CN108072860A  A kind of 3D positioning method based on radio communication base station  Google Patents
A kind of 3D positioning method based on radio communication base station Download PDFInfo
 Publication number
 CN108072860A CN108072860A CN201611049054.2A CN201611049054A CN108072860A CN 108072860 A CN108072860 A CN 108072860A CN 201611049054 A CN201611049054 A CN 201611049054A CN 108072860 A CN108072860 A CN 108072860A
 Authority
 CN
 China
 Prior art keywords
 mrow
 msup
 base station
 msub
 terminal
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Pending
Links
 230000006854 communication Effects 0.000 title claims abstract description 32
 238000004891 communication Methods 0.000 title claims abstract description 31
 238000000034 method Methods 0.000 title claims abstract description 31
 238000005259 measurement Methods 0.000 claims abstract description 31
 230000004807 localization Effects 0.000 claims description 8
 239000011159 matrix material Substances 0.000 claims description 8
 238000005070 sampling Methods 0.000 claims description 5
 238000013507 mapping Methods 0.000 claims description 2
 241000208340 Araliaceae Species 0.000 claims 1
 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
 235000008434 ginseng Nutrition 0.000 claims 1
 238000005516 engineering process Methods 0.000 abstract description 2
 238000010586 diagram Methods 0.000 description 4
 238000011161 development Methods 0.000 description 3
 238000004364 calculation method Methods 0.000 description 2
 230000000694 effects Effects 0.000 description 2
 238000010521 absorption reaction Methods 0.000 description 1
 230000003044 adaptive effect Effects 0.000 description 1
 238000004458 analytical method Methods 0.000 description 1
 230000000295 complement effect Effects 0.000 description 1
 230000007812 deficiency Effects 0.000 description 1
 230000005611 electricity Effects 0.000 description 1
 238000000691 measurement method Methods 0.000 description 1
 230000000704 physical effect Effects 0.000 description 1
 238000011160 research Methods 0.000 description 1
 238000009331 sowing Methods 0.000 description 1
Classifications

 G—PHYSICS
 G01—MEASURING; TESTING
 G01S—RADIO DIRECTIONFINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCEDETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
 G01S5/00—Positionfixing by coordinating two or more direction or position line determinations; Positionfixing by coordinating two or more distance determinations
 G01S5/02—Positionfixing by coordinating two or more direction or position line determinations; Positionfixing by coordinating two or more distance determinations using radio waves
 G01S5/10—Position of receiver fixed by coordinating a plurality of position lines defined by pathdifference measurements, e.g. omega or decca systems
Landscapes
 Physics & Mathematics (AREA)
 Engineering & Computer Science (AREA)
 General Physics & Mathematics (AREA)
 Radar, Positioning & Navigation (AREA)
 Remote Sensing (AREA)
 Position Fixing By Use Of Radio Waves (AREA)
Abstract
The present invention proposes a kind of 3D positioning method based on radio communication base station.The location information of range information and base station based on communication base station to terminal, realizes the positioning of mobile terminal.Cardinal principle is that the time of propagation of electrical signals is converted into distance, and end coordinates are solved on the basis of known to base station coordinates.Due to electric signal, be subject to nonlineofsight propagation, measurement accuracy, clock be asynchronous etc., factors are influenced in communication process, need to establish the error model of measurement distance, the transformational relation between measurement distance and actual distance is found out, so as to establish more accurate location model in some specific scene.It is the precondition using this kind of location technology at least there are four communication base stations in the range of the communication radius of mobile terminal.The base station number in place where the precision of location algorithm depends on terminal, present invention further proposes the Selection Strategies of communication base station in scene.
Description
Technical field
The invention belongs to wireless positioning field, this method is realized by radio communication base station and positioned.
Technical background
With the fast development of cordless communication network, service (the Location Based based on location information are provided
SerXice, abbreviation LBS) already become most one of business of development potentiality and market prospects.Although commercialization GPS with
The development of mobile terminal is widely applied, still, in such as builtup urban district, interior of building, underground parking
Etc. in many scenes, GPS positioning poorperforming.Compared to GPS positioning, based on the alignment system of wireless network base station it is above this
A little scenes can realize breakthrough, and there are the advantages of bigger in depth and range.It will measure what is obtained based on wireless communication system
The physicals index such as signal strength, propagation time transforms into the information such as distance, angle that positioning needs, so as to pass through positioning
Algorithm calculates the coordinate of terminal.But based on the alignment system of wireless network base station there is also lot of challenges, because communication base
Residing electromagnetic signal environment of standing is more complicated.It such as can be in metope multiple reflections, object during electromagnetic wave indoor propagation
Refraction and absorption so that there are errors for the range information that communication base station measures.Method in relation to indoor positioning and navigation at present,
Most communication by between WiFi equipment and mobile terminal, but the limited coverage of WiFi equipment and strange WiFi
The information security of equipment becomes the apparent inferior position of this kind of method.The present invention is based on arrival time (the Time Of of wireless signal
ArriXal, abbreviation TOA) and base station coordinates, the foundation location model of the more base stations of a terminalpair (at least four) is established, is passed through
Certain existing scene it is several to actual value and measured value, establish the error model of the scene, carried so as to be directed to the scene
For a kind of more accurate measurement model.
The content of the invention
Goal of the invention：The technical problems to be solved by the invention are determined based on what is communicated between communication base station and user terminal
Position system proposes a kind of positioning terminal, it is necessary to consider the influence of the factors such as the asynchronous, measurement accuracy of nonlineofsight propagation, clock
The method of threedimensional coordinate, and find out suitable base station selection strategy.
In order to solve the abovementioned technical problem, the present invention proposes a kind of three location algorithms of consideration error model, and explains
A kind of strategy of base station selection has been stated, has been included the following steps：
Step 1 arranges several terminals as sampled point in this scenario, it is known that sample point coordinate and base station coordinates, according to
Sampled point is obtained to the actual distance d of coordinate in range formula；
Step 2 is obtained sampling terminal according to the arrival time (Time Of Arrival, abbreviation TOA) of wireless signal and arrives
The measurement distance of base station
For some specific scene, error is fitted by the correspondence of actual distance and measurement distance for step 3
Function establishes base station to the error model of terminal distance；
Step 4 in the scene for having built up error model, for target terminal P to be positioned, finds out corresponding TO A values
15 minimum terminals when scene base station number is less than 15, choose all terminals, and ensure that base station number is more than 4, otherwise without
Method positions；
Step 5, by actual distance d, measurement distanceThe coordinate of terminal brings positioning equation into, solves the coordinate of terminal.
In the present invention, actual distance is the air line distance between base station and terminal in step 1, can be used for positioning terminal
Coordinate.Known base station coordinate is (x_{i}, y_{i}, z_{i}), end coordinates for (x, y, z) by below equation, base station and end can be acquired
Actual distance d between end：d^{2}=(xx_{i})^{2}+(yy_{i})^{2}+(zz_{i})^{2}
In the present invention, TOA is the arrival time of radio signal in step 2, i.e. the biography of signal between a base station and a terminal
Between sowing time, the spread speed of radio signal is multiplied by by the time can obtain observed range between base station and terminal.Pass through
TOA values can acquire the observed range between base station and terminal：Wherein d is actual distance,Represent terminal with
Observed range between base station, c is the spread speed of radio signal, when TOA is the propagation of signal between a base station and a terminal
Between.Measurement distance can be converted into actual distance by the error model.
The deviation between observed range and actual distance is considered in the present invention, in step 3, introduces error shown in following formula
FunctionWherein ω function representations actual distance d and measurement distanceMapping relations, under different scenes, ω
Expression formula is typically different.In certain scene, the measurement arrived by the true coordinate value and each base station measurement of several handheld terminals
Value TOA can fit the error function ω of the scene.
In the present invention, the threedimensional coordinate X (x, y, z) of terminal is solved in step 4, it is necessary to use at least four base station
Coordinate, because at least knowing that four coordinate points can just obtain unique solution X (x, y, z), i.e. four side mensurations.When known three dimensions
The coordinate of 4 base stations is respectively (x_{1}, y_{1}, z_{1})、(x_{2}, y_{2}, z_{2})、(x_{3}, y_{3}, z_{3})、(x_{4}, y_{4}, z_{4}), terminal X to this four base stations
Distance be respectively d_{1}, d_{2}, d_{3}, d_{4}, list equation group：
In the present invention, although theoretically only needed in step 4 four base stations can solve approximate end coordinates X (x, y,
Z), but in order to improve the accuracy of approximate solution, more base stations can be added in.In actual engineering problem, above equation is only
Getable approximate solution, with the increase of base station number, the equation quantity included in equation group increases, in the situation that unknown number is constant
Under, equation group variation is overdetermined systems.
It is the solution X that overdetermined systems are obtained in the present invention, in step 4, considers to solve this overdetermination side using least square method
Journey group obtains the approximate solution as close possible to actual value.Assuming that linear equation group AX=b, wherein A are coefficient matrix, b is
Constant vector, X are unknown vector, according to the correlation theorem of least square method, X^{*}It is that filling for the least square solution of AX=b wants item
Part is：X^{*}It is A^{T}AX=A^{T}The solution of b, wherein A^{T}Represent the transposed matrix of A.In matrix A^{T}Under the conditions of A is nonsingular, so logical
Cross the following formula：X=(A^{T}A)^{1}·A^{T}B can solve approximate end coordinates X (x, y, z).
Assume that the total number of base in certain scene for N, chooses wherein n base station, to target terminal in the present invention, in step 4
P is positioned.First, we choose the base station nearer from terminal P as far as possible.This is because with the increase of propagation distance, electricity
Signal is influenced be subject to factors such as multipath transmisstion, reflected refraction, signal interferences can bigger.On the other hand, base station has certain big
Small communication radius, beyond the measurement data of radius and unreliable.So, it should the premise in base station communication radius
Under, take the shorter priority principle of distance.Since TOA can reflect the distance of base station and terminal to a certain extent, in practical operation,
Using the product of TOA and propagation velocity of electromagnetic wave c as distance reference value, on the premise of the reference value is less than communication radius, choosing
Take the positioning participated in n base station of the TOA values minimum of terminal P to terminal P.
In the present invention, step 4 hypothesis has m terminal, it is known that each terminal P_{i}True coordinate (x_{i}, y_{i}, z_{i})(1≤i≤
M), it is terminal P according to distance priority principle_{i}It chooses n base station and participates in positioning (n >=4), it is known that the coordinate of this n base station and and P_{i}
Corresponding TOA values solve the elements of a fix according to positioning equation groupTo weigh the error of positioning
Size defines average relative error value, the true coordinate of all terminals and makes in the case that it represents certain in base station, in scene
The absolute value of coordinate difference and the ratio of true coordinate value calculated with location model, relative error and the specific place of terminal
Coordinate is unrelated, has more objectivity than absolute error in the measurement to error：
Calculate when n is respectively 4,5,6 ..., N when average relative error value.From the base station numbers of special scenes and error
It can be clearly seen that in relational graph, choose n base station according to distance priority principle, as n values increase, measurement error progressively subtracts
It is small, it tends towards stability.First, the location model that it demonstrates foundation be it is reliable, the method for solving of least square method be it is feasible,
The least square method used in overdetermined systems are solved can obtain globally optimal solution.Secondly, proved by actual calculating
Increase base station number can improve positioning accuracy, but when base station number is larger, increase raising shadow of the base station number to positioning accuracy
Very little is rung, so choosing suitable base station number, positional accuracy and efficiency can be taken into account.Finally, by result of calculation
With the analysis of error change tendency chart, it is believed that：According to the shorter priority principle of distance, from the base station selection less than communication radius
15 participate in positioning apart from shortest terminal, the accuracy and efficiency of positioning can be taken into account, when the base station number in communication radius is small
When 15, all base station numbers participate in positioning, but base station number has to be larger than 4, otherwise can not position, i.e.,：
Description of the drawings
The features of the present invention is further elaborated further combined with the drawings and specific embodiments.
Fig. 1 is the arrival time TOA schematic diagram of wireless signal.
Fig. 2 is four side mensuration schematic diagrames.
Fig. 3 is the positioning flow figure based on radio communication base station.
Specific embodiment
The invention discloses a kind of localization methods based on radio communication base station, comprise the following steps：
Step 1 arranges several terminals as sampled point in this scenario, it is known that sample point coordinate and base station coordinates, according to
Sampled point is obtained to the actual distance d of coordinate in range formula；
Step 2 is obtained sampling terminal according to the arrival time (Time Of Arrival, abbreviation TOA) of wireless signal and arrives
The measurement distance of base station
For some specific scene, error is fitted by the correspondence of actual distance and measurement distance for step 3
Function establishes base station to the error model of terminal distance；
Step 4 in the scene for having built up error model, for target terminal P to be positioned, finds out corresponding TO A values
15 minimum terminals when scene base station number is less than 15, choose all terminals, and ensure that base station number is more than 4, otherwise without
Method positions；
Step 5, by actual distance d, measurement distanceThe coordinate of terminal brings positioning equation into, solves the coordinate of terminal.
As shown in Figure 1, TOA is the arrival time of radio signal, i.e. the propagation time of signal between a base station and a terminal,
The spread speed of radio signal is multiplied by by the time can obtain observed range between base station and terminal.
In this example, in step 1 in advance arrange in the scene it is several sampling terminals, it is necessary to these known terminals it is true
Threedimensional coordinate.
In this example, step 2 by the TOA values measured be multiplied by radio signal spread speed c can obtain base station with
Observed range between terminal.
In this example, the respective value of one group of actual distance in scene and observed range is carried out Function Fitting by step 2,
Obtain error functionExpression, so, after bring positioning equation group into, by equation group actual distance d convert
For measurement distance
In certain scene, we have a true coordinate value of several handheld terminals and each base station measurement arrives measured value
TOA can then fit the error function ω of the scene.The actual distance d and measurement distance for four scenes respectively chosen
Matched curve, wherein abscissa represent actual distance d, and ordinate represents measurement distanceIt makes actual distance and measurement distance is closed
The coordinate diagram of system.By the matched curve of coordinate diagram, it has been found that actual distance d and measurement distanceShow as linear relationship：For
Different scenes, slope is different, and which reflects the influences that different scenes apply the propagation of electric signal；There is approximately uniform section
Away from (about 0.5), this fixed clockskew between terminal and base station closes.Therefore following error model expression is provided
Formula：
Wherein k values are related with scene, this error model will be brought into basic fixed position model, orderBy error function
Bring positioning equation into：
In actual engineering problem, approximate solution that above equation can only obtain, with the increase of base station number, in equation group
Comprising equation quantity increase, in the case where unknown number is constant, above equation group expands to overdetermined systems.Assuming that shared n
A base station participates in computing, and above equation group expands to：
If it can be obtained nonhomogeneous from the form of equation group it is observed that mutually being made the difference to the equation in equation group
System of linear equations reduces and solves difficulty.It is poor that above equation group is made, and obtains Linear Equations, it may be considered that the side of passing through
The matrix form of journey group solves, and is written as matrix form：Av=b, wherein
For solution of equations v is obtained, considers to solve this overdetermined systems using least square method, obtain as close possible to true
The approximate solution of real value.According to the correlation theorem of least square method, by v=(A^{T}A)^{1}·A^{T}B, solve approximate end coordinates X (x,
Y, z).
In this example, although the accuracy of positioning can be improved by increasing the base station number for participating in positioning, with base station
The increase of quantity, solving complexity can greatly improve, and influence the efficiency of location algorithm.The system of many mobile terminals is to positioning
Requirement of realtime is very high, while is also limited by the hardware computation ability of mobile terminal in itself, so must take into consideration positions calculations
Complexity.The base station selection strategy that the present invention takes not only ensures the accuracy of positioning, but also reduces the base station for participating in positioning as far as possible
Number improves location efficiency.
At least there are four communication base stations in the range of the communication radius of mobile terminal, positioned using this kind in this example
The precondition of technology.The base station number in place where the precision of location algorithm depends on terminal.In addition, the scene residing for terminal
Data sampling, model foundation must be passed through in advance, positioning service could be provided.
The localization method based on radio communication base station that the present invention introduces, either compared to traditional GPS positioning or base
In the indoor positioning of WiFi communications, all with larger advantage.Radio communication base station based on operator, the coverage rate of signal
It is very high, it is influenced by environment and place smaller, the deficiency of both the above tradition positioning method can be made up.It is provided from experimental result
As can be seen that the positioning result of the algorithm can reach very high accuracy, on this basis, also analyze raising positioning effect
The strategy of rate, positioning flow figure are as shown in Figure 3.In application afterwards, if radio communication base station mutually tied with GPS positioning
It closes, has complementary advantages, then can play better locating effect.Following research direction is realized in various scenes, and terminal can
It establishes error model in real time in position fixing process, improves the adaptive ability of alignment system, expand the suitable of wireless base station positioning
Use scope.
The present invention provides a kind of 3D positioning methods based on radio communication base station, it is noted that institute in position fixing process
The base station equipment and mobile terminal equipment model form being related to are not construed as limiting this patent；Involved TOA in step 2
The measurement method of value is not construed as limiting this patent.It should be pointed out that for the ordinary person of the art, do not departing from
Any equal replacement and improvement made on the premise of inventive principle, are regarded as protection scope of the present invention.In addition, this example
In the available prior art of each component that is not known realized.
Claims (7)
1. a kind of location algorithm based on radio communication base station, which is characterized in that include the following steps：
Step 1 arranges several terminals as sampled point in this scenario, it is known that sample point coordinate and base station coordinates, according to distance
Sampled point is obtained to the actual distance d of coordinate in formula；
Sampling terminal to base station is obtained according to the arrival time (Time Of Arrival, abbreviation TOA) of wireless signal in step 2
Measurement distance
For some specific scene, error function is fitted by the correspondence of actual distance and measurement distance for step 3,
Base station is established to the error model of terminal distance；
Step 4 in the scene for having built up error model, for target terminal P to be positioned, finds out corresponding TO A values minimum
15 terminals, when scene base station number be less than 15 when, choose all terminals, and ensure base station number be more than 4, otherwise without legal
Position；
Step 5, by actual distance d, measurement distanceThe coordinate of terminal brings positioning equation into, solves the coordinate of terminal.
2. the localization method of wireless base station according to claim 1, which is characterized in that step 2 is multiplied by wirelessly by the time
The spread speed of electric signal can obtain the measurement distance between base station and terminal, and by TOA values, base station and end are acquired by following formula
Observed range between end：
Observed range between terminal and base station；
c：The spread speed of radio signal, takes 3 × 10^{8}m/s；
TOA：The propagation time of signal between a base station and a terminal.
3. the localization method of wireless base station according to claim 1, which is characterized in that step 3 by ranging process due to
Error caused by the factors such as nonlineofsight propagation, clock synchronism adds in location model, which can be expressed as：
Wherein d is actual distance,Represent measurement distance, wherein ω function representations actual distance d and measurement distanceMapping close
System, under different scenes, ω expression formulas are typically different.
4. the localization method of wireless base station according to claim 1, which is characterized in that step 4 choose base station strategy be
The nearer base station of prioritizing selection distance objective terminal, this is because with the increase of propagation distance, electric signal be subject to multipath transmisstion,
The influence meeting bigger of the factors such as reflected refraction, signal interference, on the other hand, base station has a certain range of communication radius, exceeds
The measurement data of radius is simultaneously unreliable, so, it should on the premise of in base station communication radius, take closer to the distance excellent
First principle.
5. the localization method of wireless base station according to claim 1, which is characterized in that step 4 choose base station strategy be
15 nearest base stations of selected distance target terminal, if choosing all base station ginsengs in scene less than 15 base stations in scene
With positioning, and must ensure base station number be more than 4, otherwise can not position；
6. the localization method of wireless base station according to claim 1, which is characterized in that step 5 is participated in by 4 base stations
The positioning of terminal solves the threedimensional coordinate X (x, y, z) of terminal, as shown in below equation group：
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo></mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mn>1</mn>
</msub>
<mo></mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mn>1</mn>
</msub>
<mo></mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>=</mo>
<msubsup>
<mi>d</mi>
<mn>1</mn>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<msup>
<mi>&omega;</mi>
<mrow>
<mo></mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo></mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mn>2</mn>
</msub>
<mo></mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo></mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>=</mo>
<msubsup>
<mi>d</mi>
<mn>2</mn>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<msup>
<mi>&omega;</mi>
<mrow>
<mo></mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>3</mn>
</msub>
<mo></mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mn>3</mn>
</msub>
<mo></mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mn>3</mn>
</msub>
<mo></mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>=</mo>
<msubsup>
<mi>d</mi>
<mn>3</mn>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<msup>
<mi>&omega;</mi>
<mrow>
<mo></mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mn>3</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
<mo></mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mn>4</mn>
</msub>
<mo></mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mn>4</mn>
</msub>
<mo></mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>=</mo>
<msubsup>
<mi>d</mi>
<mn>4</mn>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<msup>
<mi>&omega;</mi>
<mrow>
<mo></mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mn>4</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
Wherein the coordinate of 4 base stations of three dimensions is respectively (x_{1}, y_{1}, z_{1})、(x_{2}, y_{2}, z_{2})、(x_{3}, y_{3}, z_{3})、(x_{4}, y_{4}, z_{4}), eventually
The distance for holding X to this four base stations is respectively d_{1}、d_{2}、d_{3}、d_{4}。
7. the localization method of wireless base station according to claim 1, which is characterized in that step 5 considers to use least square
Method solves the overdetermined systems of positioning, obtains the approximate solution as close possible to actual value；Assuming that linear equation group AX=b,
Wherein A is coefficient matrix, and b is constant vector, and X is unknown vector, according to the correlation theorem of least square method, X^{*}It is AX=b
The necessary and sufficient condition of least square solution be：X^{*}It is A^{T}AX=A^{T}The solution of b, wherein A^{T}Represent the transposed matrix of A.So by following
Formula：X=(A^{T}A)^{1}·A^{T}B, in matrix A^{T}Under the conditions of A is nonsingular, approximate end coordinates X (x, y, z) can be solved.
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN201611049054.2A CN108072860A (en)  20161118  20161118  A kind of 3D positioning method based on radio communication base station 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN201611049054.2A CN108072860A (en)  20161118  20161118  A kind of 3D positioning method based on radio communication base station 
Publications (1)
Publication Number  Publication Date 

CN108072860A true CN108072860A (en)  20180525 
Family
ID=62161583
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN201611049054.2A Pending CN108072860A (en)  20161118  20161118  A kind of 3D positioning method based on radio communication base station 
Country Status (1)
Country  Link 

CN (1)  CN108072860A (en) 
Cited By (9)
Publication number  Priority date  Publication date  Assignee  Title 

CN108650635A (en) *  20180702  20181012  中国人民解放军战略支援部队信息工程大学  Non line of sight communication position error removing method based on singular spectrum analysis and device 
CN110726969A (en) *  20180716  20200124  刘勉志  Firefighter positioning system 
CN111007459A (en) *  20191219  20200414  浙江工业大学之江学院  Dynamic topology positioning method 
CN111491366A (en) *  20200306  20200804  西安电子科技大学  Method for correcting threedimensional positioning of target based on wireless communication base station and wireless communication system 
CN112987062A (en) *  20210225  20210618  贵州华图科技有限公司  Underground positioning method and system based on Chinesemicro son communication 
CN113075616A (en) *  20210318  20210706  桂林电子科技大学  Detection positioning method and system of blackflying unmanned aerial vehicle and computer equipment 
CN115308685A (en) *  20220714  20221108  南京信息工程大学  External radiation source target positioning method based on multibase station communication pseudorange information 
CN115550854A (en) *  20220916  20221230  上海交通大学  Highprecision positioning method for 5G cluster communication nodes based on mMTC scene 
CN113075616B (en) *  20210318  20240607  桂林电子科技大学  Detection positioning method, system and computer equipment of black flying unmanned aerial vehicle 
Citations (8)
Publication number  Priority date  Publication date  Assignee  Title 

AU2527700A (en) *  20000204  20010814  CellLoc Inc.  A networkbased wireless location system to positon amps (fdma) cellular telephones 
CN1499877A (en) *  20021107  20040526  华为技术有限公司  Method for eveluating position 
CN101047983A (en) *  20060418  20071003  华为技术有限公司  Method for positioning moving platform 
CN101355409A (en) *  20080904  20090128  北京邮电大学  Method for implementing partner selection and collaboration transmission combining position information 
CN101394672A (en) *  20081030  20090325  上海大学  High precision wireless positioning method and system based on multipath dispersion information 
CN101730227A (en) *  20091110  20100609  大连理工大学  Multibase station secondary positioning method based on toughness estimation and arrival time difference 
CN102879762A (en) *  20120927  20130116  东南大学  Dynamic positioning method for vehicles in tunnel based on radio frequency receipt signal intensity value 
CN103687000A (en) *  20131217  20140326  上海交通大学无锡研究院  Wireless sensor network indoor localization distance measurement optimization method based on RSSIs 

2016
 20161118 CN CN201611049054.2A patent/CN108072860A/en active Pending
Patent Citations (8)
Publication number  Priority date  Publication date  Assignee  Title 

AU2527700A (en) *  20000204  20010814  CellLoc Inc.  A networkbased wireless location system to positon amps (fdma) cellular telephones 
CN1499877A (en) *  20021107  20040526  华为技术有限公司  Method for eveluating position 
CN101047983A (en) *  20060418  20071003  华为技术有限公司  Method for positioning moving platform 
CN101355409A (en) *  20080904  20090128  北京邮电大学  Method for implementing partner selection and collaboration transmission combining position information 
CN101394672A (en) *  20081030  20090325  上海大学  High precision wireless positioning method and system based on multipath dispersion information 
CN101730227A (en) *  20091110  20100609  大连理工大学  Multibase station secondary positioning method based on toughness estimation and arrival time difference 
CN102879762A (en) *  20120927  20130116  东南大学  Dynamic positioning method for vehicles in tunnel based on radio frequency receipt signal intensity value 
CN103687000A (en) *  20131217  20140326  上海交通大学无锡研究院  Wireless sensor network indoor localization distance measurement optimization method based on RSSIs 
NonPatent Citations (1)
Title 

钱志鸿等: "无线网络定位综述", 《计算机学报》 * 
Cited By (13)
Publication number  Priority date  Publication date  Assignee  Title 

CN108650635B (en) *  20180702  20200731  中国人民解放军战略支援部队信息工程大学  Nonlineofsight communication positioning error elimination method and device based on singular spectrum analysis 
CN108650635A (en) *  20180702  20181012  中国人民解放军战略支援部队信息工程大学  Non line of sight communication position error removing method based on singular spectrum analysis and device 
CN110726969B (en) *  20180716  20220315  刘勉志  Firefighter positioning system 
CN110726969A (en) *  20180716  20200124  刘勉志  Firefighter positioning system 
CN111007459A (en) *  20191219  20200414  浙江工业大学之江学院  Dynamic topology positioning method 
CN111491366A (en) *  20200306  20200804  西安电子科技大学  Method for correcting threedimensional positioning of target based on wireless communication base station and wireless communication system 
CN112987062A (en) *  20210225  20210618  贵州华图科技有限公司  Underground positioning method and system based on Chinesemicro son communication 
CN113075616A (en) *  20210318  20210706  桂林电子科技大学  Detection positioning method and system of blackflying unmanned aerial vehicle and computer equipment 
CN113075616B (en) *  20210318  20240607  桂林电子科技大学  Detection positioning method, system and computer equipment of black flying unmanned aerial vehicle 
CN115308685A (en) *  20220714  20221108  南京信息工程大学  External radiation source target positioning method based on multibase station communication pseudorange information 
CN115308685B (en) *  20220714  20240202  南京信息工程大学  External radiation source target positioning method based on multibase station communication pseudorange information 
CN115550854A (en) *  20220916  20221230  上海交通大学  Highprecision positioning method for 5G cluster communication nodes based on mMTC scene 
CN115550854B (en) *  20220916  20240510  上海交通大学  Highprecision positioning method for 5G cluster communication nodes based on mMTC scene 
Similar Documents
Publication  Publication Date  Title 

CN108072860A (en)  A kind of 3D positioning method based on radio communication base station  
CN102026370B (en)  Time difference on arrival (TDOA) locating method based on circumferentially distributed monitoring nodes  
US8478292B2 (en)  Wireless localization method based on an efficient multilateration algorithm over a wireless sensor network and a recording medium in which a program for the method is recorded  
CN103402258A (en)  WiFi (Wireless Fidelity)based indoor positioning system and method  
CN107820206B (en)  Nonlineofsight positioning method based on signal intensity  
CN111381209A (en)  Distance measurement positioning method and device  
CN100566345C (en)  Wireless sensor network node locating method based on ultra broadband  
Blumrosen et al.  Continuous closeproximity rssibased tracking in wireless sensor networks  
CN110636436A (en)  Threedimensional UWB indoor positioning method based on improved CHAN algorithm  
CN102364983A (en)  RSSI (Received Signal Strength Indicator) ranging based WLS (WebLogic Server) node selfpositioning method in wireless sensor network  
CN104053234A (en)  Coordinate error compensation positioning system and method based on RSSI  
CN105353351A (en)  Improved positioning method based on multibeacon arrival time differences  
Podevijn et al.  Performance comparison of rss algorithms for indoor localization in large open environments  
Zhu et al.  EKF localization based on TDOA/RSS in underground mines using UWB ranging  
Lee  Locationaware speakers for the virtual reality environments  
CN101656909A (en)  Method for positioning mobile terminal and base station  
Si et al.  An adaptive weighted WiFi FTMbased positioning method in an NLOS environment  
KuxdorfAlkirata et al.  Reliable and lowcost indoor localization based on bluetooth low energy  
Srbinovska et al.  Localization estimation system using measurement of RSSI based on ZigBee standard  
Jeon et al.  An adaptive AP selection scheme based on RSS for enhancing positioning accuracy  
Zhao et al.  A UWB/Bluetooth fusion algorithm for indoor localization  
Huang et al.  A practical localization algorithm based on wireless sensor networks  
Matharu et al.  An efficient approach for localization using trilateration algorithm based on received signal strength in wireless sensor network  
Merhi et al.  RSSI range estimation for indoor anchor based localization for wireless sensor networks  
CN103209476A (en)  Signal intensity based method for eliminating multipath interference and achieving accurate indoor positioning 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
PB01  Publication  
SE01  Entry into force of request for substantive examination  
SE01  Entry into force of request for substantive examination  
WD01  Invention patent application deemed withdrawn after publication  
WD01  Invention patent application deemed withdrawn after publication 
Application publication date: 20180525 