CN108073895B - 一种基于解混预处理的高光谱目标检测方法 - Google Patents

一种基于解混预处理的高光谱目标检测方法 Download PDF

Info

Publication number
CN108073895B
CN108073895B CN201711170444.XA CN201711170444A CN108073895B CN 108073895 B CN108073895 B CN 108073895B CN 201711170444 A CN201711170444 A CN 201711170444A CN 108073895 B CN108073895 B CN 108073895B
Authority
CN
China
Prior art keywords
end member
target
hyperspectral image
image
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711170444.XA
Other languages
English (en)
Other versions
CN108073895A (zh
Inventor
郭宝峰
左权
左燕
陈华杰
谷雨
郭云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201711170444.XA priority Critical patent/CN108073895B/zh
Publication of CN108073895A publication Critical patent/CN108073895A/zh
Application granted granted Critical
Publication of CN108073895B publication Critical patent/CN108073895B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10036Multispectral image; Hyperspectral image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

基于解混预处理的高光谱目标检测方法:1)通过探测的高光谱图像,获得需要探测的目标光谱t,对高光谱图像和目标光谱进行单位化处理;2)对高光谱图像进行端元提取,得到图像的端元集合;3)根据2)得到的端元集合和目标光谱t进行光谱夹角计算,得到端元集合中与目标光谱最为近似的目标端元
Figure DDA0001477116700000011
如果在设定的阈值内找不到目标端元,则将高光谱影像投影至其主成分的正交子空间,再重复2)及3),直到匹配出目标端元
Figure DDA0001477116700000012
4)对3)所得目标端元进行丰度反演,得到目标端元的丰度图;5)对4)得到的丰度图得到丰度图的最佳分割阈值;6)根据5)得到的阈值,对丰度图进行分割,分割后图像中白色区域代表目标区域,黑色区域代表背景区域。

Description

一种基于解混预处理的高光谱目标检测方法
技术领域
本发明属于高光谱目标检测技术领域,具体涉及一种基于解混预处理的高光谱目标检测方法。
背景技术
高光谱目标探测技术是高光谱遥感技术应用的一个重要方向,已广泛应用于军用和民用领域。一幅高光谱图像有三个维度,其中包括两个空间维度和一个光谱维度。在高光谱图像中,每一个像元有着连续的数以百计的光谱波段,这些波段的宽度往往10nm左右,高光谱图像中相同波段的像元组成了2维图像,因此高光谱图像具备了“图谱合一”这一特性。
在过去的几十年中,数种高光谱目标探测算法被提出。其中包括光谱夹角填图(SAM)、约束能量最小算法(CEM)、自适应一致估计(ACE)等,SAM算法在目标探测中是最常见的一种目标探测算法,其利用对比目标光谱和影像中像元的相似度来判断影像中的像元是否为目标。SAM算法有着原理简单探测速度快等优点。CEM算法源于数字信号处理领域中的线性约束最小方差波束形成器,是一种有限长单位冲激响应滤波器,在仅知道目标光谱的情况下,CEM算法可以有效的对目标进行探测。
以上介绍的经典目标探测算法有一个共同点,在进行目标探测的过程中,仅利用目标光谱这一先验信息,没有充分利用高光谱图像中隐藏的端元信息。Chang首次提出利用NCLS(nonnegative constrained least squares)算法来进行目标探测,文献验证了利用解混进行目标探测的可行性,并得出在目标能被当做端元提取时,利用解混的目标探测算法的探测效果优于传统的目标探测算法。而NCLS算法存在的问题是:如果目标不能作为端元被成功提取,就存在探测效果差的问题。
发明内容
本发明在NCLS算法的基础上提出了一种基于解混预处理的高光谱目标检测方法,改进现有NCLS算法,解决了现有NCLS算法中如果目标不能作为端元被成功提取,探测效果差这一问题,并利用粒子群算法优化了丰度反演的阈值。
本发明采取如下技术方案:
一种基于解混预处理的高光谱目标检测方法,其步骤为:
1)获得需要探测的高光谱图像,获得需要探测的目标光谱t,对高光谱图像和目标光谱进行单位化处理;
2)对高光谱图像进行端元提取,可采用N-FINDE算法,得到图像的端元集合;
3)根据步骤2已经得到的端元集合和目标光谱t进行光谱夹角计算,得到端元集合中与目标光谱最为近似的目标端元
Figure BDA0001477116680000021
如果在设定的阈值内找不到目标端元,则将高光谱影像投影至其主成分的正交子空间,再重复步骤2和步骤3,直到匹配出目标端元
Figure BDA0001477116680000022
4)对步骤3所得目标端元进行丰度反演,如采用无约束最小2乘算法,得到目标端元的丰度图;
5)对步骤4中得到的丰度图可利用粒子群算法求得丰度图的最佳分割阈值;
6)根据步骤5得到的阈值,对丰度图进行分割,分割后图像中白色区域代表目标区域,黑色区域代表背景区域。
优选的,步骤1)、对高光谱图像进行单位化处理,具体如下:对高光谱图像X中的每个像元分别进行单位化处理,对每个像元进行如下处理:
Figure BDA0001477116680000023
其中,xi代表高光谱图像中每个像元中第i个波段的DN值,min表示该像元中所有波段DN值的最小值,max表示该像元中所有波段DN值的最大值,xi*表示单位化处理后像元中第i个波段的DN值。
优选的,步骤2)、高光谱图像中端元的提取:利用N-FINDER算法找出图像中组成最大体积的p个像元,体积的计算公式如式2,
Figure BDA0001477116680000031
其中,(·)!表示对括号中的p-1求阶乘,V(A1,A2,…Ap)表示p个端元组成的体积,p表示高光谱图像中端元的个数,A1,A2,…Ap表示p个端元,A,表示端元向量的转置,具体如下:首先估计出高光谱图像中端元个数,将高光谱图像降维到1维,高光谱图像中第一个端元就为降维后数据最大的那个像元;其次利用体积公式找出高光谱图像中和第一个端元组成最大体积的像元;然后依次找出影像中和已确定端元所组成最大体积的像元,直到找出p个像元,则找出的p个像元即为该高光谱图像的端元集合。
优选的,步骤3)、目标端元的匹配过程:根据步骤2)所得到的端元集,利用光谱夹角计算目标光谱和各端元的相似度,光谱夹角计算公式如下:
Figure BDA0001477116680000032
其中,y代表光谱夹角的余弦,θ表示光谱夹角,A表示端元向量,t表示目标光谱,AT表示端元向量的转置;光谱匹配度超过0.9,则认定端元为目标端元,正常情况下能从端元集合中仅有一个端元与目标光谱匹配,但存在提取出多个端元和没有一个端元和目标光谱匹配,在提取到多个端元时,对匹配到的端元进行求均值然后作为目标端元;在匹配不到目标端元的情况下,需要对高光谱图像进行投影,投影方向如下:
Figure BDA0001477116680000033
U=PCA(X) (5)
对高光谱图像投影后,投影公式如下:
Figure BDA0001477116680000034
其中,I是L×L维单位矩阵,L是高光谱图像波段数,T表示转置,U是主成分分析中的变换矩阵,PCA(·)表示对高光谱图像进行主成分分析,
Figure BDA0001477116680000041
代表投影方向,X表示高光谱图像,Y表示高光谱图像投影后的图像;重新按照步骤3)操作,直到匹配到目标端元。
优选的,步骤4)、对目标端元进行丰度反演:将步骤3)得到的目标端元进行丰度反演,具体利用最小2乘法求解,最小2乘求解公式如下:
cUCLS=(MTM)-1MTr (6)
其中,cUCLS表示丰度,M表示端元矩阵,r表示高光谱图像中的像元;对目标端元进行丰度反演后将会得到高光谱图像中目标端元在各个像元中的比例,由于采用的是无约束最小2乘法,在求得的阈值中可能存在小于0和大于1的情况,在这种情况下,小于0的修改为0,大于1的修改为1。
优选的,步骤5)、利用粒子群算法对阈值进行优化:具体操作如下:从高光谱图像中标记处肉眼可见的目标像元,利用粒子群算法对这些像元进行训练;具体训练过程如下:
Vi t+1=ω·Vi t+c1·r1i t·(Pt ipbest-Pt i)+c2·r2i t·(Pt gbest-Pt i)
其中,粒子i在t时刻的位置为Pi t=[pi1 t,pi2 t…,piN t],速度为Vi t=[vi1 t,vi2 t…,viN t],N代表N维空间;粒子在每次迭代中根据自身历史最优位置Pt ipbest和粒子群中全局最优位置所确定的速度更新方向来动态调整速度。式中右边第2项c1·r1i t·(Pt ipbest-Pt i)为“认知部分”,量化粒子对自己历史经验的吸收;式中右边第三项c2·r2i t·(Pt gbest-Pt i)是“社会部分”,衡量整个粒子群对该粒子的影响;惯性权值ω用来控制之前速度对当前速度的影响,c1和c2是加速度系数。rt 1i和rt 2i是均匀抽取的随机数,对算法引入不确定性因素;粒子利用更新后的速度和历史位置来实现位置的更新Pi t+1=Pi t+Vi t+1
以ROC曲线与坐标轴围城的最大面积作为粒子群算法的优化标准,经过粒子群算法的优化可以求取出一个最佳分割阈值。
优选的,步骤6)、根据步骤5)求取的阈值对丰度图进行分割:丰度图中大于等于阈值的像元为目标像元,丰度图中小于阈值的像元为背景,阈值分割后的丰度图即为目标探测的结果图。
本发明针对现有NCLS在不能提取目标端元时探测效果差,同时对阈值的选取完全靠经验选取的问题,提出了一套完整的基于像元解混的目标探测处理流程,涉及一种基于解混预处理的高光谱目标检测方法。本发明可以有效的提高目标探测的探测率。
附图说明
图1为算法流程示意图;
图2为真实目标位置图;
图3为利用NCLS算法进行目标探测的结果图;
图4为利用本发明进行目标探测的结果图;
图5为各目标探测算法的ROC曲线图。
具体实施方式
下面结合附图对本发明优选实施例作详细说明。
步骤1、对高光谱图像进行单位化处理,具体操作如下:对高光谱图像X中的每个像元分别进行单位化处理,对每个像元进行如下处理:
Figure BDA0001477116680000051
其中,xi代表高光谱图像中每个像元中第i个波段的DN(像元亮度)值,min表示该像元中所有波段DN值的最小值,max表示该像元中所有波段DN值的最大值,xi*表示单位化处理后像元中第i个波段的DN值。这样的处理可以减少不同环境带来的探测误差。
步骤2、高光谱图像中端元的提取:利用N-FINDER算法找出图像中组成最大体积的p个像元,体积的计算公式如式2。
Figure BDA0001477116680000052
其中,(·)!表示对括号中的数求阶乘,V(A1,A2,…Ap)表示p个端元组成的体积,p表示高光谱图像中端元的个数,A1,A2,…Ap表示p个端元,A,表示端元向量的转置。具体操作如下:首先估计出高光谱图像中端元个数,将高光谱图像降维到1维,高光谱图像中第一个端元就为降维后数据最大的那个像元;其次利用体积公式找出高光谱图像中和第一个端元组成最大体积的像元;然后依次找出影像中和已确定端元所组成最大体积的像元,直到找出p个像元,则找出的p个像元即为该高光谱图像的端元集合。
步骤3、目标端元的匹配:根据步骤2所得到的端元集,利用光谱夹角计算目标光谱和各端元的相似度,光谱夹角计算公式如下:
Figure BDA0001477116680000061
其中,y代表光谱夹角的余弦,θ表示光谱夹角,A表示端元向量,t表示目标光谱,AT表示端元向量的转置。光谱匹配度超过0.9,则认定端元为目标端元,正常情况下能从端元集合中仅有一个端元与目标光谱匹配,但存在提取出多个端元和没有一个端元和目标光谱匹配,在提取到多个端元时,对匹配到的端元进行求均值然后作为目标端元。在匹配不到目标端元的情况下,需要对高光谱图像进行投影,投影方向如下:
Figure BDA0001477116680000062
U=PCA(X) (5)
对高光谱图像投影后,投影公式如下:
Figure BDA0001477116680000063
其中,I是L×L维单位矩阵,L是高光谱图像波段数,T表示转置,U是主成分分析中的变换矩阵,PCA(·)表示对高光谱图像进行主成分分析,
Figure BDA0001477116680000064
代表投影方向,X表示高光谱图像,Y表示高光谱图像投影后的图像。重新按照步骤3操作,直到匹配到目标端元。
步骤4、对目标端元进行丰度反演:将步骤3得到的目标端元进行丰度反演,具体利用最小2乘法求解,最小2乘求解公式如下:
cUCLS=(MTM)-1MTr (6)
其中,cUCLS表示丰度,M表示端元矩阵,r表示高光谱图像中的像元。对目标端元进行丰度反演后将会得到高光谱图像中目标端元在各个像元中的比例,由于采用的是无约束最小2乘法,在求得的阈值中可能存在小于0和大于1的情况,在这种情况下,小于0的修改为0,大于1的修改为1。
步骤5、利用粒子群算法对阈值进行优化:具体操作如下:从高光谱图像中标记处肉眼可见的目标像元,利用粒子群算法对这些像元进行训练。具体训练过程如下:
Vi t+1=ω·Vi t+c1·r1i t·(Pt ipbest-Pt i)+c2·r2i t·(Pt gbest-Pt i)
其中,粒子i在t时刻的位置为Pi t=[pi1 t,pi2 t…,piN t],速度为Vi t=[vi1 t,vi2 t…,viN t],N代表N维空间。粒子在每次迭代中根据自身历史最优位置Pt ipbest和粒子群中全局最优位置所确定的速度更新方向来动态调整速度式中右边第2项为“认知部分”,量化粒子对自己历史经验的吸收。Pt gbest右边第三项是“社会部分”,衡量整个粒子群对该粒子的影响。惯性权值ω用来控制之前速度对当前速度的影响,c1和c2是加速度系数。rt 1i和rt 2i是均匀抽取的随机数,对算法引入不确定性因素。粒子利用更新后的速度和历史位置来实现位置的更新Pi t+1=Pi t+Vi t+1
以ROC曲线与坐标轴围城的最大面积作为粒子群算法的优化标准,经过粒子群算法的优化可以求取出一个最佳分割阈值。
步骤6、根据步骤5求取的阈值对丰度图进行分割:丰度图中大于等于阈值的像元为目标像元,丰度图中小于阈值的像元为背景,阈值分割后的丰度图即为目标探测的结果图。
本发明首先需要将高光谱图像数据进行标准化处理,使样本都处在同一环境下,以消除不同光照下同种物质不同光谱曲线对探测造成的影响;将标准化后的高光谱图像数据做端元提取处理,提取出高光谱图像中的端元,在目标不能当做端元被端元提取算法提取时,需要将高光谱图像投影到其主成分的正交子空间,然后再做端元提取处理,这样做可以提高提取到目标端元的成功率;在得到高光谱图像端元集合的基础上,对目标端元利用最小2乘算法进行丰度反演的处理,这样可以准确的获得每个像元中目标端元的所占比例;在得到丰度图后,利用粒子群算法对阈值的选取进行优化;经过以上处理得到的探测结果探测率高,具有较高的可行性。
本发明实验采用AVIRIS的Indian Pine数据进行验证,该数据为1992年拍摄印第安纳州西北的测试点影像。该影像对目标识别算法要求较高,这是因为各个像素之间光谱分辨率差异较小。该影像尺寸大小为145×145像素,包含16种物质。本实验中,选择编号为16的石塔作为被探测的目标。目标真实地物图参见图2。验证实验中,将本发明的方法简记为I-NCLS并和传统的SAD算法、CEM算法、NCLS算法的效果进行对比。在实验中,最大端元数p设为16,由于利用端元提取算法没能准确的提取出目标端元,在I-NCLS算法中,将高光谱图像投影到前3个主成分构成的正交空间中,在对高光谱图像进行投影后,再进行端元提取。利用粒子群算法求出新算法丰度反演的阈值为0.183。对比算法的探测结果阈值设为0.20。
图3是NCLS算法进行目标探测后得到的结果图像。
图4是本发明方法进行目标探测得到的结果图像。
图5为各目标探测算法的ROC曲线图,从图5可以看到本发明的探测效果最好。
另外,实验使用的是真实的高光谱图像数据,具有足够的说明力。
本发明基于解混预处理的高光谱目标检测方法,首先利用端元提取算法提取出高光谱图像中的端元;其次,通过光谱夹角匹配到端元中与目标光谱最为接近的端元作为目标端元,在不能匹配到目标端元时,该方法将高光谱图像投影至其主成分的正交子空间,然后再进行端元提取和目标端元匹配操作。接着,对目标端元进行丰度反演操作,得到目标端元的丰度图。最后,利用粒子群算法优化丰度图的阈值。本发明方法相对于传统的高光谱目标探测算法,提高了目标探测的探测率。

Claims (2)

1.一种基于解混预处理的高光谱目标检测方法,其特征是按如下步骤:
1)通过探测的高光谱图像,获得需要探测的目标光谱t,对高光谱图像和目标光谱进行单位化处理;
2)对高光谱图像进行端元提取,得到图像的端元集合;
3)根据步骤2)得到的端元集合和目标光谱t进行光谱夹角计算,得到端元集合中与目标光谱最为近似的目标端元
Figure FDA0003169671380000013
如果在设定的阈值内找不到目标端元,则将高光谱影像投影至其主成分的正交子空间,再重复步骤2)及步骤3),直到匹配出目标端元
Figure FDA0003169671380000014
4)对步骤3)所得目标端元进行丰度反演,得到目标端元的丰度图;
5)对步骤4)得到的丰度图得到丰度图的最佳分割阈值;
6)根据步骤5)得到的阈值,对丰度图进行分割,分割后图像中白色区域代表目标区域,黑色区域代表背景区域;
步骤1)、对高光谱图像进行单位化处理:对高光谱图像X中的每个像元分别进行单位化处理,对每个像元进行如下处理:
Figure FDA0003169671380000011
其中,xi代表高光谱图像中每个像元中第i个波段的DN值,min表示该像元中所有波段DN值的最小值,max表示该像元中所有波段DN值的最大值,xi*表示单位化处理后像元中第i个波段的DN值;
步骤2)、高光谱图像中端元的提取:利用N-FINDER算法找出图像中组成最大体积的p个像元,体积的计算如式2,
Figure FDA0003169671380000012
其中,(·)!表示对括号中的数求阶乘,V(A1,A2,…Ap)表示p个端元组成的体积,p表示高光谱图像中端元的个数,A1,A2,…Ap表示p个端元,A’表示端元向量的转置,具体如下:首先估计出高光谱图像中端元个数,将高光谱图像降维到1维,高光谱图像中第一个端元就为降维后数据最大的那个像元;其次利用体积公式找出高光谱图像中和第一个端元组成最大体积的像元;然后依次找出影像中和已确定端元所组成最大体积的像元,直到找出p个像元,则找出的p个像元即为该高光谱图像的端元集合;
步骤3)、目标端元的匹配过程:根据步骤2)所得到的端元集,利用光谱夹角计算目标光谱和各端元的相似度,光谱夹角计算公式如下:
Figure FDA0003169671380000021
其中,y代表光谱夹角的余弦,θ表示光谱夹角,A表示端元向量,t表示目标光谱,AT表示端元向量的转置;光谱匹配度超过0.9,则认定端元为目标端元,正常情况下能从端元集合中仅有一个端元与目标光谱匹配,但存在提取出多个端元和没有一个端元和目标光谱匹配,在提取到多个端元时,对匹配到的端元进行求均值然后作为目标端元;在匹配不到目标端元的情况下,需要对高光谱图像进行投影,投影方向如下:
Figure FDA0003169671380000022
U=PCA(X) (5)
对高光谱图像投影后,投影公式如下:
Figure FDA0003169671380000023
其中,I是L×L维单位矩阵,L是高光谱图像波段数,T表示转置,U是主成分分析中的变换矩阵,PCA(·)表示对高光谱图像进行主成分分析,
Figure FDA0003169671380000024
代表投影方向,X表示高光谱图像,Y表示高光谱图像投影后的图像;
重新按照步骤3)操作,直到匹配到目标端元;
步骤4)、对目标端元进行丰度反演:将步骤3)得到的目标端元进行丰度反演,具体利用最小2乘法求解,最小2乘求解公式如下:
cUCLS=(MTM)-1MTr (6)
其中,cUCLS表示丰度,M表示端元矩阵,r表示高光谱图像中的像元;对目标端元进行丰度反演后将会得到高光谱图像中目标端元在各个像元中的比例,求得的阈值中,小于0的修改为0,大于1的修改为1;
步骤5)、利用粒子群算法对阈值进行优化:从高光谱图像中标记处肉眼可见的目标像元,利用粒子群算法对这些像元进行训练;具体训练过程如下:
Vi t+1=ω·Vi t+c1·r1i t·(Pt ipbest-Pt i)+c2·r2i t·(Pt gbest-Pt i)
其中,粒子i在t时刻的位置为Pi t=[pi1 t,pi2 t…,piN t],速度为Vi t=[vi1 t,vi2 t…,viN t],N代表N维空间;粒子在每次迭代中根据自身历史最优位置Pt ipbest和粒子群中全局最优位置所确定的速度更新方向来动态调整速度;式中右边第2项c1·r1i t·(Pt ipbest-Pt i)为“认知部分”,量化粒子对自己历史经验的吸收;式中右边第三项c2·r2i t·(Pt gbest-Pt i)是“社会部分”,衡量整个粒子群对该粒子的影响;惯性权值ω用来控制之前速度对当前速度的影响,c1和c2是加速度系数;rt 1i和rt 2i是均匀抽取的随机数,对算法引入不确定性因素;粒子利用更新后的速度和历史位置来实现位置的更新Pi t+1=Pi t+Vi t+1
以ROC曲线与坐标轴围成的最大面积作为粒子群算法的优化标准,经过粒子群算法的优化求出最佳分割阈值。
2.如权利要求1所述基于解混预处理的高光谱目标检测方法,其特征是:步骤6)、根据步骤5)求取的阈值对丰度图进行分割:丰度图中大于等于阈值的像元为目标像元,丰度图中小于阈值的像元为背景,阈值分割后的丰度图即为目标探测的结果图。
CN201711170444.XA 2017-11-22 2017-11-22 一种基于解混预处理的高光谱目标检测方法 Active CN108073895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711170444.XA CN108073895B (zh) 2017-11-22 2017-11-22 一种基于解混预处理的高光谱目标检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711170444.XA CN108073895B (zh) 2017-11-22 2017-11-22 一种基于解混预处理的高光谱目标检测方法

Publications (2)

Publication Number Publication Date
CN108073895A CN108073895A (zh) 2018-05-25
CN108073895B true CN108073895B (zh) 2021-12-14

Family

ID=62157297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711170444.XA Active CN108073895B (zh) 2017-11-22 2017-11-22 一种基于解混预处理的高光谱目标检测方法

Country Status (1)

Country Link
CN (1) CN108073895B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063537B (zh) * 2018-06-06 2021-08-17 北京理工大学 针对异常小目标解混的高光谱图像预处理方法
CN109446899A (zh) * 2018-09-20 2019-03-08 西安空间无线电技术研究所 一种基于四谱段遥感图像的云目标检测方法
CN109840544B (zh) * 2018-12-19 2023-05-16 国网浙江省电力有限公司嘉兴供电公司 一种高光谱图像多端元光谱混合分析方法及装置
CN110263777B (zh) * 2019-06-26 2021-04-27 中国人民解放军火箭军工程大学 基于空谱结合的局部保持投影算法的目标检测方法及系统
CN112417934B (zh) * 2019-08-23 2024-05-14 华为技术有限公司 一种图像检测方法及相关设备
CN111311696B (zh) * 2020-02-12 2023-07-25 大连海事大学 一种基于高光谱解混技术的车牌真伪检测方法
CN116297391B (zh) * 2023-02-23 2024-03-19 北京市农林科学院 基于图像识别的微塑料的快速检测方法
CN117037149B (zh) * 2023-08-15 2024-03-22 华东师范大学 基于半监督群优化的多重免疫组化高光谱影像解混方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504315A (zh) * 2009-02-23 2009-08-12 北京航空航天大学 扩展形态学与正交子空间投影结合的端元自动提取方法
CN102663402A (zh) * 2012-04-21 2012-09-12 西北工业大学 基于修正扩展形态学算子的高光谱遥感图像端元提取方法
CN102708354A (zh) * 2011-12-31 2012-10-03 中国科学院遥感应用研究所 一种高尔夫球场的识别方法
CN105320959A (zh) * 2015-09-30 2016-02-10 西安电子科技大学 基于端元学习的高光谱图像稀疏解混方法
CN106124454A (zh) * 2016-06-30 2016-11-16 中国交通通信信息中心 一种基于遥感影像的沥青路面老化状况监测方法
CN106326926A (zh) * 2016-08-23 2017-01-11 复旦大学 一种高光谱图像目标光谱学习方法
CN107274387A (zh) * 2017-05-19 2017-10-20 西安电子科技大学 基于进化多目标优化的高光谱遥感影像的端元提取方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504315A (zh) * 2009-02-23 2009-08-12 北京航空航天大学 扩展形态学与正交子空间投影结合的端元自动提取方法
CN102708354A (zh) * 2011-12-31 2012-10-03 中国科学院遥感应用研究所 一种高尔夫球场的识别方法
CN102663402A (zh) * 2012-04-21 2012-09-12 西北工业大学 基于修正扩展形态学算子的高光谱遥感图像端元提取方法
CN105320959A (zh) * 2015-09-30 2016-02-10 西安电子科技大学 基于端元学习的高光谱图像稀疏解混方法
CN106124454A (zh) * 2016-06-30 2016-11-16 中国交通通信信息中心 一种基于遥感影像的沥青路面老化状况监测方法
CN106326926A (zh) * 2016-08-23 2017-01-11 复旦大学 一种高光谱图像目标光谱学习方法
CN107274387A (zh) * 2017-05-19 2017-10-20 西安电子科技大学 基于进化多目标优化的高光谱遥感影像的端元提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"基于凸集解混的高光谱图像目标检测技术";王凯;《中国优秀硕士学位论文全文数据库 信息科技辑》;20140415(第04期);第3-4章 *
"基于端元丰度量化的高光谱图像目标检测算法";何元磊 等;《国家安全地球物理丛书(十一)——地球物理应用前沿》;20151001;第161-165页 *

Also Published As

Publication number Publication date
CN108073895A (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
CN108073895B (zh) 一种基于解混预处理的高光谱目标检测方法
CN108346159B (zh) 一种基于跟踪-学习-检测的视觉目标跟踪方法
CN108510467B (zh) 基于深度可变形卷积神经网络的sar图像目标识别方法
CN107529650B (zh) 闭环检测方法、装置及计算机设备
CN112750140B (zh) 基于信息挖掘的伪装目标图像分割方法
US8861853B2 (en) Feature-amount calculation apparatus, feature-amount calculation method, and program
CN109871902B (zh) 一种基于超分辨率对抗生成级联网络的sar小样本识别方法
CN110991389B (zh) 判断目标行人在非重叠相机视角中出现的匹配方法
Zhu et al. SAR target classification based on radar image luminance analysis by deep learning
CN108509927B (zh) 一种基于局部对称图结构的手指静脉图像识别方法
CN114067444A (zh) 基于元伪标签和光照不变特征的人脸欺骗检测方法和系统
CN107862680B (zh) 一种基于相关滤波器的目标跟踪优化方法
CN110222661B (zh) 一种用于运动目标识别及跟踪的特征提取方法
CN113822352A (zh) 基于多特征融合的红外弱小目标检测方法
CN116052025A (zh) 一种基于孪生网络的无人机视频图像小目标跟踪方法
CN116612378A (zh) 一种基于ssd改进的不平衡数据及复杂背景下水下小目标检测方法
CN109767442B (zh) 一种基于旋转不变特征的遥感图像飞机目标检测方法
CN107358625B (zh) 基于SPP Net和感兴趣区域检测的SAR图像变化检测方法
CN102800101A (zh) 一种星载红外遥感图像机场roi快速检测方法
CN110751671B (zh) 一种基于核相关滤波与运动估计的目标跟踪方法
Hegenbart et al. A scale-adaptive extension to methods based on LBP using scale-normalized Laplacian of Gaussian extrema in scale-space
CN116311067A (zh) 基于高维特征图谱的目标综合识别方法、装置及设备
CN110570450A (zh) 一种基于级联的上下文感知框架的目标跟踪方法
CN112926382B (zh) 一种改善目标聚类特性的深度学习激光水下目标识别仪
Ren et al. SAR image matching method based on improved SIFT for navigation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant