测系统;无人机/无人车测控系统;其中士兵系统需要满足士兵之间的数据和语音通信,以及将信息回传给他们后方的战斗支援装甲车辆;传感器监测系统将提供监测区域的传感器数据和图像给他们的用户;而无人机/无人车测控系统则支持一个点对点的链路,满足操作人员对无人设备的控制信令的传输,以及无人设备回传视频和设备状态信息给操作人员。
假定已方通信接收机在灵敏度附近工作(1%分组错误率),而敌方接收机的功率密度公式为:
PI=(PR—GP)—(GF+GT)+LCH,
其中,PI为敌方接收机的功率密度,PR为已方接收机的功率密度,GP为己方接收机的信号处理增益,GF为频率处理增益,GT为时域处理增益,LCH为已方和敌方接收机的信道衰落差异;
敌方接收机的功率是指已方接收机在瞬时信号带宽的功率PR减去己方接收机的信号处理增益,这些增益表现为:
跳频增益GF:通信信号在一个较大的频率范围内进行随机跳频,而敌方接收机(这里假定敌方接收机受到技术水平和设备成本的限制,是没有办法实现对全频段的信号监测。)只能观察该频段中某连续子频段,因此己方接收机可以获取一定的跳频增益GF,具体大小跟跳频频段带宽和敌方接收机接收带宽之间的比值有关;
跳时增益GT:在时域上由于敌方接收机需要连续观察整个时间轴,而通信信号具有较大的占空比,因此可以获得一定跳时增益GT,具体大小跟通信信号的占空比值有关。
而敌方接收机的增益表现为:比起己方接收机,通信方离敌方接收机的距离更小(C/I指标大于1的情况下),因此敌方接收机将具有一定的链路损耗增益LCH。因此敌方接收机余量等于其接收功率减去其探测所需功率,具体为:
PI—margein=PI—PI—req,
其中,PI—req为敌方接收机检测所需的功率密度,PI—margein为敌方接收机预留的功率余量;
为定义危险程度以方便性能讨论,这里在整个敌方监测过程中先定义一个基于某门限的探测虚警概率(Pfa),为设定一个有意义的门限值,Pfa一般至少要比探测概率Pd要低两个数量级,因此Pfa需要达到10-5/秒。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种基于小波变换的低检测概率波形方法,其特征在于,包含以下步骤:
S1、通信双方预存相同的正交小波函数集合和交织矩阵充当通信秘钥;所述正交小波函数集合包含正交小波函数,所述正交小波函数具备将调制信号高斯白噪声化能力;
S2、发送方对发送信息进行信道编码和星座映射,产生调制信号;
S3、基于同步时间信息从正交小波函数集合中伪随机挑选一个正交小波函数对调制信号进行正交小波变换,产生在时域上类似于高斯白噪声信号的I路信号和Q路信号;
S4、使用预存的交织矩阵对I路信号和Q路信号进行交织处理;
S5、利用扩频机制、跳频机制和随机时隙起始时间机制对交织后的I路信号和交织后的Q路信号进行处理,得到跳扩信号;
S6、接收方对接收到的跳扩信号进行逆解扩,并利用预存的交织矩阵对逆解扩后的信号进行逆交织;随后利用同步时间信息产生与发送方相同的正交小波函数,并使用正交小波函数对逆交织后的信号进行正交小波逆变换;最后进行信号解调和译码过程,解析信号信息;
所述基于小波变换的低检测概率波形方法,还包括在通信过程中引入快速功率控制,具体过程如下:
信号发送时,携带发射功率水平信息,接收方根据发射功率水平信息,并结合信噪比和误比特率,得到数据成功发送的最小功率;设置一个危险功率值,大于危险功率值的功率信号不能成功发送。
2.根据权利要求1所述的一种基于小波变换的低检测概率波形方法,其特征在于,步骤S2中,星座映射使用复数星座图的QAM星座图。
3.根据权利要求1所述的一种基于小波变换的低检测概率波形方法,其特征在于,步骤S4中,所述交织处理为利用交织矩阵对正交小波变换后的信号进行位置调整。
4.根据权利要求1所述的一种基于小波变换的低检测概率波形方法,其特征在于,步骤S5中,所述随机时隙起始时间机制为用随机时隙起始时间发送交织后的I路信号,用另外一个随机时间发送交织后的Q路信号。
5.根据权利要求1所述的一种基于小波变换的低检测概率波形方法,其特征在于,步骤S6具体过程如下:
其对应的逆变换算法为:
其中,为接收方进行逆交织后得到的信号,n=1,...,N,Y[l]为逆变换后信号;N为正交小波函数对长度,且为偶数;p[l-2k]为所选择的正交小波的尺度系数;q[l-2k]为所选择的正交小波的小波系数;
逆变换完成后,接收方就基于逆变换后信号Y[l]进行后续的信号解调和译码过程。
CN201711427956.XA 2017-12-26 2017-12-26 一种基于小波变换的低检测概率波形方法 Active CN108092736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711427956.XA CN108092736B (zh) 2017-12-26 2017-12-26 一种基于小波变换的低检测概率波形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711427956.XA CN108092736B (zh) 2017-12-26 2017-12-26 一种基于小波变换的低检测概率波形方法

Publications (2)

Publication Number Publication Date
CN108092736A CN108092736A (zh) 2018-05-29
CN108092736B true CN108092736B (zh) 2019-12-10

Family

ID=62178525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711427956.XA Active CN108092736B (zh) 2017-12-26 2017-12-26 一种基于小波变换的低检测概率波形方法

Country Status (1)

Country Link
CN (1) CN108092736B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108989816B (zh) * 2018-09-03 2021-05-14 广州海格通信集团股份有限公司 一种基于小波变换的编码信道信息隐藏方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889672A (zh) * 2006-07-07 2007-01-03 中山大学 一种基于小波变换和混合水印的视频认证方法
CN102034478A (zh) * 2010-11-17 2011-04-27 南京邮电大学 基于压缩感知和信息隐藏的语音保密通信系统设计方法
CN103763232A (zh) * 2014-02-18 2014-04-30 深圳市金频科技有限公司 一种时频变化的小波多载波扩频通信系统及方法
CN105634722A (zh) * 2015-12-28 2016-06-01 西安电子科技大学 一种mfsk伪装为跳频体制的抗截获方法
CN106487731A (zh) * 2016-12-22 2017-03-08 桂林电子科技大学 一种基于小波变换的混合载波调制方法和系统
US9838151B1 (en) * 2015-03-03 2017-12-05 Rockwell Collins, Inc. Wavelet transformation based anti-jam processing techniques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2354048C1 (ru) * 2007-11-28 2009-04-27 Открытое акционерное общество "Концерн "Созвездие" Способ и система связи с быстрым вхождением в синхронизм сверхширокополосными сигналами
US8958750B1 (en) * 2013-09-12 2015-02-17 King Fahd University Of Petroleum And Minerals Peak detection method using blind source separation
CN103746722B (zh) * 2014-01-02 2015-07-01 东南大学 一种跳频信号跳周期和起跳时间估计方法
CN106959432B (zh) * 2017-03-23 2019-06-18 中国石油化工股份有限公司胜利油田分公司海洋采油厂 一种基于小波分解低频系数的海上作业平台人员定位方法
CN107222309B (zh) * 2017-06-29 2019-10-08 常州机电职业技术学院 一种基于离散小波变换的时间式网络隐信道构建方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889672A (zh) * 2006-07-07 2007-01-03 中山大学 一种基于小波变换和混合水印的视频认证方法
CN102034478A (zh) * 2010-11-17 2011-04-27 南京邮电大学 基于压缩感知和信息隐藏的语音保密通信系统设计方法
CN103763232A (zh) * 2014-02-18 2014-04-30 深圳市金频科技有限公司 一种时频变化的小波多载波扩频通信系统及方法
US9838151B1 (en) * 2015-03-03 2017-12-05 Rockwell Collins, Inc. Wavelet transformation based anti-jam processing techniques
CN105634722A (zh) * 2015-12-28 2016-06-01 西安电子科技大学 一种mfsk伪装为跳频体制的抗截获方法
CN106487731A (zh) * 2016-12-22 2017-03-08 桂林电子科技大学 一种基于小波变换的混合载波调制方法和系统

Also Published As

Publication number Publication date
CN108092736A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
Ramirez-Mireles et al. System performance analysis of impulse radio modulation
Stojanovic et al. Spread spectrum underwater acoustic telemetry
De Almeida et al. Alternative chirp spread spectrum techniques for LPWANs
CN113225102B (zh) 一种基于随机连续相位调制信号的低信噪比码捕获方法
CN112398774A (zh) 一种基于正交时频拓展的扩频通信方法
Bai et al. OCC-selection-based high-efficient UWB spatial modulation system over a multipath fading channel
CN108092736B (zh) 一种基于小波变换的低检测概率波形方法
CN111565467A (zh) 一种noma系统中基于时间反演的干扰消除方法
CN111404587A (zh) 一种基于共轭预编码的多用户mimo对称信道特征获取方法
Kristem et al. Jammer sensing and performance analysis of MC-CDMA ultrawideband systems in the presence of a wideband jammer
Aldoseri et al. A reliable industrial wireless sensor and actor network based on CDMA-OQAM-OFDM
Ma et al. User sensing based on MIMO cognitive radio sensor networks
Popovski et al. Modelling and comparative performance analysis of a time-reversed UWB system
Sameer Babu et al. Synchronization techniques for underwater acoustic communications
An et al. A turbo coded LoRa-index modulation scheme for IoT communication
Yang et al. High‐frequency FH‐FSK underwater acoustic communications: the environmental effect and signal processing
Zhang et al. DSTBC impulse radios with autocorrelation receiver in ISI-free UWB channels
Gian et al. Deep neural network-based detector for single-carrier index modulation NOMA
Yang et al. Frequency-hopping/M-ary frequency-shift keying for wireless sensor networks: Noncoherent detection and performance
CN111756470B (zh) 一种基于伪随机序列的噪声调制方法
TWI262670B (en) A piconet operable device and a method for operating it
Li et al. Performance of ultra-wideband transmission with pulse position amplitude modulation and rake reception
Zhao et al. Wireless Communication Network Security System Based on Big Data Information Transmission Technology
Liu et al. Incremental-data stealth-transmission method in DSSS
Li et al. Performance and capacity of ultra-wideband transmission with biorthogonal pulse position modulation over multipath fading channels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant