CN108039221B - Flexible transparent conductive film and preparation method thereof - Google Patents

Flexible transparent conductive film and preparation method thereof Download PDF

Info

Publication number
CN108039221B
CN108039221B CN201711227567.2A CN201711227567A CN108039221B CN 108039221 B CN108039221 B CN 108039221B CN 201711227567 A CN201711227567 A CN 201711227567A CN 108039221 B CN108039221 B CN 108039221B
Authority
CN
China
Prior art keywords
silver nanowires
graphene
reduced
reduced graphene
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711227567.2A
Other languages
Chinese (zh)
Other versions
CN108039221A (en
Inventor
李颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Huaxing Photoelectric Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Technology Co Ltd
Priority to CN201711227567.2A priority Critical patent/CN108039221B/en
Publication of CN108039221A publication Critical patent/CN108039221A/en
Application granted granted Critical
Publication of CN108039221B publication Critical patent/CN108039221B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Abstract

The present invention provides a kind of flexible transparent conductive film and preparation method thereof.The production method of flexible transparent conductive film of the invention, as conductive filler, makes flexible transparent conductive film resistant to bending using Lang Gemiaoer-Buji spy's method using silver nanowires-reduced graphene compound and non-reduced method graphene;The silver nanowires-reduced graphene compound after reduced graphene is modified by obtaining silver nanowires, there are π-π effects between the silver nanowires-reduced graphene compound and non-reduced method graphene, improve the synergistic effect between conductive filler, therefore flexible transparent conductive film produced by the present invention has very excellent mechanical stability and electric conductivity, even across 1500 times or more bendings, it is still able to maintain very high conductivity.

Description

Flexible transparent conductive film and preparation method thereof
Technical field
The present invention relates to field of display technology more particularly to a kind of flexible transparent conductive film and preparation method thereof.
Background technique
In recent years, flexible transparent conductive film is as a kind of film for having both electric conductivity, translucency, bending resistance, It is widely used in the field of photoelectric devices such as liquid crystal display, touch screen, Organic Light Emitting Diode, solar battery.Common is soft Property transparent conductive film is mainly tin indium oxide (ITO) film, metal mesh diaphragm, nano-silver thread film, graphene film etc., wherein aoxidizing Indium tin membrane technology is mature, but have the shortcomings that cost of material height, electric conductivity there are the limit, it is not resistant to bending;Although metal grill film Low in raw material price, and electromagnetism interference, but have the shortcomings that metal line width is larger and there is unauspicious interference.
Currently, silver nanowires (AgNWs) is since line width is smaller and prepares conductive film with sheet resistance is low, light transmittance with it Advantage high, resistant to bending is suitble to production flexible electronic device, uniquely unfortunately increases when to reduce the resistance value of conductive film After big silver nanowires dosage, the transparency of conductive film is remarkably decreased.
Graphene is a kind of emerging conductive filler, with flexibility is good, electric conductivity is outstanding, chemical stability is excellent and knot The advantages that structure performance is controllable, it is rapid in flexible conducting material field application development in recent years, the conduction prepared with graphene Film has many advantages, such as film transparency height, infrared permeable, resistant to bending, is suitble to production flexible electronic device, however its raw material at This is excessively high, and large scale technology is not yet realized.
In general, indium oxide tin film and metal mesh diaphragm are not suitable for production fexible film device, single silver nanowire film It is difficult to take into account electric conductivity and the transparency, and single graphene film then cannot be considered in terms of low preparation cost and high conductivity.There is research It attempts to reduced graphene (r-GO) being mixed with silver nanowires/reduced graphene (AgNWs/r-GO) with silver nanowires compound Film helps to improve the electric conductivity of graphene film to play conducting bridge beam action between graphene crystal boundary for silver nanowires, And it is smaller on translucency influence, but further study show that, there is no phase interactions between two kinds of fillers of silver nanowires and graphene With both being unable to give full play out the advantages of should having, therefore the synergistic effect between two kinds of fillers of silver nanowires and graphene has Wait further increase.
Existing preparation silver nanowires/reduced graphene composite membrane method mainly has spin-coating method, spray coating method, bar film Special (Langmuir-Blodgett, L-B) method of method, Lang Gemiaoer-Buji etc., wherein L-B method is simple, and by functional molecular The limitation of molecular structure influences very little.
Summary of the invention
The purpose of the present invention is to provide a kind of production methods of flexible transparent conductive film, using silver nanowires-reduction Graphene complex and non-reduced method graphene are made resistant to bending soft using Lang Gemiaoer-Buji spy's method as conductive filler Property transparent conductive film, flexible transparent conductive film obtained have very excellent mechanical stability and electric conductivity.
The object of the invention is also to provide a kind of flexible transparent conductive film, with very excellent mechanical stability with Electric conductivity.
To achieve the above object, the present invention provides a kind of production method of flexible transparent conductive film, includes the following steps:
Step 1, preparation silver nanowires-reduced graphene compound, the silver nanowires-reduced graphene compound include One of amination silver nanowires-reduced graphene compound and acetoxylation silver nanowires-reduced graphene compound are a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene;
Step 2 disperses silver nanowires made from step 1-reduced graphene compound in the first organic solvent, obtains Silver nanowires-reduced graphene complex solution;By non-reduced method graphene dispersion in the second organic solvent, obtain non-reduced Method graphene solution;Silver nanowires-reduced graphene complex solution is uniformly mixed with non-reduced method graphene solution, is obtained Silver nanowires-reduced graphene compound/non-reduced method graphene solution;
Step 3 provides non-transparent flexible substrate, also using silver nanowires made from step 2-reduced graphene compound/non- Former method graphene solution is respectively formed at least two layers of silver nanoparticle in non-transparent flexible substrate two sides by Lang Gemiaoer-Buji spy method Line-reduced graphene compound/non-reduced method graphene film, obtains flexible transparent conductive film.
The preparation method of the amination silver nanowires-reduced graphene compound includes the following steps:
Silver nanowires, mercapto-amine, deionized water are added in reaction vessel and are uniformly mixed by step 11, obtain mixed liquor, right Mixed liquor carries out centrifugation and removes supernatant, after cleaning lower sediment thing using deionized water, using deionized water to lower sediment thing Dispersed, obtains amination silver nanowires aqueous solution;
Graphene oxide powder is added in deionized water step 12, boils and is cooled to 80 DEG C hereinafter, obtaining graphite oxide Alkene concentrate;
Step 13, by graphene oxide concentrate made from amination silver nanowires aqueous solution made from step 11 and step 12 It is mixed 12 hours or more under the conditions of 48 DEG C~52 DEG C of temperature, it is molten to obtain amination silver nanowires-graphene oxide compound Liquid;
Reducing agent is added to amination silver nanowires-in step 14 in amination silver nanowires-graphene oxide complex solution Graphene oxide compound is restored, and amination silver nanowires-reduced graphene complex solution is obtained;
Step 15 be centrifuged to amination silver nanowires-reduced graphene complex solution and removes supernatant, using deionization After water cleans lower sediment thing, amination silver nanowires-reduced graphene compound is obtained;
The sequence of the step 11 and step 12 can be interchanged.
The preparation method of the acetoxylation silver nanowires-reduced graphene compound includes the following steps:
Step 11 ', will silver nanowires, mercaptoalkyl acid, deionized water be added reaction vessel in be uniformly mixed, mixed Liquid carries out centrifugation to mixed liquor and removes supernatant, after cleaning lower sediment thing using deionized water, lower sediment thing dried, is obtained To acetoxylation silver nanowires;
Step 12 ', graphene oxide powder and acetoxylation silver nanowires are added in tetrahydrofuran are uniformly dispersed, add 4-dimethylaminopyridine and acid binding agent, 98 DEG C~102 DEG C back flow reaction 12 hours or more, supernatant is removed in centrifugation, using go from After sub- water cleaning lower sediment thing, lower sediment thing is dispersed using deionized water, obtains acetoxylation silver nanowires-oxidation Graphene complex solution;
Step 13 ', in acetoxylation silver nanowires-graphene oxide complex solution be added reducing agent acetoxylation silver is received Rice noodles-graphene oxide compound is restored, and acetoxylation silver nanowires-reduced graphene complex solution is obtained;
Step 14 ', carry out centrifugation to acetoxylation silver nanowires-reduced graphene complex solution and remove supernatant, using going After ionized water cleans lower sediment thing, acetoxylation silver nanowires-reduced graphene compound is obtained.
The step 3 includes:
Step 31 disperses silver nanowires made from step 2-reduced graphene compound/non-reduced method graphene solution In in water parfacies, silver nanowires-reduced graphene compound/non-reduced method graphene film is formed in water parfacies, it will be transparent Flexible substrates, which are inserted vertically into, to be dispersed in silver nanowires-reduced graphene compound/non-reduced method graphene film water parfacies, Lifting upwards, makes the two sides of non-transparent flexible substrate adhere to one layer of silver nanowires-reduced graphene compound/non-reduced method stone respectively Black alkene film, obtains the first composite conductive thin film;
Step 32, using Lang Gemiaoer-Buji spy method first composite conductive thin film two sides adhere to respectively one layer or One layer or more of silver nanowires-reduced graphene compound/non-reduced method graphene film forms silver nanowires-reduction graphite Alkene composite conductive thin film.
The present invention also provides flexible and transparent conductives made from a kind of production method using above-mentioned flexible transparent conductive film Film, including non-transparent flexible substrate and be attached to several layers of silver nanowires-reduced graphene compounds of non-transparent flexible substrate two sides/ Non-reduced method graphene film;The silver nanowires-reduced graphene compound/non-reduced method graphene film material includes The silver nanowires mixed-reduced graphene compound and non-reduced method graphene;Described several layers indicate two layers or two layers More than;
The silver nanowires-reduced graphene compound includes amination silver nanowires-reduced graphene compound and acetic acid Change one of silver nanowires-reduced graphene compound or a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene.
The present invention also provides the production methods of another flexible transparent conductive film, include the following steps:
Step 10, preparation silver nanowires-reduced graphene compound, the silver nanowires-reduced graphene compound packet Include one of amination silver nanowires-reduced graphene compound and acetoxylation silver nanowires-reduced graphene compound or more Kind;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene;
Step 20 disperses silver nanowires made from step 10-reduced graphene compound in third organic solvent, obtains Disperse solution to silver nanowires-reduced graphene compound;By the silver nanowires-reduced graphene compound dispersion solution with 4th organic solvent is uniformly mixed, and obtains silver nanowires-reduced graphene complex solution;
Step 30 provides non-transparent flexible substrate, utilizes silver nanowires made from step 20-reduced graphene complex solution It is multiple that in non-transparent flexible substrate two sides at least two layers silver nanowires-reduced graphene is respectively formed by Lang Gemiaoer-Buji spy method Object film is closed, silver nanowires-reduced graphene composite conductive thin film is formed;
Step 40, the non-reduced method graphene of offer obtain non-by non-reduced method graphene dispersion in the 5th organic solvent Reduction method graphene solution;
Step 50, the silver nanowires-reduced graphene composite conductive thin film prepared using step 30 utilize step 40 as substrate Non-reduced method graphene solution obtained is thin in silver nanowires-reduced graphene composite conducting by Lang Gemiaoer-Buji spy method Film two sides are respectively formed at least two layers non-reduced method graphene film, obtain flexible transparent conductive film.
The preparation method of the amination silver nanowires-reduced graphene compound includes the following steps:
Silver nanowires, mercapto-amine, deionized water are added in reaction vessel and are uniformly mixed by step 11, obtain mixed liquor, right Mixed liquor carries out centrifugation and removes supernatant, after cleaning lower sediment thing using deionized water, using deionized water to lower sediment thing Dispersed, obtains amination silver nanowires aqueous solution;
Graphene oxide powder is added in deionized water step 12, boils and is cooled to 80 DEG C hereinafter, obtaining graphite oxide Alkene concentrate;
Step 13, by graphene oxide concentrate made from amination silver nanowires aqueous solution made from step 11 and step 12 It is mixed 12 hours or more under the conditions of 48 DEG C~52 DEG C of temperature, it is molten to obtain amination silver nanowires-graphene oxide compound Liquid;
Reducing agent is added to amination silver nanowires-in step 14 in amination silver nanowires-graphene oxide complex solution Graphene oxide compound is restored, and amination silver nanowires-reduced graphene complex solution is obtained;
Step 15 be centrifuged to amination silver nanowires-reduced graphene complex solution and removes supernatant, using deionization After water cleans lower sediment thing, amination silver nanowires-reduced graphene compound is obtained.
The preparation method of the acetoxylation silver nanowires-reduced graphene compound includes the following steps:
Step 11 ', will silver nanowires, mercaptoalkyl acid, deionized water be added reaction vessel in be uniformly mixed, mixed Liquid carries out centrifugation to mixed liquor and removes supernatant, after cleaning lower sediment thing using deionized water, lower sediment thing dried, is obtained To acetoxylation silver nanowires;
Step 12 ', graphene oxide powder and acetoxylation silver nanowires are added in tetrahydrofuran are uniformly dispersed, add 4-dimethylaminopyridine and acid binding agent, 98 DEG C~102 DEG C back flow reaction 12 hours or more, supernatant is removed in centrifugation, using go from After sub- water cleaning lower sediment thing, lower sediment thing is dispersed using deionized water, obtains acetoxylation silver nanowires-oxidation Graphene complex solution;
Step 13 ', in acetoxylation silver nanowires-graphene oxide complex solution be added reducing agent acetoxylation silver is received Rice noodles-graphene oxide compound is restored, and acetoxylation silver nanowires-reduced graphene complex solution is obtained;
Step 14 ', carry out centrifugation to acetoxylation silver nanowires-reduced graphene complex solution and remove supernatant, using going After ionized water cleans lower sediment thing, acetoxylation silver nanowires-reduced graphene compound is obtained.
The step 30 includes:
Step 310 disperses silver nanowires made from step 20-reduced graphene complex solution in water parfacies, Silver nanowires-reduced graphene complex thin film is formed in water parfacies, and non-transparent flexible substrate is inserted vertically into and is dispersed with silver nanoparticle In line-reduced graphene complex thin film water parfacies, lifts upwards, the two sides of non-transparent flexible substrate is made to adhere to one layer of silver respectively Nano wire-reduced graphene complex thin film, obtains the second composite conductive thin film;
Step 320 adheres to one layer in the two sides of second composite conductive thin film using Lang Gemiaoer-Buji spy method respectively Or one layer or more of silver nanowires-reduced graphene complex thin film, it is thin to form silver nanowires-reduced graphene composite conducting Film;
The step 50 includes:
Step 510 disperses non-reduced method graphene solution made from step 40 in water parfacies, is formed in water parfacies Silver nanowires-reduced graphene composite conductive thin film is inserted vertically into and is dispersed with non-reduced method stone by non-reduced method graphene film In the water parfacies of black alkene film, lifts upwards, silver nanowires-reduced graphene composite conductive thin film two sides is made to adhere to one respectively The non-reduced method graphene film of layer, obtains third composite conductive thin film;
Step 520 adheres to one layer in the two sides of the third composite conductive thin film using Lang Gemiaoer-Buji spy method respectively Or one layer or more of non-reduced method graphene film, obtain flexible transparent conductive film.
The present invention also provides flexible and transparent conductives made from a kind of production method using above-mentioned flexible transparent conductive film Film including non-transparent flexible substrate, is attached respectively to several layers of silver nanowires-reduced graphene of the non-transparent flexible substrate two sides Complex thin film is located on several layers of silver nanowires-reduced graphene complex thin film of the non-transparent flexible substrate two sides Several layers of non-reduced method graphene film;Described two layers or two layers of several layers of expression or more;
The silver nanowires-reduced graphene compound includes amination silver nanowires-reduced graphene compound and acetic acid Change one of silver nanowires-reduced graphene compound or a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene.
Beneficial effects of the present invention: the production method of flexible transparent conductive film of the invention uses silver nanowires-reduction Graphene complex and non-reduced method graphene are made resistant to bending soft using Lang Gemiaoer-Buji spy's method as conductive filler Property transparent conductive film;The silver nanowires-reduced graphene compound is by modifying silver nanowires by reduced graphene After obtain, there are π-π effect between the silver nanowires-reduced graphene compound and non-reduced method graphene, improve and lead Synergistic effect between electric filler;The performance of flexible transparent conductive film obtained better than existing tin indium oxide conductive film, Silver nanowires conductive film, silver nanowires/reduced graphene composite membrane have very excellent mechanical stability and electric conductivity, Even across 1500 times or more bendings, it is still able to maintain very high conductivity.Flexible transparent conductive film of the invention is using silver Nano wire-reduced graphene compound and non-reduced method graphene are as conductive filler, since silver nanowires-reduced graphene is multiple It closes between object and non-reduced method graphene there are π-π effect, the synergistic effect between conductive filler is improved, so that of the invention Flexible transparent conductive film has very excellent electric conductivity and mechanical stability.
For further understanding of the features and technical contents of the present invention, it please refers to below in connection with of the invention detailed Illustrate and attached drawing, however, the drawings only provide reference and explanation, is not intended to limit the present invention.
Detailed description of the invention
With reference to the accompanying drawing, by the way that detailed description of specific embodiments of the present invention, technical solution of the present invention will be made And other beneficial effects are apparent.
In attached drawing,
Fig. 1 is the flow chart of the first embodiment of the production method of flexible transparent conductive film of the invention;
Fig. 2 is the schematic diagram for depositing film forming in substrate using Lang Gemiaoer-Buji spy's method;
Fig. 3 is the flow chart of the second embodiment of the production method of flexible transparent conductive film of the invention.
Specific embodiment
Further to illustrate technological means and its effect adopted by the present invention, below in conjunction with preferred implementation of the invention Example and its attached drawing are described in detail.
Referring to Fig. 1, the first embodiment of the production method for flexible transparent conductive film of the invention, including walk as follows It is rapid:
Step 1, preparation silver nanowires-reduced graphene (AgNWs-rGO) compound, the silver nanowires-reduction graphite Alkene compound includes in amination silver nanowires-reduced graphene compound and acetoxylation silver nanowires-reduced graphene compound It is one or more;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene.In various structural formulas involved in hereafter, vertical thick line is identical as the meaning that rGO is indicated.
Specifically, the reduced graphene (rGO) is the product that graphene oxide (GO) is obtained after electronation.
Specifically, the preparation method of the amination silver nanowires-reduced graphene compound includes the following steps:
Silver nanowires, mercapto-amine, deionized water are added in reaction vessel and are uniformly mixed by step 11, obtain mixed liquor, right Mixed liquor carries out centrifugation and removes supernatant, after cleaning lower sediment thing using deionized water, using deionized water to lower sediment thing Dispersed, obtains amination silver nanowires aqueous solution.
Specifically, the structural formula of the amination silver nanowires is
Specifically, silver nanowires, mercapto-amine, deionized water are added in reaction vessel and are uniformly mixed in the step 11 Method are as follows: silver nanowires, mercapto-amine, deionized water are added in reaction vessel and under the conditions of 25 DEG C~50 DEG C temperature stir 6 Hour or more.
Specifically, in the step 11, be added the silver nanowires in reaction vessel and mercapto-amine molar ratio be 1:2~ 30。
Specifically, the mercapto-amine include Mercamine Cysteamine, 3- sulfydryl -1- propylamine, p-Mercaptoaniline, L-cysteine, One of glutathione, amino mercapto thiadiazoles, 3- amino -5- sulfydryl -1,2,4- triazole are a variety of.
Graphene oxide (GO) powder is added in deionized water step 12, boils and is cooled to 80 DEG C hereinafter, being aoxidized Graphene concentrate.
Specifically, the purpose boiled is to remove the oxygen dissolved in graphene oxide water solution in the step 12, keep away Exempting from oxygen influences subsequent chemical reaction.
Step 13, by graphene oxide concentrate made from amination silver nanowires aqueous solution made from step 11 and step 12 It is mixed 12 hours or more under the conditions of 48 DEG C~52 DEG C of temperature, it is molten to obtain amination silver nanowires-graphene oxide compound Liquid.
Preferably, in the step 13, by oxygen made from amination silver nanowires aqueous solution made from step 11 and step 12 Graphite alkene concentrate is mixed under the conditions of 50 DEG C of temperature.
Specifically, in the step 13, by oxygen made from amination silver nanowires aqueous solution made from step 11 and step 12 Graphite alkene concentrate is mixed according to the ratio that graphene oxide and the mass ratio of amination silver nanowires are 1:1-100.
Specifically, the reaction equation of the step 13 is as follows:
In above-mentioned reaction equation,Indicate graphene oxide,Indicate that amination silver is received Rice noodles-graphene oxide compound.
Reducing agent is added to amination silver nanowires-in step 14 in amination silver nanowires-graphene oxide complex solution Graphene oxide compound is restored, and amination silver nanowires-reduced graphene complex solution is obtained.
Specifically, the reducing agent includes one of glucose, hydroiodic acid, hydrazine hydrate or a variety of in the step 14.
Specifically, reducing agent pair is added in amination silver nanowires-graphene oxide complex solution in the step 14 The operating procedure that amination silver nanowires-graphene oxide compound is restored are as follows: multiple in amination silver nanowires-graphene oxide Reducing agent is added in polymer solution, is stirred 1 hour or more under the conditions of 25 DEG C~50 DEG C of temperature.
Specifically, the reaction equation of the step 14 is as follows:
In above-mentioned reaction equation,Indicate that amination silver nanowires-reduced graphene is compound Object.
Step 15 be centrifuged to amination silver nanowires-reduced graphene complex solution and removes supernatant, using deionization After water cleans lower sediment thing, amination silver nanowires-reduced graphene compound is obtained.
Specifically, the step 15 further include: be stored in amination silver nanowires-reduced graphene compound standby in ethyl alcohol With.
In the preparation method of the amination silver nanowires-reduced graphene compound, the step 11 is suitable with step 12 Sequence can be interchanged.
Specifically, the preparation method of the acetoxylation silver nanowires-reduced graphene compound includes the following steps:
Step 11 ', will silver nanowires, mercaptoalkyl acid, deionized water be added reaction vessel in be uniformly mixed, mixed Liquid carries out centrifugation to mixed liquor and removes supernatant, after cleaning lower sediment thing using deionized water, lower sediment thing dried, is obtained To acetoxylation silver nanowires.
Specifically, the structural formula of the acetoxylation silver nanowires is
Specifically, the step 11 ' in, silver nanowires, mercaptoalkyl acid, deionized water are added in reaction vessel and are mixed Uniform method are as follows: silver nanowires, mercaptoalkyl acid, deionized water are added in reaction vessel in 25 DEG C~50 DEG C temperature conditions Lower stirring 6 hours or more.
Specifically, the step 11 ' in, the molar ratio of the silver nanowires and mercaptoalkyl acid is 1:2~30.
Specifically, the mercaptoalkyl acid includes one of thioacetic acid, mercaptopropionic acid, 4- mercaptobutyric acid or a variety of.
Specifically, the step 11 ' in, lower sediment thing is dried in vacuum environment.
Step 12 ', graphene oxide (GO) powder and acetoxylation silver nanowires are added in tetrahydrofuran are uniformly dispersed, then 4-dimethylaminopyridine (DMAP) and acid binding agent is added, 98 DEG C~102 DEG C back flow reaction 12 hours or more, supernatant is removed in centrifugation Liquid disperses lower sediment thing using deionized water after cleaning lower sediment thing using deionized water, obtains acetoxylation silver Nano wire-graphene oxide complex solution.
Specifically, the step 12 ' reaction equation it is as follows:
In above-mentioned reaction equation,Indicate graphene oxide,Indicate that acetoxylation silver is received Rice noodles-graphene oxide compound.
Specifically, the step 12 ' in, it according to mass ratio is 1:1 by graphene oxide powder and acetoxylation silver nanowires ~100 are added in tetrahydrofuran, are uniformly dispersed by the way of ultrasonic treatment.The ultrasonic treatment is carried out using low-power.
Step 13 ', in acetoxylation silver nanowires-graphene oxide complex solution be added reducing agent acetoxylation silver is received Rice noodles-graphene oxide compound is restored, and acetoxylation silver nanowires-reduced graphene complex solution is obtained.
Specifically, the step 13 ' in, the reducing agent includes one of glucose, hydroiodic acid, hydrazine hydrate or more Kind.
Specifically, the step 13 ' in, reduction is added in acetoxylation silver nanowires-graphene oxide complex solution The operating procedure that agent restores silver nanowires-graphene oxide compound are as follows: in acetoxylation silver nanowires-graphene oxide Reducing agent is added in complex solution, is stirred 1 hour or more under the conditions of 25 DEG C~50 DEG C of temperature.
Specifically, the step 13 ' reaction equation it is as follows:
In above-mentioned reaction equation,Indicate that acetoxylation silver nanowires-reduced graphene is compound Object.
Step 14 ', carry out centrifugation to acetoxylation silver nanowires-reduced graphene complex solution and remove supernatant, using going After ionized water cleans lower sediment thing, acetoxylation silver nanowires-reduced graphene compound is obtained.
Specifically, the step 14 ' further include: acetoxylation silver nanowires-reduced graphene compound is stored in ethyl alcohol In it is spare.
Step 2 disperses silver nanowires made from step 1-reduced graphene compound in the first organic solvent, obtains Silver nanowires-reduced graphene complex solution;It disperses non-reduced method graphene (GN) in the second organic solvent, obtains non- Reduction method graphene solution;Silver nanowires-reduced graphene complex solution is uniformly mixed with non-reduced method graphene solution, Obtain silver nanowires-reduced graphene compound/non-reduced method graphene (AgNWs-rGO/GN) solution.
Specifically, the silver nanowires-reduced graphene complex solution and non-reduced method graphene solution pass through ultrasound Processing is uniformly mixed, and the ultrasonic treatment is carried out using low-power.
Specifically, the first organic solvent dissolves each other with the second organic solvent, and second solvent and water are immiscible.It is preferred that , first solvent is dimethylformamide (DMF);Second solvent includes one of toluene, methylene chloride, chloroform Or it is a variety of.
Specifically, the non-reduced method graphene is using the graphene of non-oxide reduction method preparation, including useization Learn one of graphene made from vapor deposition (CVD) method and graphene made from use mechanical stripping method or a variety of.Institute Stating non-reduced method graphene has layer structure, described to be usually using graphene made from chemical vapor deposition (CVD) method Single layer structure, described using graphene made from mechanical stripping method is usually multilayered structure.
Specifically, the thickness using graphene made from chemical vapor deposition method is less than 10nm, using mechanical stripping method Graphene obtained with a thickness of 0.35~35nm.
Specifically, the silver nanowires-reduced graphene compound/non-reduced method graphene (AgNWs-rGO/GN) solution Concentration be 0.1-100mg/mL, wherein non-reduced method graphene (GN) and silver nanowires-reduced graphene compound (AgNWs- RGO mass ratio) is 1:0.1~500.
It is easy to reunite since the piece Interaction between layers of non-reduced method graphene (GN) are strong, therefore non-reduced method graphene is logical Often dispersion concentration is extremely low in the solution, is prepared using special (Langmuir-Blodgett) law technology of Lang Gemiaoer-Buji non-reduced The difficulty of method graphene film is larger.The present invention is by silver nanowires-reduced graphene complex solution and non-reduced method graphene Solution mixes, and interacts by force using between silver nanowires-reduced graphene compound and non-reduced method graphene Feature increases the dispersion concentration of non-reduced method graphene in the solution, and silver nanowires-reduced graphene compound is non-reduced The piece interlayer of method graphene plays buffer action, can reduce the reunion of non-reduced method graphene, promotes non-reduced method graphene Dispersion stabilization in the solution.
Step 3, referring to Fig. 2, provide non-transparent flexible substrate, it is multiple using silver nanowires-reduced graphene made from step 2 Object/non-reduced method graphene solution is closed by special (Langmuir-Blodgett) method of Lang Gemiaoer-Buji in non-transparent flexible substrate Two sides are respectively formed at least two layers silver nanowires-reduced graphene compound/non-reduced method graphene film, obtain flexible and transparent Conductive film.
Specifically, the non-transparent flexible substrate can be PET (polyethylene terephthalate) film, PI (polyimides) The transparent flexible films, preferably PET film such as film, PMMA (polymethyl methacrylate) film or PC (polycarbonate) film.
Specifically, the step 3 includes:
Step 31 disperses silver nanowires made from step 2-reduced graphene compound/non-reduced method graphene solution In in water parfacies, silver nanowires-reduced graphene compound/non-reduced method graphene film is formed in water parfacies, it will be transparent Flexible substrates, which are inserted vertically into, to be dispersed in silver nanowires-reduced graphene compound/non-reduced method graphene film water parfacies, Lifting upwards, makes the two sides of non-transparent flexible substrate adhere to one layer of silver nanowires-reduced graphene compound/non-reduced method stone respectively Black alkene film, obtains the first composite conductive thin film.
Specifically, the step 31 includes: to provide Langmuir-Blodgett film analysis instrument, silver made from step 2 is received Rice noodles-reduced graphene compound/non-reduced method graphene solution is infused by the sample of Langmuir-Blodgett film analysis instrument It penetrates in the water parfacies that auxiliary system is added drop-wise in shallow pond, stands, form silver nanowires-reduced graphene compound/non-reduced method Graphene film, non-transparent flexible substrate is suspended on Langmuir-Blodgett film analysis instrument and is inserted vertically into be dispersed with silver In nano wire-reduced graphene compound/non-reduced method graphene film water parfacies, lift upwards, silver nanowires-reduction stone Black alkene compound/non-reduced method graphene film is attached to non-transparent flexible substrate two sides.
Specifically, the speed that the non-transparent flexible substrate lifts upwards is 1-30mm/min in the step 31.
Step 32, using Lang Gemiaoer-Buji spy method first composite conductive thin film two sides adhere to respectively one layer or One layer or more of silver nanowires-reduced graphene compound/non-reduced method graphene film forms silver nanowires-reduction graphite Alkene composite conductive thin film.
Specifically, the technical matters of the step 32 is identical as the technical matters of step 31.
The production method of flexible transparent conductive film based on above-mentioned first embodiment, the present invention also provides a kind of flexible saturating Bright conductive film including non-transparent flexible substrate and is attached to several layers of silver nanowires-reduced graphene of non-transparent flexible substrate two sides Compound/non-reduced method graphene film;The silver nanowires-reduced graphene compound/non-reduced method graphene film Material includes the silver nanowires-reduced graphene compound and non-reduced method graphene mixed;Described several layers indicate two Layer or two layers or more;
The silver nanowires-reduced graphene compound includes amination silver nanowires-reduced graphene compound and acetic acid Change one of silver nanowires-reduced graphene compound or a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene.
Specifically, the non-transparent flexible substrate can be PET (polyethylene terephthalate) film, PI (polyimides) The transparent flexible films, preferably PET film such as film, PMMA (polymethyl methacrylate) film or PC (polycarbonate) film.
Specifically, the silver nanowires-reduced graphene compound/non-reduced method graphene (AgNWs-rGO/GN) film In, the non-reduced method graphene (GN) and silver nanowires-reduced graphene compound (AgNWs-rGO) mass ratio are 1: 0.1~500.
Referring to Fig. 3, the second embodiment of the production method for flexible transparent conductive film of the invention, including walk as follows It is rapid:
Step 10, preparation silver nanowires-reduced graphene (AgNWs-rGO) compound, the silver nanowires-reduction graphite Alkene compound includes in amination silver nanowires-reduced graphene compound and acetoxylation silver nanowires-reduced graphene compound It is one or more;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene.
The specific embodiment of the step 10 and the production side of technical detail and flexible transparent conductive film of the invention The step 1 of the first embodiment of method is identical, and details are not described herein again.
Step 20 disperses silver nanowires made from step 10-reduced graphene compound in third organic solvent, obtains Disperse solution to silver nanowires-reduced graphene compound;By the silver nanowires-reduced graphene compound dispersion solution with 4th organic solvent is uniformly mixed, and obtains silver nanowires-reduced graphene compound (AgNWs-rGO) solution.
Specifically, the third organic solvent dissolves each other with the 4th organic solvent, and the 4th solvent and water are immiscible.
Specifically, the third solvent is acetone;4th solvent is methylene chloride;The silver nanowires-reduction stone Black alkene compound dispersion solution is mixed with the 4th organic solvent according to the volume ratio of 0.5~5:1.
Specifically, the silver nanowires-reduced graphene complex solution concentration is 0.1-100mg/mL.
Step 30, referring to Fig. 2, provide non-transparent flexible substrate, utilize silver nanowires-reduced graphene made from step 20 Complex solution is respectively formed at least two layers of silver nanowires-in non-transparent flexible substrate two sides by Lang Gemiaoer-Buji spy method and goes back Former graphene complex film forms silver nanowires-reduced graphene composite conductive thin film.
Specifically, the non-transparent flexible substrate can be PET (polyethylene terephthalate) film, PI (polyimides) The transparent flexible films, preferably PET film such as film, PMMA (polymethyl methacrylate) film or PC (polycarbonate) film.
Specifically, the step 30 includes:
Step 310 disperses silver nanowires made from step 20-reduced graphene complex solution in water parfacies, Silver nanowires-reduced graphene complex thin film is formed in water parfacies, and non-transparent flexible substrate is inserted vertically into and is dispersed with silver nanoparticle In line-reduced graphene complex thin film water parfacies, lifts upwards, the two sides of non-transparent flexible substrate is made to adhere to one layer of silver respectively Nano wire-reduced graphene complex thin film, obtains the second composite conductive thin film.
Specifically, the step 310 includes: to provide Langmuir-Blodgett film analysis instrument, by silver made from step 20 Nano wire-reduced graphene compound (AgNWs-rGO/GN) solution passes through the sample of Langmuir-Blodgett film analysis instrument Injection auxiliary system is added drop-wise in the water parfacies in shallow pond, is stood, and silver nanowires-reduced graphene complex thin film is formed, will Non-transparent flexible substrate, which is suspended on Langmuir-Blodgett film analysis instrument and is inserted vertically into, is dispersed with silver nanowires-reduction stone It in the water parfacies of black alkene complex thin film, lifts upwards, silver nanowires-reduced graphene complex thin film is attached to transparent flexible Substrate two sides.
Specifically, the speed that the non-transparent flexible substrate lifts upwards is 1-30mm/min in the step 310.
Step 320 adheres to one layer in the two sides of second composite conductive thin film using Lang Gemiaoer-Buji spy method respectively Or one layer or more of silver nanowires-reduced graphene complex thin film, it is thin to form silver nanowires-reduced graphene composite conducting Film.
Specifically, the technical matters of the step 320 is identical as the technical matters of step 310.
Step 40, the non-reduced method graphene (GN) of offer obtain by non-reduced method graphene dispersion in the 5th organic solvent To non-reduced method graphene solution.
Specifically, the 5th organic solvent and water are immiscible.Preferably, the 5th solvent is chloroform.
Specifically, the non-reduced method graphene is using the graphene of non-oxide reduction method preparation, including useization Learn one of graphene made from vapor deposition (CVD) method and graphene made from use mechanical stripping method or a variety of.Institute Stating non-reduced method graphene has layer structure, described to be usually using graphene made from chemical vapor deposition (CVD) method Single layer structure, described using graphene made from mechanical stripping method is usually multilayered structure.
Specifically, the thickness using graphene made from chemical vapor deposition method is less than 10nm, using mechanical stripping method Graphene obtained with a thickness of 0.35~35nm.
Specifically, the concentration of the non-reduced method graphene solution is 0.01-10mg/mL.
Step 50, the silver nanowires-reduced graphene composite conductive thin film prepared using step 30 utilize step 40 as substrate Non-reduced method graphene solution obtained is gone back by special (Langmuir-Blodgett) method of Lang Gemiaoer-Buji in silver nanowires- Former graphene composite conductive film two sides are respectively formed at least two layers non-reduced method graphene film, and it is thin to obtain flexible and transparent conductive Film.
Specifically, the step 50 includes:
Step 510 disperses non-reduced method graphene solution made from step 40 in water parfacies, is formed in water parfacies Silver nanowires-reduced graphene composite conductive thin film is inserted vertically into and is dispersed with non-reduced method stone by non-reduced method graphene film In the water parfacies of black alkene film, lifts upwards, silver nanowires-reduced graphene composite conductive thin film two sides is made to adhere to one respectively The non-reduced method graphene film of layer, obtains third composite conductive thin film.
Specifically, the step 510 includes: to provide Langmuir-Blodgett film analysis instrument, it will be non-made from step 40 Reduction method graphene solution is added drop-wise in shallow pond by the sample injection auxiliary system of Langmuir-Blodgett film analysis instrument In water parfacies, stands, form non-reduced method graphene film, silver nanowires-reduced graphene composite conductive thin film is suspended on It on Langmuir-Blodgett film analysis instrument and is inserted vertically into the water parfacies for being dispersed with non-reduced method graphene film, upwards Lifting, non-reduced method graphene film are attached to silver nanowires-reduced graphene composite conductive thin film two sides.
Specifically, in the step 510, speed that the silver nanowires-reduced graphene composite conductive thin film lifts upwards Degree is 1-30mm/min.
Step 520 adheres to one layer in the two sides of the third composite conductive thin film using Lang Gemiaoer-Buji spy method respectively Or one layer or more of non-reduced method graphene film, obtain flexible transparent conductive film.
Specifically, the technical matters of the step 520 is identical as the technical matters of step 510.
The production method of flexible transparent conductive film based on above-mentioned second embodiment, the present invention also provides another flexible Transparent conductive film including non-transparent flexible substrate, is attached respectively to several layers of silver nanowires-of the non-transparent flexible substrate two sides also Former graphene complex film, several layers of silver nanowires-reduced graphene for being located at the non-transparent flexible substrate two sides are compound Several layers of non-reduced method graphene film on object film;Described two layers or two layers of several layers of expression or more;
The silver nanowires-reduced graphene compound includes amination silver nanowires-reduced graphene compound and acetic acid Change one of silver nanowires-reduced graphene compound or a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isInstitute Stating acetoxylation silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduction graphite Alkene.
Specifically, the non-transparent flexible substrate can be PET (polyethylene terephthalate) film, PI (polyimides) The transparent flexible films, preferably PET film such as film, PMMA (polymethyl methacrylate) film or PC (polycarbonate) film.
In conclusion the present invention provides a kind of flexible transparent conductive film and preparation method thereof.Flexible and transparent of the invention The production method of conductive film using silver nanowires-reduced graphene compound and non-reduced method graphene as conductive filler, Flexible transparent conductive film resistant to bending is made using Lang Gemiaoer-Buji spy's method;Silver nanowires-the reduced graphene is compound Object by obtaining silver nanowires after reduced graphene is modified, go back with non-by the silver nanowires-reduced graphene compound There are π-π effect between former method graphene, the synergistic effect between conductive filler is improved;Flexible transparent conductive film obtained Performance be better than existing tin indium oxide conductive film, silver nanowires conductive film, silver nanowires/reduced graphene (AgNWs/ RGO) composite membrane has very excellent mechanical stability and electric conductivity, even across 1500 times or more bendings (0.6 <bending Radius r < 1.5cm), still it is able to maintain very high conductivity (relative resistance change Δ R/R < 10%).Flexible and transparent of the invention is led Conductive film uses silver nanowires-reduced graphene compound and non-reduced method graphene as conductive filler, due to silver nanowires- There are π-π effect between reduced graphene compound and non-reduced method graphene, the synergistic effect between conductive filler is improved, So that flexible transparent conductive film of the invention has very excellent electric conductivity and mechanical stability.
The above for those of ordinary skill in the art can according to the technique and scheme of the present invention and technology Other various corresponding changes and modifications are made in design, and all these change and modification all should belong to the claims in the present invention Protection scope.

Claims (10)

1. a kind of production method of flexible transparent conductive film, which comprises the steps of:
Step 1, preparation silver nanowires-reduced graphene compound, the silver nanowires-reduced graphene compound includes amination One of silver nanowires-reduced graphene compound and acetoxylation silver nanowires-reduced graphene compound are a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isThe second Being acidified silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduced graphene;
Step 2 disperses silver nanowires made from step 1-reduced graphene compound in the first organic solvent, obtains Yin Na Rice noodles-reduced graphene complex solution;By non-reduced method graphene dispersion in the second organic solvent, non-reduced method stone is obtained Black alkene solution;Silver nanowires-reduced graphene complex solution is uniformly mixed with non-reduced method graphene solution, obtains Yin Na Rice noodles-reduced graphene compound/non-reduced method graphene solution;
Step 3 provides non-transparent flexible substrate, utilizes silver nanowires made from step 2-reduced graphene compound/non-reduced method Graphene solution is respectively formed at least two layers of silver nanowires-in non-transparent flexible substrate two sides by Lang Gemiaoer-Buji spy method and goes back Former graphene complex/non-reduced method graphene film, obtains flexible transparent conductive film.
2. the production method of flexible transparent conductive film as described in claim 1, which is characterized in that the amination silver nanoparticle Line-reduced graphene compound preparation method includes the following steps:
Silver nanowires, mercapto-amine, deionized water are added in reaction vessel and are uniformly mixed by step 11, mixed liquor are obtained, to mixing Liquid carries out centrifugation and removes supernatant, after cleaning lower sediment thing using deionized water, is carried out using deionized water to lower sediment thing Dispersion, obtains amination silver nanowires aqueous solution;
Graphene oxide powder is added in deionized water step 12, boils and is cooled to 80 DEG C hereinafter, to obtain graphene oxide dense Contracting liquid;
Step 13, by graphene oxide concentrate made from amination silver nanowires aqueous solution made from step 11 and step 12 48 DEG C~52 DEG C of temperature under the conditions of be mixed 12 hours or more, obtain amination silver nanowires-graphene oxide complex solution;
Reducing agent is added to amination silver nanowires-oxidation in step 14 in amination silver nanowires-graphene oxide complex solution Graphene complex is restored, and amination silver nanowires-reduced graphene complex solution is obtained;
Step 15 be centrifuged to amination silver nanowires-reduced graphene complex solution and removes supernatant, clear using deionized water After washing lower sediment thing, amination silver nanowires-reduced graphene compound is obtained;
The sequence of the step 11 and step 12 can be interchanged.
3. the production method of flexible transparent conductive film as described in claim 1, which is characterized in that the acetoxylation silver nanoparticle Line-reduced graphene compound preparation method includes the following steps:
Step 11 ', will silver nanowires, mercaptoalkyl acid, deionized water be added reaction vessel in be uniformly mixed, obtain mixed liquor, Centrifugation is carried out to mixed liquor and removes supernatant, after cleaning lower sediment thing using deionized water, lower sediment thing is dried, second is obtained It is acidified silver nanowires;
Step 12 ', graphene oxide powder and acetoxylation silver nanowires are added in tetrahydrofuran are uniformly dispersed, add 4- bis- Methylamino pyridine and acid binding agent, 98 DEG C~102 DEG C back flow reaction 12 hours or more, supernatant is removed in centrifugation, using deionized water After cleaning lower sediment thing, lower sediment thing is dispersed using deionized water, obtains acetoxylation silver nanowires-graphite oxide Alkene complex solution;
Step 13 ', in acetoxylation silver nanowires-graphene oxide complex solution be added reducing agent to acetoxylation silver nanoparticle Line-graphene oxide compound is restored, and acetoxylation silver nanowires-reduced graphene complex solution is obtained;
Step 14 ', to acetoxylation silver nanowires-reduced graphene complex solution carry out centrifugation remove supernatant, using deionization After water cleans lower sediment thing, acetoxylation silver nanowires-reduced graphene compound is obtained.
4. the production method of flexible transparent conductive film as described in claim 1, which is characterized in that the step 3 includes:
Silver nanowires made from step 2-reduced graphene compound/non-reduced method graphene solution is dispersed water by step 31 In parfacies, silver nanowires-reduced graphene compound/non-reduced method graphene film is formed in water parfacies, by transparent flexible Substrate, which is inserted vertically into, to be dispersed in silver nanowires-reduced graphene compound/non-reduced method graphene film water parfacies, upwards Lifting, makes the two sides of non-transparent flexible substrate adhere to one layer of silver nanowires-reduced graphene compound/non-reduced method graphene respectively Film obtains the first composite conductive thin film;
Step 32 adheres to one layer or more in first composite conductive thin film two sides using Lang Gemiaoer-Buji spy method respectively Silver nanowires-reduced graphene compound/non-reduced method graphene film forms silver nanowires-reduced graphene composite conducting Film.
5. flexible and transparent conductive made from a kind of production method using flexible transparent conductive film as described in claim 1 is thin Film, which is characterized in that including non-transparent flexible substrate and be attached to several layers of silver nanowires-reduction graphite of non-transparent flexible substrate two sides Alkene compound/non-reduced method graphene film;The silver nanowires-reduced graphene compound/non-reduced method graphene film Material include silver nanowires-reduced graphene compound for mixing and non-reduced method graphene;The several layers of expression Two layers or more;
The silver nanowires-reduced graphene compound includes amination silver nanowires-reduced graphene compound and acetoxylation silver One of nano wire-reduced graphene compound is a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isThe second Being acidified silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduced graphene.
6. a kind of production method of flexible transparent conductive film, which comprises the steps of:
Step 10, preparation silver nanowires-reduced graphene compound, the silver nanowires-reduced graphene compound includes amine Change one of silver nanowires-reduced graphene compound and acetoxylation silver nanowires-reduced graphene compound or a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isThe second Being acidified silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduced graphene;
Step 20 disperses silver nanowires made from step 10-reduced graphene compound in third organic solvent, obtains silver Nano wire-reduced graphene compound disperses solution;The silver nanowires-reduced graphene compound is dispersed into solution and the 4th Organic solvent is uniformly mixed, and obtains silver nanowires-reduced graphene complex solution;
Step 30 provides non-transparent flexible substrate, is passed through using silver nanowires made from step 20-reduced graphene complex solution Lang Gemiaoer-Buji spy method is respectively formed at least two layers silver nanowires-reduced graphene compound in non-transparent flexible substrate two sides Film forms silver nanowires-reduced graphene composite conductive thin film;
Step 40, the non-reduced method graphene of offer obtain non-reduced by non-reduced method graphene dispersion in the 5th organic solvent Method graphene solution;
Step 50, the silver nanowires-reduced graphene composite conductive thin film prepared using step 30 are made as substrate using step 40 Non-reduced method graphene solution by Lang Gemiaoer-Buji spy method in silver nanowires-reduced graphene composite conductive thin film two Side is respectively formed at least two layers non-reduced method graphene film, obtains flexible transparent conductive film.
7. the production method of flexible transparent conductive film as claimed in claim 6, which is characterized in that the amination silver nanoparticle Line-reduced graphene compound preparation method includes the following steps:
Silver nanowires, mercapto-amine, deionized water are added in reaction vessel and are uniformly mixed by step 11, mixed liquor are obtained, to mixing Liquid carries out centrifugation and removes supernatant, after cleaning lower sediment thing using deionized water, is carried out using deionized water to lower sediment thing Dispersion, obtains amination silver nanowires aqueous solution;
Graphene oxide powder is added in deionized water step 12, boils and is cooled to 80 DEG C hereinafter, to obtain graphene oxide dense Contracting liquid;
Step 13, by graphene oxide concentrate made from amination silver nanowires aqueous solution made from step 11 and step 12 48 DEG C~52 DEG C of temperature under the conditions of be mixed 12 hours or more, obtain amination silver nanowires-graphene oxide complex solution;
Reducing agent is added to amination silver nanowires-oxidation in step 14 in amination silver nanowires-graphene oxide complex solution Graphene complex is restored, and amination silver nanowires-reduced graphene complex solution is obtained;
Step 15 be centrifuged to amination silver nanowires-reduced graphene complex solution and removes supernatant, clear using deionized water After washing lower sediment thing, amination silver nanowires-reduced graphene compound is obtained.
8. the production method of flexible transparent conductive film as claimed in claim 6, which is characterized in that the acetoxylation silver nanoparticle Line-reduced graphene compound preparation method includes the following steps:
Step 11 ', will silver nanowires, mercaptoalkyl acid, deionized water be added reaction vessel in be uniformly mixed, obtain mixed liquor, Centrifugation is carried out to mixed liquor and removes supernatant, after cleaning lower sediment thing using deionized water, lower sediment thing is dried, second is obtained It is acidified silver nanowires;
Step 12 ', graphene oxide powder and acetoxylation silver nanowires are added in tetrahydrofuran are uniformly dispersed, add 4- bis- Methylamino pyridine and acid binding agent, 98 DEG C~102 DEG C back flow reaction 12 hours or more, supernatant is removed in centrifugation, using deionized water After cleaning lower sediment thing, lower sediment thing is dispersed using deionized water, obtains acetoxylation silver nanowires-graphite oxide Alkene complex solution;
Step 13 ', in acetoxylation silver nanowires-graphene oxide complex solution be added reducing agent to acetoxylation silver nanoparticle Line-graphene oxide compound is restored, and acetoxylation silver nanowires-reduced graphene complex solution is obtained;
Step 14 ', to acetoxylation silver nanowires-reduced graphene complex solution carry out centrifugation remove supernatant, using deionization After water cleans lower sediment thing, acetoxylation silver nanowires-reduced graphene compound is obtained.
9. the production method of flexible transparent conductive film as claimed in claim 6, which is characterized in that the step 30 includes:
Step 310 disperses silver nanowires made from step 20-reduced graphene complex solution in water parfacies, in water Asia Silver nanowires-reduced graphene complex thin film is formed in phase, and non-transparent flexible substrate is inserted vertically into and is dispersed with silver nanowires-also In the water parfacies of former graphene complex film, lifts upwards, the two sides of non-transparent flexible substrate is made to adhere to one layer of silver nanoparticle respectively Line-reduced graphene complex thin film, obtains the second composite conductive thin film;
Step 320 adheres to one layer or more in the two sides of second composite conductive thin film using Lang Gemiaoer-Buji spy method respectively Silver nanowires-reduced graphene complex thin film, formed silver nanowires-reduced graphene composite conductive thin film;
The step 50 includes:
Step 510 disperses non-reduced method graphene solution made from step 40 in water parfacies, and non-go back is formed in water parfacies Silver nanowires-reduced graphene composite conductive thin film is inserted vertically into and is dispersed with non-reduced method graphene by former method graphene film In the water parfacies of film, upwards lift, make silver nanowires-reduced graphene composite conductive thin film two sides adhere to respectively one layer it is non- Reduction method graphene film obtains third composite conductive thin film;
Step 520 adheres to one layer or more in the two sides of the third composite conductive thin film using Lang Gemiaoer-Buji spy method respectively Non-reduced method graphene film, obtain flexible transparent conductive film.
10. flexible and transparent conductive made from a kind of production method using flexible transparent conductive film as claimed in claim 6 Film, which is characterized in that including non-transparent flexible substrate, be attached respectively to several layers of silver nanoparticle of the non-transparent flexible substrate two sides Line-reduced graphene complex thin film, several layers of silver nanowires-reduced graphene for being located at the non-transparent flexible substrate two sides Several layers of non-reduced method graphene film on complex thin film;Described two layers of several layers of expression or more;
The silver nanowires-reduced graphene compound includes amination silver nanowires-reduced graphene compound and acetoxylation silver One of nano wire-reduced graphene compound is a variety of;
The structural formula of the amination silver nanowires-reduced graphene compound isThe second Being acidified silver nanowires-reduced graphene compound structural formula is
In two above structural formula, the vertical thick line among structural formula indicates silver nanowires, and rGO indicates reduced graphene.
CN201711227567.2A 2017-11-29 2017-11-29 Flexible transparent conductive film and preparation method thereof Active CN108039221B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711227567.2A CN108039221B (en) 2017-11-29 2017-11-29 Flexible transparent conductive film and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711227567.2A CN108039221B (en) 2017-11-29 2017-11-29 Flexible transparent conductive film and preparation method thereof

Publications (2)

Publication Number Publication Date
CN108039221A CN108039221A (en) 2018-05-15
CN108039221B true CN108039221B (en) 2019-09-10

Family

ID=62094739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711227567.2A Active CN108039221B (en) 2017-11-29 2017-11-29 Flexible transparent conductive film and preparation method thereof

Country Status (1)

Country Link
CN (1) CN108039221B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819535A (en) * 2019-03-11 2019-05-28 南京银纳新材料科技有限公司 A kind of preparation method of high-temperature service silver nanowires conductive film heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246949B (en) * 2021-04-27 2023-11-03 天津工业大学 Reduced graphene oxide flexible conductive film and three-step moderate reduction preparation process thereof
CN114203338B (en) * 2021-11-16 2023-09-29 香港理工大学深圳研究院 Conductive paste and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6636949B2 (en) * 2014-12-26 2020-01-29 昭和電工株式会社 Method for producing silver nanowire, silver nanowire obtained by the method, and ink containing the silver nanowire
KR102581899B1 (en) * 2015-11-04 2023-09-21 삼성전자주식회사 Transparent electrodes and electronic devices including the same
CN106992031B (en) * 2017-04-20 2019-05-31 青岛元盛光电科技股份有限公司 A kind of production method and its conductive film of nano-silver thread graphene applying conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819535A (en) * 2019-03-11 2019-05-28 南京银纳新材料科技有限公司 A kind of preparation method of high-temperature service silver nanowires conductive film heater

Also Published As

Publication number Publication date
CN108039221A (en) 2018-05-15

Similar Documents

Publication Publication Date Title
CN108039221B (en) Flexible transparent conductive film and preparation method thereof
Huang et al. Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent
CN104992781B (en) Preparation method for graphene-based three-element composite material
CN101535395B (en) Composition of carbon nano tube and transparent and conductive film
Yu et al. All-solution-processed molybdenum oxide-encapsulated silver nanowire flexible transparent conductors with improved conductivity and adhesion
Cui et al. Lignin nanofiller-reinforced composites hydrogels with long-lasting adhesiveness, toughness, excellent self-healing, conducting, ultraviolet-blocking and antibacterial properties
Hosoda et al. Thin-film formation of calcium carbonate crystals: effects of functional groups of matrix polymers
CN103440896B (en) Copper nano-wire and poly-(3,4-Ethylenedioxy Thiophene)-poly-(styrene sulfonic acid) composite and flexible transparency electrode and preparation method thereof
CN105885872B (en) The production method of liquid crystal material, liquid crystal display panel and liquid crystal display panel
CN103050169A (en) Flexible transparent electrode and preparation method thereof
KR101512412B1 (en) Transparent electrode and manufacturing method thereof
CN102568654A (en) Transparent conductive film and preparation method of transparent conductive film
US20160196890A1 (en) Conductive graphene-metal composite material, the production method of the same and use of the same
US10817087B2 (en) Transferable nanocomposites for touch sensors
Wang et al. Strongly adhesive silver nanowire ink makes delamination-free transparent conductive films possible
CN107799236A (en) A kind of Graphene electrodes fast preparation method
US20150125786A1 (en) Method for manufacturing transparent conductive film and method for manufacturing cf substrate having conductive film
CN105785659A (en) Liquid crystal display panel structure containing functionalized graphene layer and preparation method of functionalized graphene membrane
CN108624054A (en) A kind of electrically conducting transparent compound and preparation method thereof of magnetic field regulation and control
CN108511133B (en) Preparation method of transfer-free high-cohesiveness metal grid transparent electrode
CN105118546A (en) Novel transparent silver nanowire conductive film with oxide protection
KR101190206B1 (en) Transparent Conductors and Method of Preparing Same
CN104916371B (en) A kind of method that transparent conductive film is prepared by the transparent base that is modified
CN108735349A (en) A kind of nano silver wire transparent conductive film and preparation method thereof containing ionic liquid
US10372246B2 (en) Transferable nanocomposites for touch sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 9-2 Tangming Avenue, Guangming New District, Shenzhen City, Guangdong Province

Patentee after: TCL Huaxing Photoelectric Technology Co.,Ltd.

Address before: 9-2 Tangming Avenue, Guangming New District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen China Star Optoelectronics Technology Co.,Ltd.