CN108084368B - 一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法 - Google Patents

一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法 Download PDF

Info

Publication number
CN108084368B
CN108084368B CN201711488064.0A CN201711488064A CN108084368B CN 108084368 B CN108084368 B CN 108084368B CN 201711488064 A CN201711488064 A CN 201711488064A CN 108084368 B CN108084368 B CN 108084368B
Authority
CN
China
Prior art keywords
super
vposs
shell
iodine
cspn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711488064.0A
Other languages
English (en)
Other versions
CN108084368A (zh
Inventor
王佰亮
金滢滢
孙林
李溪
陈浩
南开辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Medical University
Original Assignee
Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Medical University filed Critical Wenzhou Medical University
Priority to CN201711488064.0A priority Critical patent/CN108084368B/zh
Publication of CN108084368A publication Critical patent/CN108084368A/zh
Application granted granted Critical
Publication of CN108084368B publication Critical patent/CN108084368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D151/085Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,其中VPOSS组分具有高度的疏水性和机械性能,作为纳米颗粒的核使其长期保持高的粗糙度和超疏水性稳定性;PVP络合I2(I2‑PVP)形成的纳米颗粒的颗粒具有较强的抗菌活性。该方法工艺简单、快捷,条件温和,易于旋涂、浸涂、喷涂等可工业实的方式实现,适用范围广,能够有效地的改善医用装置表面的抗菌性能,生物相容性和润滑性。涂层溶液配制简便,能实现无污染操作。

Description

一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法
技术领域
本发明具体涉及新材料技术领域,具体涉及一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法。
背景技术
随着材料科学、医学、生物学的飞速发展,生物医用材料的研究取得了很大的进步,但仍面临各种挑战,生物材料应用的主要障碍还有感染问题。世界上约64%的院内获得性感染是由植入体或医疗器械上黏附病原菌引起的,如今这一比例还在进一步提高,因此抗菌材料和制品的开发受到越来越多的关注,所以对于如何有效防止细菌粘附生物材料表面已经成为人们研究的热点课题。
感染发生的一般过程是:细菌黏附,繁殖,形成菌落;分泌胞外基质,菌落通过胞外基质连接在一起,形成生物膜(biofilm),生物膜释放浮游菌体和毒素,引发感染。生物膜容易使细菌产生抗药性,由于其致密的物理结构,可以制止人体免疫系统中巨噬细胞的吞噬作用。实验证实,在生物膜内的细菌相比自由状态的细菌抵抗能力增加了1000倍。通过对各种医用装置的表面修饰,在保持原有性能的条件下,改善生物医用装置生物相容性成为现代医疗装置应用中的重要问题。
发明内容
为了解决现有技术的缺陷及不足。本发明提供了一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法。
本发明采用的技术解决方案是:一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,包括以下步骤:
(1)合成种子颗粒:将十二烷基磺酸钠,十六醇和去离子水加入烧瓶中,通入氮气,在70℃油浴锅以300 r/min速度机械搅拌30 min,使其溶解充分,待体系冷却至室温,通过滴加乙烯基笼型聚倍半硅氧烷(VPOSS)和二甲基丙烯酸乙二醇酯(EGDMA),通入15-30 min氮气,将体系移到冰水浴中超声处理3 min,70℃油浴锅,恒滴管滴加过硫酸钾(KPS),再在70℃下聚合8h,聚合成种子颗粒;
(2)核-壳颗粒的合成:将十二烷基磺酸钠,N-乙烯基吡咯烷酮(NVP),二乙烯基苯,甲基丙烯酸六氟丁酯(HFMA),过硫酸钾(KPS),乙烯基笼型聚倍半硅氧烷(VPOSS),去离子水,加入到三口瓶室温机械搅拌30min配置成壳层预乳化液,将步骤(1)得到的种子颗粒乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中,提前20分钟持续搅拌加热至70℃,同时通入氮气,将壳层预乳化液滴加入到其中,滴加4h,完毕后再在70℃反应2h,合成壳-核结构聚合物纳米颗粒(CSPN);
(3)浇铸法制备聚维酮碘超疏水抗细菌黏附杀菌表面:在浇铸之前先用环氧树脂E51和聚乙烯醇缩甲醛预处理基底表面,构建长期稳定的超疏水涂层,再采用络合I2的壳-核结构聚合物纳米颗粒(CSPN)浇注成膜,即获得所述的聚维酮碘超疏水抗细菌黏附杀菌表面。
所述的步骤(2)核-壳颗粒的合成中N-乙烯基吡咯烷酮(NVP),甲基丙烯酸六氟丁酯(HFMA)和乙烯基笼型聚倍半硅氧烷(VPOSS)的投料量分别为0.5-2g,10-20g和2-4g。
所述的步骤(1)合成种子颗粒中滴加乙烯基笼型聚倍半硅氧烷(VPOSS)和二甲基丙烯酸乙二醇酯(EGDMA)的滴速为1滴/s。
所述的步骤(1)合成种子颗粒中滴加的过硫酸钾(KPS)浓度为0.01g/ml,滴加量为10ml。
本发明的有益效果是:本发明提供了一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,其中VPOSS组分具有高度的疏水性和机械性能,作为纳米颗粒的核使其长期保持高的粗糙度和超疏水性稳定性;PVP络合I2 (I2-PVP)形成的纳米颗粒的颗粒具有较强的抗菌活性。该方法工艺简单、快捷,条件温和,易于旋涂、浸涂、喷涂等可工业实的方式实现,适用范围广,能够有效地的改善医用装置表面的抗菌性能,生物相容性和润滑性。涂层溶液配制简便,能实现无污染操作 。
POSS作为一种新型笼状有机-无机杂化分子,具有较高的疏水性和机械性能,合成为纳米颗粒核使其长期保持高的粗糙度和超疏水性稳定性。形成I2-PVP的纳米颗粒的颗粒具有较强的抗菌活性,对革兰氏阴性菌和革兰氏阳性菌具有优良的抗细菌黏附。通过两步乳液聚合法合成新的覆盆子结构核-壳纳米粒子,使膜层通过浇铸法(casting)和I2络合合成 CSPN涂层,在基材上形成坚固的超疏水性膜具有高效的自清洁和杀菌性能。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明。
实施例1:
在250ml的四口烧瓶中加入0.25g 十二烷基磺酸钠、0.8g 十六醇和80ml去离子水,通入氮气,于70℃油浴锅中以300r/min速度机械搅拌30min,待反应物充分溶解。冷却至室温(约25℃),恒压滴液漏斗滴加4.3gVPOSS和13g EGDMA (30min ),滴加后在油浴改冰水浴并超声处理3min,再改用70℃油浴锅恒温加热,恒滴管滴加10ml 精制的KPS (0.01g/ml)20min,机械搅拌聚合8h,EGDMA和VPOSS聚合成种子颗粒。在100ml烧瓶中加入0.35g 十二烷基磺酸钠,1g NVP,2g二乙烯基苯,10g HFMA,0.05g KPS,1.5g VPOSS,25ml去离子水,室温机械搅拌30min配置成壳层预乳化液(pre-emulsion)。将第一步种子乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中提前20分钟持续搅拌加热至70℃,同时通入氮气,将预乳化液加入到恒滴中,滴加4h,完毕后再70℃反应2h,合成CSPN。用络合PVP的碘处理膜表面,制备CSPN涂层。
动态光散射(DLS)统计胶体颗粒的粒度分布显示CSPN颗粒大小分布集中,平均直径为451.2 nm。场发射扫描电子显微镜( FE-SEM) 对微观形态的分析证明合成核壳纳米粒子呈球形均匀分布,呈明显的微纳米复合覆盆子结构。Casting方法制备CSPN的膜层,接触角测试152.8o,表现出超疏水的性能。对比制备不具有PVPOSS组分的CSPN,热重分析显示含有PVPOSS的CSPN颗粒表现更好的耐热分解性。对革兰氏阳性细菌和革兰氏阴性细菌的杀菌效率均达到99.99%以上,表现出优越的杀菌效率。
实施例2:
在250ml的四口烧瓶中加入0.25g 十二烷基磺酸钠、0.8g 十六醇和80ml去离子水,通入氮气,于70℃油浴锅中机械搅拌30min。冷却至室温,恒压滴液漏斗滴加4.3g VPOSS和13g EGDMA,滴加后在油浴改冰水浴并超声处理3min,再改用70℃油浴锅恒温加热,恒滴管滴加10ml 精制的KPS,机械搅拌聚合成种子颗粒。在100ml烧瓶中加入0.35g 十二烷基磺酸钠,2g NVP,2g二乙烯基苯,15g HFMA,0.05g KPS,1g VPOSS,25ml去离子水,室温机械搅拌30min配置成壳层预乳化液(pre-emulsion)。将第一步种子乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中提前20分钟持续搅拌加热至70℃,同时通入氮气,将预乳化液加入到恒滴中,滴加4h,完毕后再70℃反应2h,合成CSPN。用络合I2的CSPN浇注成膜,测试接触角为156.2o,可以释放I2达到抗菌的效果。
用金黄色葡萄球菌,大肠杆菌和耐甲氧西林金黄色葡萄球菌为模型进行细菌抗黏附实验、抑菌环试验和摇瓶培养的实验方法定性和定量的评估三种疏水性或超疏水性CSPN膜的自洁和杀菌性能。结果显示CSPN膜层在接触细菌10min后能杀死99.9%的大肠杆菌和99.9999%的金黄色葡萄球菌和99.99%的耐甲氧西林金黄色葡萄球菌,抑菌环实验中CSPN大于1cm的抑制环,具有更强的抗菌效果。
实施例3
在250 ml的四口烧瓶中加入0.25g 十二烷基磺酸钠、0.8g 十六醇和80 ml去离子水,通入氮气,于70℃油浴锅中机械搅拌30 min。冷却至室温,恒压滴液漏斗滴加4.3gVPOSS和13g EGDMA,滴加后在油浴改冰水浴并超声处理3 min,再改用70℃油浴锅恒温加热,恒滴管滴加10ml 精制的KPS,机械搅拌聚合成种子颗粒。在100ml烧瓶中加入0.35g 十二烷基磺酸钠,2g二乙烯基苯,25ml去离子水,同时HFMA,NVP和VPOSS投料量分别为20g,1g和1g。添加后室温机械搅拌30min配置成壳层预乳化液(pre-emulsion)。将第一步种子乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中提前20分钟持续搅拌加热至70℃,同时通入氮气,将预乳化液加入到恒滴中,滴加4h,完毕后再70℃反应2h,合成CSPN。浇注的CSPN涂层接触角测是151.3o,呈超疏水性质,因此通过调节CSPN壳中的氟含量改变表面的疏水性。AFM结果图片清晰CSPN的微-纳复合材料的覆盆子结构和其CSPN在其表面的分布。结果显示CSPN膜层在接触细菌10min后能杀死99.8%的大肠杆菌和99.99%的金黄色葡萄球菌和99.9%的耐甲氧西林金黄色葡萄球菌,抑菌环实验中CSPN大于0.8 cm的抑制环,具有更强的抗菌效果。
实施例4
在250ml的四口烧瓶中加入0.25g 十二烷基磺酸钠、0.8g 十六醇和80ml去离子水,通入氮气,于70℃油浴锅中机械搅拌30min。冷却至室温,恒压滴液漏斗滴加13g DVB,滴加后在油浴改冰水浴并超声处理3min,再改用70℃油浴锅恒温加热,恒滴管滴加10ml 精制的KPS,机械搅拌聚合成种子颗粒。在100ml烧瓶中加入0.35g 十二烷基磺酸钠,2g NVP,2g二乙烯基苯,7.5g HFMA,0.05g KPS,0.5g VPOSS,25ml去离子水,室温机械搅拌30min配置成壳层预乳化液。将第一步种子乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中提前20分钟持续搅拌加热至70℃,同时通入氮气,将预乳化液加入到恒滴中,滴加4h,完毕后再70℃反应2h,合成CSPN。用络合I2的CSPN制备超疏水涂层。动态光散射(DLS)统计胶体颗粒的粒度分布显示CSPN颗粒大小分布集中,平均直径为423.6nm。场发射扫描电子显微镜( FE-SEM) 对微观形态的分析证明合成核壳纳米粒子呈球形均匀分布,呈明显的微纳米复合覆盆子结构。为了探索热力学性质,CSPN颗粒都表现出优异的耐热分解性,PVPOSS在CSPN壳中的复合物对维持超疏水膜的长期稳定性和力学性能起着重要的作用。
实施例5:
在250ml的四口烧瓶中加入0.25g 十二烷基磺酸钠、0.8g 十六醇和80ml去离子水,通入氮气,在70℃油浴锅以300r/min速度机械搅拌30min,待反应物充分溶解。冷却至25℃室温,恒压滴液漏斗滴加4.3g和13g EGDMA(30min),通30min氮气,将四口烧瓶移到冰水浴中超声处理3min后,70℃油浴锅恒温加热,恒滴管滴加10ml 的精制过后的KPS (0.01g/ml) 20min,在70℃下聚合8h。以合成含 EGDMA和VPOSS聚合成种子颗粒。在100ml烧瓶中加入0.35g 十二烷基磺酸钠,2g 二乙烯基苯, 0.05g KPS, 25ml去离子水,添加HFMA,NVP和VPOSS质量分别为10g,2g和3g室温机械搅拌30min配置成壳层预乳化液(pre-emulsion)。将第一步种子乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中提前20分钟持续搅拌加热至70℃,同时通入氮气,将预乳化液加入到恒滴中,滴加4h,完毕后再70℃反应2h,以合成CSPN纳米微球。用I2处理膜表面,得到抗菌功能化的 CSPN涂层,接触角为150.2o。结果显示CSPN膜层在接触细菌10min后能杀死92.2%的大肠杆菌和99.2%的金黄色葡萄球菌和99.1%的耐甲氧西林金黄色葡萄球菌,抑菌环实验中CSPN大于0.6 cm的抑制环,具有更强的抗菌效果。
POSS作为一种新型笼状有机-无机杂化分子,具有较高的疏水性和机械性能,合成为纳米颗粒核使其长期保持高的粗糙度和超疏水性稳定性。形成I2-PVP的纳米颗粒的颗粒具有较强的抗菌活性,对革兰氏阴性菌和革兰氏阳性菌具有优良的抗细菌黏附。通过两步乳液聚合法合成新的覆盆子结构核-壳纳米粒子,使膜层通过浇铸法(casting)和I2络合合成 CSPN涂层,在基材上形成坚固的超疏水性膜具有高效的自清洁和杀菌性能。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,其特征在于,包括以下步骤:
(1)合成种子颗粒:将十二烷基磺酸钠,十六醇和去离子水加入烧瓶中,通入氮气,在70℃油浴锅以300 r/min速度机械搅拌30 min,使其溶解充分,待体系冷却至室温,通过滴加乙烯基笼型聚倍半硅氧烷(VPOSS)和二甲基丙烯酸乙二醇酯(EGDMA),通入15-30 min氮气,将体系移到冰水浴中超声处理3 min,70℃油浴锅,恒滴管滴加过硫酸钾(KPS),再在70℃下聚合8h,聚合成种子颗粒;
(2)核-壳颗粒的合成:将十二烷基磺酸钠,N-乙烯基吡咯烷酮(NVP),二乙烯基苯,甲基丙烯酸六氟丁酯(HFMA),过硫酸钾(KPS),乙烯基笼型聚倍半硅氧烷(VPOSS),去离子水,加入到三口瓶室温机械搅拌30min配置成壳层预乳化液,将步骤(1)得到的种子颗粒乳液加入到250ml的带有冷凝、恒滴和通氮气导管的四口瓶中,提前20分钟持续搅拌加热至70℃,同时通入氮气,将壳层预乳化液滴加入到其中,滴加4h,完毕后再在70℃反应2h,合成壳-核结构聚合物纳米颗粒(CSPN);
(3)浇铸法制备聚维酮碘超疏水抗细菌黏附杀菌表面:在浇铸之前先用环氧树脂E51和聚乙烯醇缩甲醛预处理基底表面,构建长期稳定的超疏水涂层,再采用络合I2的壳-核结构聚合物纳米颗粒(CSPN)浇注成膜,即获得所述的复合聚维酮碘超疏水抗细菌黏附杀菌表面。
2.根据权利要求1所述的一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,其特征在于,所述的步骤(2)核-壳颗粒的合成中N-乙烯基吡咯烷酮(NVP),甲基丙烯酸六氟丁酯(HFMA)和乙烯基笼型聚倍半硅氧烷(VPOSS)的投料量分别为0.5-2g,10-20g和2-4g。
3.根据权利要求1所述的一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,其特征在于,所述的步骤(1)合成种子颗粒中滴加乙烯基笼型聚倍半硅氧烷(VPOSS)和二甲基丙烯酸乙二醇酯(EGDMA)的滴速为1滴/s。
4.根据权利要求1所述的一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法,其特征在于,所述的步骤(1)合成种子颗粒中滴加的过硫酸钾(KPS)浓度为0.01g/ml,滴加量为10ml。
CN201711488064.0A 2017-12-30 2017-12-30 一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法 Active CN108084368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711488064.0A CN108084368B (zh) 2017-12-30 2017-12-30 一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711488064.0A CN108084368B (zh) 2017-12-30 2017-12-30 一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法

Publications (2)

Publication Number Publication Date
CN108084368A CN108084368A (zh) 2018-05-29
CN108084368B true CN108084368B (zh) 2020-01-10

Family

ID=62181442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711488064.0A Active CN108084368B (zh) 2017-12-30 2017-12-30 一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法

Country Status (1)

Country Link
CN (1) CN108084368B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672182A (zh) * 2020-12-24 2022-06-28 苏州北辰新材料科技有限公司 涂料组合物及其制备方法和涂层
CN112933977B (zh) * 2021-02-01 2022-10-28 宁波职业技术学院 一种兼具亲水和抗菌性能的超滤膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671239A (zh) * 2012-05-03 2012-09-19 浙江大学 一种广谱长效抗菌壳聚糖纳米复合凝胶涂层制备方法
CN104263036A (zh) * 2014-10-15 2015-01-07 合肥环照高分子材料厂 一种杀菌型有机硅涂料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671239A (zh) * 2012-05-03 2012-09-19 浙江大学 一种广谱长效抗菌壳聚糖纳米复合凝胶涂层制备方法
CN104263036A (zh) * 2014-10-15 2015-01-07 合肥环照高分子材料厂 一种杀菌型有机硅涂料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Antimicrobial efficiency of PAA/(PVP/CHI) erodible polysaccharide multilayer through loading and controlled release of antibiotics;Qingwen Xu等;《Carbohydrate Polymers》;20161228(第161期);第53-62页 *

Also Published As

Publication number Publication date
CN108084368A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
Thomas et al. A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity
Yang et al. Smart antibacterial surface made by photopolymerization
Dong et al. Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents
Sun et al. Self-enriched mesoporous silica nanoparticle composite membrane with remarkable photodynamic antimicrobial performances
US9199000B2 (en) Chitosan hydrogel derivatives as a coating agent with broad spectrum of antimicrobial activities
Zhang et al. Antibacterial modification of PET with quaternary ammonium salt and silver particles via electron-beam irradiation
CN108084368B (zh) 一种复合聚维酮碘超疏水抗细菌黏附杀菌表面的制备方法
Li et al. Electrospraying micro-nano structures on chitosan composite coatings for enhanced antibacterial effect
CN109880470B (zh) 一种水性丙烯酸酯延时抗菌涂料的制备方法
CN105238057B (zh) 一种抗菌硅橡胶的制备方法
Kim et al. Synthesis, characterization, and antibacterial applications of novel copolymeric silver nanocomposite hydrogels
Shi et al. Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal components
CN110862680B (zh) 一种含氟聚丙烯酸类共聚物抗菌复合材料的制备方法及所得产品和应用
Ge et al. Preparation of organic–inorganic hybrid silica nanoparticles with contact antibacterial properties and their application in UV-curable coatings
Yang et al. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications
Wei et al. Preparation, characterization, and antibacterial properties of pH-responsive P (MMA-co-MAA)/silver nanocomposite hydrogels
Torabi et al. Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films
Wu et al. The preparation of cotton fabric with super‐hydrophobicity and antibacterial properties by the modification of the stearic acid
He et al. Bioinspired zwitterionic dopamine-functionalized liquid-metal nanodroplets for antifouling application
Chen et al. Construction of robust superhydrophobic film combing povidone iodine for high efficient self-cleaning and durable bactericidal properties
Wang et al. The innovative fabrication of nano-natural antimicrobial agent@ polymeric microgels-TiO2 hybrid films capable of absorbing UV and antibacterial on touch screen panel
Chen et al. Cooperative enhancement of fungal repelling performance by surface photografting of stereochemical bi-molecules
Li et al. Controllable deposition of Ag nanoparticles on various substrates via interfacial polyphenol reduction strategy for antibacterial application
CN114015265A (zh) 一种具有长效抗菌的涂层材料及其制备方法
Zhang et al. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant