CN108090936A - The scanning mating plate tomograph imaging method of Qie Lunkefu fluorescence excitations - Google Patents

The scanning mating plate tomograph imaging method of Qie Lunkefu fluorescence excitations Download PDF

Info

Publication number
CN108090936A
CN108090936A CN201711358717.3A CN201711358717A CN108090936A CN 108090936 A CN108090936 A CN 108090936A CN 201711358717 A CN201711358717 A CN 201711358717A CN 108090936 A CN108090936 A CN 108090936A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mfrac
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711358717.3A
Other languages
Chinese (zh)
Other versions
CN108090936B (en
Inventor
冯金超
张娜
贾克斌
李哲
孙中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201711358717.3A priority Critical patent/CN108090936B/en
Publication of CN108090936A publication Critical patent/CN108090936A/en
Application granted granted Critical
Publication of CN108090936B publication Critical patent/CN108090936B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • G06T2207/10121Fluoroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention discloses the scanning mating plate tomograph imaging methods of Qie Lunkefu fluorescence excitations, belong to field of medical image processing.This method rebuilds the distribution of fluorescence quantum yield using the fluoroscopic image obtained in organism surface highly-sensitive detector.This method includes two processes, first, generating X-ray mating plate scanning organism generation Cerenkov radiation by linear accelerator and being used as internal excitation light source activation fluorogen, i.e. excitation process;Fluorescent yield can be rebuild exactly using external highly-sensitive detector acquisition fluorescence signal, i.e. emission process, this method second is that the fluorescence inspired is penetrated after biological tissue reaches organism surface.

Description

Scanning light sheet tomography method excited by Cherenkov fluorescence
Technical Field
The invention belongs to the field of medical image processing, and relates to a scanning light sheet tomography method excited by Cherenkov fluorescence.
Background
Radiotherapy is a method for treating tumors by utilizing radiation, and the role and the position in tumor treatment are highlighted increasingly. About 430 million new cases of cancer in 2015, 91.9 thousands of people use radiotherapy, which has become one of the main means for treating malignant tumors. If the physiological activities of malignant tumor cells can be revealed in vivo during radiotherapy, the method can be of great help for the treatment of malignant tumors.
Cherenkov fluorescence-excited scanning imaging (hereinafter referred to as CELSI) is an emerging medical imaging technology, and is a technology for exciting fluorophores in a living body based on radiation-generated Cherenkov light serving as a laser light source and receiving emitted fluorescence outside the living body by a high-sensitivity detector for imaging. CELSI uses cerenkov radiation as an intrinsic excitation light source to achieve lower background noise and higher imaging sensitivity. In addition, the CELSI technology utilizes an internal excitation light source to excite the fluorescent probe, effectively overcomes the problem of limited penetration capability of an external laser light source, and increases the imaging depth. In addition, the use of optical sheet scanning technology effectively improves the spatial resolution and depth sensitivity of the CELSI technology, and can image lesions with a diameter of about 1 mm and a depth of 2 cm. Due to these unique characteristics of CELSI technology, the development of this technology will facilitate its application in biomedical fields. However, CELSI is a two-dimensional planar imaging technique, and cannot provide depth information of a fluorescent probe in a living body and also cannot perform quantitative analysis, thereby limiting the application of CELSI in a living body.
Disclosure of Invention
In order to overcome the problems described in the background art, the invention provides a Cerenkov-excited fluorescence scanning tomography method for the first time.
The invention adopts the technical scheme that the scanning optical sheet tomography method excited by Cherenkov fluorescence reconstructs the distribution of fluorescence quantum yield by using a fluorescence image acquired by a high-sensitivity detector on the surface of a living body. The method comprises two processes, namely, an X-ray film generated by a linear accelerator is used for scanning an organism to generate Cerenkov radiation and is used as an internal excitation light source to excite a fluorophore, namely, an excitation process; secondly, after the excited fluorescence penetrates through biological tissues and reaches the body surface of the organism, an external high-sensitivity detector is used for acquiring a fluorescence signal, namely an emission process.
To accurately describe the excitation and emission processes, the method employs a coupled diffusion approximation equation of the form:
wherein, subscripts x and m represent excitation and emission bands respectively,. v is gradient operator,. phix(r) Cerenkov intensity at the excitation band at r, phim(r) is the intensity of the fluorescence light at the emission band r, μai(r) (i ═ x, m) represents an optical absorption coefficient, Di(r) (i ═ x, m) represents an optical diffusion coefficient, μaf(r) is the absorption coefficient of the fluorophore for the excitation light, η is the quantum efficiency of the fluorophore, η μaf(r) is the fluorescence quantum yield that needs to be reconstructed. For the light source term q (r) in equation (1), which is an intrinsic excitation light source rather than extrinsic, it is cerenkov radiation generated by a linear accelerator in radiotherapy. Considering that the attenuation of X-rays larger than 6 MeV in biological tissues is small and the thickness of a light beam is less than 5mm, the Cerenkov radiation is simplified into a uniformly distributed light sheet light source.
The robin type boundary conditions are adopted:
in formula (2), the subscripts x and m represent excitation and emission bands, respectively,is a boundaryA is a certain constant that depends on the deviation of the boundary optical reflection coefficient.
The cerenkov-excited fluorescence scanning tomography method is to reconstruct fluorescence quantum yield by using fluorescence images acquired in the emission process, which is a typical ill-conditioned inverse problem. For reconstruction of fluorescence quantum yield, based on regularization theory, iteration kAmount of fluorescence yield change ofUpdated by the iterative equation in equation (3) to obtain:
where k denotes the number of iterations, λ is a regularization parameter, ΦmeasIs a measured image of the fluorescence light,is a calculated fluorescence image of the divergent process, i.e. obtained by solving equation (1); t denotes the matrix transposition, JkIs a Jacobian matrix of the form:
wherein,representing the partial derivatives in mathematics, Ii(i 1.., NM) represents a measured fluorescence image ΦmeasFor the ith measurement, the size of the Jacobian matrix J is (M × N) × NN. M represents the number of light sheet scans, N represents the number of boundary measurement points, and NN represents the number of nodes after finite element discretization of the organism. Jacobi matrix JkIs obtained by dispersing the formula (1) by a finite element method.
If the current iteration number k is larger than the maximum iteration number kmaxOrAnd (3) stopping iteration by the formula (2), otherwise, continuing iteration until a stopping condition is met.
Drawings
FIG. 1 is a phantom shape with black dots indicating detector positions;
fig. 2 is a schematic view of a scanning mode, wherein arrows indicate scanning angles of light sheets, and straight lines indicate positions of the light sheets.
FIG. 3 is a schematic diagram of fluorophore distribution. The black areas in the figure indicate the position of the fluorophore.
FIG. 4 is a reconstructed fluorescence yield distribution.
Detailed Description
The invention is explained below with reference to specific embodiments and the accompanying drawings.
First, a rectangular phantom having a length and a width of 10cm and 6cm, respectively, was constructed as shown in FIG. 1. In the simulation experiments, the phantom was assumed to be homogeneous. Mu of excitation bandaxIs 0.009mm-1, Dx0.25mm-1, mu of emission bandamIs 0.006mm-1, DmIs 0.26 mm-1. A total of 67 fluorescence detectors were set up in the optical diffusion coefficient test, and these detectors were placed equidistantly at the upper boundary of the phantom, as shown in FIG. 1. In the test, the optical sheet is used for scanning once every 0.5cm interval from top to bottom of the imitation body, and the scanning mode is schematically shown in figure 2, wherein the scanning times are 21 times. In this experiment, a circular fluorophore having a diameter of 10mm and a fluorescence yield concentration of 0.008mm-1 was placed at a position (0,0) mm at the center, as shown in FIG. 3. To reconstruct the fluorescence yield, the phantom was discretized into 2747 points and 5280 triangles. Maximum number of iterations kmaxThe stop threshold epsilon is set to 10 and 0.01. Through the calculation of the method, the fluorescence yield reconstruction result shown in figure 4 can be obtained. Experimental results show that the method can accurately reconstruct the fluorescence yield.

Claims (2)

1. The tomography method of the scanning light sheet excited by Cherenkov fluorescence is characterized in that: the method utilizes a fluorescence image acquired by a high-sensitivity detector on the biological surface to reconstruct the distribution of fluorescence quantum yield; the method comprises two processes, namely, an X-ray film generated by a linear accelerator is used for scanning an organism to generate Cerenkov radiation and is used as an internal excitation light source to excite a fluorophore, namely, an excitation process; secondly, after the excited fluorescence penetrates through biological tissues and reaches the body surface of a living body, an external high-sensitivity detector is used for acquiring a fluorescence signal, namely an emission process;
to accurately describe the excitation and emission processes, the method employs a coupled diffusion approximation equation of the form:
<mrow> <mtable> <mtr> <mtd> <mrow> <mo>&amp;dtri;</mo> <msub> <mi>D</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;dtri;</mo> <msub> <mi>&amp;Phi;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Phi;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>q</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;dtri;</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;dtri;</mo> <msub> <mi>&amp;Phi;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Phi;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;Phi;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;eta;&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
wherein, subscripts x and m represent excitation and emission bands respectively,. v is gradient operator,. phix(r) Cerenkov intensity at the excitation band at r, phim(r) is the intensity of the fluorescence light at the emission band r, μai(r) (i ═ x, m) represents an optical absorption coefficient, Di(r) (i ═ x, m) represents an optical diffusion coefficient, μaf(r) is the absorption coefficient of the fluorophore for the excitation light, η is the quantum efficiency of the fluorophore, η μaf(r) is the fluorescence quantum yield to be reconstructed; for the light source term q (r) in equation (1), which is an intrinsic excitation light source rather than extrinsic, it is cerenkov radiation generated by a linear accelerator in radiotherapy; considering that the attenuation of X-rays larger than 6 MeV in biological tissues is small, and the thickness of a light beam is less than 5mm, the Cerenkov radiation is simplified into a uniformly distributed light sheet light source;
the robin type boundary conditions are adopted:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>AD</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mover> <mi>v</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <mi>r</mi> <mo>&amp;Element;</mo> <mo>&amp;part;</mo> <mi>&amp;Omega;</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
in formula (2), the subscripts x and m represent excitation and emission bands, respectively,is a boundaryA is a specific constant depending on the deviation of the boundary optical reflection coefficient;
the fluorescence scanning tomography method excited by Cerenkov is to reconstruct fluorescence quantum yield by using a fluorescence image acquired in the emission process, which is a typical ill-conditioned inverse problem; for reconstructing fluorescence quantum yield, based on regularization theory, the amount of fluorescence yield change of the kth iterationUpdated by the iterative equation in equation (3) to obtain:
<mrow> <msubsup> <mi>&amp;delta;&amp;eta;&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>J</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>J</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>I</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <msup> <mi>&amp;Phi;</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> </mrow> </msup> <mo>-</mo> <msubsup> <mi>&amp;Phi;</mi> <mi>k</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>c</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
where k denotes the number of iterations, λ is a regularization parameter, ΦmeasIs a measured image of the fluorescence light,is a calculated fluorescence image of the divergent process, i.e. obtained by solving equation (1); t denotes the matrix transposition, JkIs a Jacobian matrix of the form:
<mrow> <mi>J</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mi>N</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mi>N</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mi>N</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mi>M</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mi>M</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mi>M</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mi>M</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>f</mi> <mi>N</mi> <mi>N</mi> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
wherein,in the mathematics of representationPartial derivative operator of, Ii(i 1.., NM) represents a measured fluorescence image ΦmeasFor the ith measurement value, the size of the Jacobian matrix J is (M multiplied by N) multiplied by NN; m represents the number of optical sheet scans, N represents the number of boundary measurement points, and NN represents the number of nodes after a finite element of an organism is dispersed; jacobi matrix JkIs obtained by dispersing the formula (1) by a finite element method.
2. The cherenkov fluorescence-excited scanning light sheet tomography method of claim 1, wherein: if the current iteration number k is larger than the maximum iteration number kmaxOrAnd (3) stopping iteration by the formula (2), otherwise, continuing iteration until a stopping condition is met.
CN201711358717.3A 2017-12-17 2017-12-17 Scanning light sheet tomography method excited by Cherenkov fluorescence Active CN108090936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711358717.3A CN108090936B (en) 2017-12-17 2017-12-17 Scanning light sheet tomography method excited by Cherenkov fluorescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711358717.3A CN108090936B (en) 2017-12-17 2017-12-17 Scanning light sheet tomography method excited by Cherenkov fluorescence

Publications (2)

Publication Number Publication Date
CN108090936A true CN108090936A (en) 2018-05-29
CN108090936B CN108090936B (en) 2021-05-25

Family

ID=62176515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711358717.3A Active CN108090936B (en) 2017-12-17 2017-12-17 Scanning light sheet tomography method excited by Cherenkov fluorescence

Country Status (1)

Country Link
CN (1) CN108090936B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159021A (en) * 2021-08-29 2022-03-11 北京工业大学 Fluorescence scanning tomography reconstruction method based on dual-input and single-output deep learning and based on Cherenkov excitation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203111A1 (en) * 2004-03-12 2005-09-15 Vvii Newco 2003, Inc. Compositions and methods for preventing and treating skin and hair conditions
CN102741707A (en) * 2010-12-23 2012-10-17 中国科学院自动化研究所 Tomography method and system based on cerenkov effect
JP5048398B2 (en) * 2007-06-13 2012-10-17 大蔵製薬株式会社 Pharmaceutical composition of antifungal agent
CN105581779A (en) * 2015-12-13 2016-05-18 北京工业大学 Bioluminescent fault imaging reestablishment method for directly fusing structure imaging
CN106405610A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Cherenkov event induction optoelectronic pulse digitizing method and apparatus
CN106388845A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Positron emission cerenkov-gamma bi-radiation imaging method and device
CN106388768A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Cerenkov radiation imaging method and system
CN106405609A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Multiparticle event capturing method and device
CN106546555A (en) * 2016-10-08 2017-03-29 首都师范大学 Air plasma produces the spectrum modulation method and light path system of THz wave
CN107358653A (en) * 2017-08-15 2017-11-17 北京数字精准医疗科技有限公司 Imaging reconstruction method and device
CN107392977A (en) * 2017-08-22 2017-11-24 西北大学 Single-view Cherenkov lights tomography rebuilding method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203111A1 (en) * 2004-03-12 2005-09-15 Vvii Newco 2003, Inc. Compositions and methods for preventing and treating skin and hair conditions
JP5048398B2 (en) * 2007-06-13 2012-10-17 大蔵製薬株式会社 Pharmaceutical composition of antifungal agent
CN102741707A (en) * 2010-12-23 2012-10-17 中国科学院自动化研究所 Tomography method and system based on cerenkov effect
CN106405610A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Cherenkov event induction optoelectronic pulse digitizing method and apparatus
CN106388845A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Positron emission cerenkov-gamma bi-radiation imaging method and device
CN106388768A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Cerenkov radiation imaging method and system
CN106405609A (en) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 Multiparticle event capturing method and device
CN105581779A (en) * 2015-12-13 2016-05-18 北京工业大学 Bioluminescent fault imaging reestablishment method for directly fusing structure imaging
CN106546555A (en) * 2016-10-08 2017-03-29 首都师范大学 Air plasma produces the spectrum modulation method and light path system of THz wave
CN107358653A (en) * 2017-08-15 2017-11-17 北京数字精准医疗科技有限公司 Imaging reconstruction method and device
CN107392977A (en) * 2017-08-22 2017-11-24 西北大学 Single-view Cherenkov lights tomography rebuilding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈达 等: "切伦科夫光在生物成像技术中的应用及研究进展", 《南京航空航天大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159021A (en) * 2021-08-29 2022-03-11 北京工业大学 Fluorescence scanning tomography reconstruction method based on dual-input and single-output deep learning and based on Cherenkov excitation
CN114159021B (en) * 2021-08-29 2023-08-18 北京工业大学 Dual-input-single-output deep learning-based fluorescence scanning tomography reconstruction method for Cherenkov excitation

Also Published As

Publication number Publication date
CN108090936B (en) 2021-05-25

Similar Documents

Publication Publication Date Title
Graves et al. A submillimeter resolution fluorescence molecular imaging system for small animal imaging
US8862206B2 (en) Extended interior methods and systems for spectral, optical, and photoacoustic imaging
Li et al. Numerical simulation of x-ray luminescence optical tomography for small-animal imaging
Cong et al. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography
Zhang et al. Oxygen tomography by Čerenkov-excited phosphorescence during external beam irradiation
KR20120036304A (en) A system, method, and luminescent marker for improved diffuse luminescent imaging or tomography in scattering media
WO1998024361A2 (en) Method and apparatus for imaging an interior of a turbid medium
CN108090936B (en) Scanning light sheet tomography method excited by Cherenkov fluorescence
Biswal et al. Fluorescence imaging of vascular endothelial growth factor in tumors for mice embedded in a turbid medium
US10603001B2 (en) Energy modulated luminescence tomography
Badea et al. Investigations on X-ray luminescence CT for small animal imaging
JP4567318B2 (en) Method and apparatus for measuring position of region in biological tissue part
DeBrosse et al. Effect of Detector Placement on Joint Estimation in X-ray Fluorescence Emission Tomography
Kazancı et al. Mathematical method for diffuse optical tomography imaging: a research study
Feng et al. Cherenkov-excited luminescence sheet imaging (CELSI) tomographic reconstruction
CN107374588B (en) Multi-light-source fluorescent molecular tomography reconstruction method based on synchronous clustering
JP5283525B2 (en) Optical tomographic information generation method, optical tomographic information generation apparatus, and optical tomographic information generation program
Ntziachristos et al. Fluorescence molecular tomography: New detection schemes for acquiring high information content measurements
Song et al. A parallel reconstruction scheme in fluorescence tomography based on contrast of independent inversed absorption properties
US8712136B2 (en) Image reconstruction iterative method
DeBrosse Metal Mapping with X-ray Fluorescence Emission Tomography
Kepshire et al. Design considerations for a combined microct and fluorescence diffuse optical tomography system
Zhao et al. An iterative weighted method based on YALL1 for cone-beam X-ray luminescence optical tomography imaging: A phantom experimental study
Kepshire et al. Sub-surface fluorescence imaging of protoporphyrin IX with B-Scan mode tomography
Huang et al. Three-dimensional simultaneous absorption and scattering coefficient reconstruction for reflection geometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant