CN108037528A - 少井区基于统计岩石物理建模的孔隙度预测方法及系统 - Google Patents

少井区基于统计岩石物理建模的孔隙度预测方法及系统 Download PDF

Info

Publication number
CN108037528A
CN108037528A CN201710876544.8A CN201710876544A CN108037528A CN 108037528 A CN108037528 A CN 108037528A CN 201710876544 A CN201710876544 A CN 201710876544A CN 108037528 A CN108037528 A CN 108037528A
Authority
CN
China
Prior art keywords
porosity
curve
log
impedance
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710876544.8A
Other languages
English (en)
Other versions
CN108037528B (zh
Inventor
凡睿
李文成
苏建龙
李宇平
缪志伟
杨鸿飞
陈灵君
孙均
赵卓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Exploration Southern Co
Original Assignee
China Petroleum and Chemical Corp
Sinopec Exploration Southern Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Exploration Southern Co filed Critical China Petroleum and Chemical Corp
Priority to CN201710876544.8A priority Critical patent/CN108037528B/zh
Publication of CN108037528A publication Critical patent/CN108037528A/zh
Application granted granted Critical
Publication of CN108037528B publication Critical patent/CN108037528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/612Previously recorded data, e.g. time-lapse or 4D
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters
    • G01V2210/6244Porosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling
    • G01V2210/665Subsurface modeling using geostatistical modeling

Abstract

公开了一种少井区基于统计岩石物理建模的孔隙度预测方法及系统。该方法可以包括:基于地质资料与测井曲线,建立岩石物理模型;基于岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,计算孔隙度加上孔隙度增量时速度、阻抗、弹性参数曲线;分别将孔隙度加相应的孔隙度增量定义为一类物相,建立速度、阻抗、弹性参数曲线交会图,计算一类物相对应的概率密度函数;基于测井数据和叠前地震道集数据进行叠前地震反演,获得速度、阻抗、弹性参数反演数据体,利用概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。本发明在少井区有效开展孔隙度预测工作,提升少井区孔隙度预测精度,为勘探开发提供有力的技术支持。

Description

少井区基于统计岩石物理建模的孔隙度预测方法及系统
技术领域
本发明涉及石油天然气勘探开发领域,更具体地,涉及一种少井区基于统计岩石物理建模的孔隙度预测方法及系统。
背景技术
孔隙度是评价储集性能的重要指标,因此对于储层孔隙度的预测是地球物理勘探中面临的重要科学难题。通常孔隙度的预测方法主要是利用统计的方法开展,通过纵波速度、横波速度、密度、波阻抗以及弹性参数测井曲线与孔隙度进行交会,优选出数据点分布较为集中,即两者相关性较好的测井曲线,拟合两者之间的关系式,通过对该参数进行反演以及利用该关系式进行转换获得孔隙度数据体,进而完成对高孔储层预测的目的。但是该方法存在的问题是在纵波速度、横波速度、密度、波阻抗以及弹性参数测井曲线影响的因素中孔隙度仅仅是一个方面,通过拟合公式的方法无法消除不同深度采样点岩石组分差异、孔隙结构类型差异等因素的影响,因此该方法预测孔隙度的不确定性较高。其它孔隙度预测方法主要包括多元线性回归方法和非线性预测(神经网络、支持向量机等)方法,这一类的方法原理是建立井点位置处孔隙度曲线与井旁道地震属性、反演数据体的线性和非线性关系,将该线性和非线性关系应用到整个地震、反演数据体预测得到孔隙度数据体,该类方法的缺陷在于对于钻井样本数有一定要求,只有在钻井数满足要求时才能够起作用,因此此类方法不适用于少井区进行相关研究。因此,有必要开发一种少井区基于统计岩石物理建模的孔隙度预测方法及系统。
公开于本发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明提出了一种少井区基于统计岩石物理建模的孔隙度预测方法及系统,可以在少井区有效开展孔隙度预测工作,提升少井区孔隙度预测精度,为勘探开发提供更有力的技术支持。
根据本发明的一方面,提出了一种少井区基于统计岩石物理建模的孔隙度预测方法。所述方法可以包括:基于地质资料与测井曲线,建立岩石物理模型;基于所述岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算孔隙度加上孔隙度增量时相应的速度、阻抗、弹性参数曲线;分别将孔隙度加相应的孔隙度增量定义为一类物相,建立相应的速度、阻抗、弹性参数曲线交会图,在交会图上利用贝叶斯分类法计算所述一类物相对应的概率密度函数;基于测井数据和叠前地震道集数据进行叠前地震反演,获得所述速度、阻抗、弹性参数反演数据体,利用所述概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。
优选地,所述基于地质资料与测井曲线,建立所述岩石物理模型包括:利用罗伊斯-博伊特-希尔平均构建包含不同矿物混合物的岩石骨架模型;利用微分等效介质理论以及库斯特-陶克瑞兹等效模量理论在所述岩石骨架模型中加入不同形状孔隙,构建干岩石模型;通过盖思曼流体替换在所述干岩石模型的孔隙中加入流体,获取所述岩石物理模型。
优选地,所述孔隙包括铸模孔、粒间孔、微裂缝和湿粘土柔性孔的至少其中之一。
优选地,所述测井曲线包括纵波速度曲线、横波速度曲线、密度曲线、矿物组分测井解释曲线、孔隙度测井解释曲线及含水饱和度测井曲线。
优选地,还包括:基于所述纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线。
优选地,所述地震资料包括叠前地震道集与叠后数据。
根据本发明的另一方面,提出了一种少井区基于统计岩石物理建模的孔隙度预测系统,可以包括:存储器,存储有计算机可执行指令;处理器,所述处理器运行所述存储器中的计算机可执行指令,执行以下步骤:基于地质资料与测井曲线,建立岩石物理模型;基于所述岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算孔隙度加上孔隙度增量时相应的速度、阻抗、弹性参数曲线;分别将孔隙度加相应的孔隙度增量定义为一类物相,建立相应的速度、阻抗、弹性参数曲线交会图,在交会图上利用贝叶斯分类法计算所述一类物相对应的概率密度函数;基于测井数据和叠前地震道集数据进行叠前地震反演,获得所述速度、阻抗、弹性参数反演数据体,利用所述概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。
优选地,所述基于地质资料与测井曲线,建立所述岩石物理模型包括:利用罗伊斯-博伊特-希尔平均构建包含不同矿物混合物的岩石骨架模型;利用微分等效介质理论以及库斯特-陶克瑞兹等效模量理论在所述岩石骨架模型中加入不同形状孔隙,构建干岩石模型;通过盖思曼流体替换在所述干岩石模型的孔隙中加入流体,获取所述岩石物理模型。
优选地,所述测井曲线包括纵波速度曲线、横波速度曲线、密度曲线、矿物组分测井解释曲线、孔隙度测井解释曲线及含水饱和度测井曲线。
优选地,基于所述纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线;所述地震资料包括叠前地震道集与叠后数据。
本发明的方法和装置具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的具体实施方式中将是显而易见的,或者将在并入本文中的附图和随后的具体实施方式中进行详细陈述,这些附图和具体实施方式共同用于解释本发明的特定原理。
附图说明
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了根据本发明的少井区基于统计岩石物理建模的孔隙度预测方法的步骤的流程图。
图2示出了根据本发明的一个实施例的孔隙度置换结果的示意图。
图3示出了根据本发明的一个实施例的纵横波交会及不同物相的概率密度函数的示意图。
图4示出了根据本发明的一个实施例的高孔概率体的示意图。
具体实施方式
下面将参照附图更详细地描述本发明。虽然附图中显示了本发明的优选实施例,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
图1示出了根据本发明的少井区基于统计岩石物理建模的孔隙度预测方法的步骤的流程图。
在该实施例中,根据本发明的少井区基于统计岩石物理建模的孔隙度预测方法可以包括:
步骤101,基于地质资料与测井曲线,建立岩石物理模型;在一个示例中,测井曲线包括纵波速度曲线、横波速度曲线、密度曲线、矿物组分测井解释曲线、孔隙度测井解释曲线及含水饱和度测井曲线。在一个示例中,还包括:基于纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线。在一个示例中,地震资料包括叠前地震道集与叠后数据。在一个示例中,基于测井曲线与地震资料,建立岩石物理模型包括:基于地质资料与测井曲线,建立岩石物理模型包括:利用罗伊斯-博伊特-希尔平均构建包含不同矿物混合物的岩石骨架模型;利用微分等效介质理论以及库斯特-陶克瑞兹等效模量理论在岩石骨架模型中加入不同形状孔隙,构建干岩石模型;通过盖思曼流体替换在干岩石模型的孔隙中加入流体,获取岩石物理模型。在一个示例中,孔隙包括铸模孔、粒间孔、微裂缝和湿粘土柔性孔的至少其中之一。
步骤102,基于岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算孔隙度加上孔隙度增量时相应的速度、阻抗、弹性参数曲线。
步骤103,分别将孔隙度加相应的孔隙度增量定义为一类物相,建立相应的速度、阻抗、弹性参数曲线交会图,在交会图上利用贝叶斯分类法计算一类物相对应的概率密度函数。
步骤104,基于测井数据和叠前地震道集数据进行叠前地震反演,获得速度、阻抗、弹性参数反演数据体,利用概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。
具体地,利用基础地质资料、测井资料开展岩石物理建模,模拟孔隙度变化时速度、阻抗及弹性参数特征变化规律;其次建立原始数据(即已钻井储层孔隙度数据)、孔隙度减小和增大时测井曲线分布的概率密度函数,然后利用贝叶斯分类的方法预测孔隙度较已钻遇储层高时的概率,概率越高则储层孔隙度大于已钻遇储层的可能性越高。由于对于钻井数量没有要求,在沉积相带变化不大的情况下亦可利用邻区地质资料、钻井资料、测井资料完成,因此适用于少井区的储层孔隙度预测。
基于地质数据、测井曲线与地震资料,其中,测井曲线包括纵波速度、横波速度、密度测井曲线以及矿物组分、孔隙度和含水饱和度测井解释曲线,还包括基于纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线,阻抗包括纵波阻抗、横波阻抗、弹性阻抗,弹性参数包括拉梅系数、剪切模量、杨氏模量、泊松比、体积模量、纵波模量等;地震资料包括叠前地震道集与叠后成果数据。利用Reuss-Voight-Hill平均将白云石、方解石、粘土矿物混合,构建包含不同矿物混合物的岩石骨架模型;利用微分等效介质理论以及KT等效模量理论在岩石骨架模型中加入不同形状孔隙,包括圆形的铸模孔、椭圆形的粒间孔、纵横比较低(孔隙空间短轴与长轴之比)的微裂缝以及湿粘土柔性孔,构建干岩石模型,有关孔隙微观结构特征的描述主要通过岩心观察以及扫描电镜照片来确定;通过Gassmann流体替换在干岩石模型的孔隙中加入流体,获取岩石物理模型,岩石骨架模型可以包含白云石、方解石、粘土的混合物,利用岩石物理建模计算的速度、阻抗、弹性参数曲线与实际曲线吻合程度高,则说明岩石物理模型的选择以及相关参数的选择较为合理。
基于岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算相应的速度、阻抗、弹性参数曲线,获得孔隙度置换结果,模拟孔隙度增大或减小时速度、阻抗、弹性参数曲线变化规律。
分别将孔隙度加相应的孔隙度增量为一类物相,如孔隙度增加2%,则定义其为孔隙度增加2%的物相。由于孔隙度增大或减小不同数值时的速度、阻抗、弹性参数曲线存在叠置现象,通过相应的速度、阻抗、弹性参数曲线交会图,利用贝叶斯分类法计算一类物相对应的概率密度函数,该概率密度函数与数据点的分布范围相关,数据分布越集中且与其它相叠置范围较小则其为这一类相的概率越高,相反地,分布较散且与其它相叠置的数据其概率越低。
基于每一类物相所对应的速度、阻抗、弹性参数曲线交会图,基于测井数据和叠前地震道集数据进行叠前地震反演,获得速度、阻抗、弹性参数反演数据体,利用概率密度函数对反演数据体进行解释,预测每一类物相所对应的孔隙度的概率,比如孔隙度增加2%的概率体中,概率约高则说明比现有储层孔隙度高2%时的概率。
本方法可以在少井区有效开展孔隙度预测工作,提升少井区孔隙度预测精度,为勘探开发提供更有力的技术支持。
应用示例
为便于理解本发明实施例的方案及其效果,以下给出一个具体应用示例。本领域技术人员应理解,该示例仅为了便于理解本发明,其任何具体细节并非意在以任何方式限制本发明。
基于地质数据、测井曲线与地震资料,其中,测井曲线包括纵波速度、横波速度、密度测井曲线以及矿物组分、孔隙度测井解释曲线,还包括基于纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线,阻抗包括纵波阻抗、横波阻抗、弹性阻抗,弹性参数包括拉梅系数、剪切模量、杨氏模量、泊松比、体积模量、纵波模量等;地震资料包括叠前地震道集与叠后成果数据。利用Reuss-Voight-Hill平均将白云石、方解石、粘土矿物混合,构建包含不同矿物混合物的岩石骨架模型;利用微分等效介质理论以及KT等效模量理论在岩石骨架模型中加入不同形状孔隙,包括圆形的铸模孔、椭圆形的粒间孔、纵横比较低(孔隙空间短轴与长轴之比)的微裂缝以及湿粘土孔隙柔性孔,构建干岩石模型,有关孔隙微观结构特征的描述主要通过岩心观察以及扫描电镜照片来确定;通过Gassmann流体替换在干岩石模型的孔隙中加入流体,获取岩石物理模型,岩石骨架模型包含白云石、方解石、粘土的混合物,利用岩石物理建模计算的速度、阻抗、弹性参数曲线与实际曲线吻合程度高,则说明岩石物理模型的选择以及相关参数的选择较为合理。
图2示出了根据本发明的一个实施例的孔隙度置换结果的示意图。
基于岩石物理模型,在预定范围内将孔隙度分别设置为增量为常数的多个值,并分别计算相应的速度、阻抗、弹性参数曲线,获得孔隙度置换结果,如图2所示,模拟孔隙度变化时速度、阻抗、弹性参数曲线变化规律,针对不同的岩石类型采用针对性的岩石物理建模方法,模拟孔隙度分别增大2%、4%、6%、8%时速度、阻抗、弹性参数响应曲线;此外由图中纵波速度显示道上的虚线可知,该虚线并不能将孔隙度增大2%、4%、6%时的速度值进行区分,速度数据存在叠置现象。
图3示出了根据本发明的一个实施例的纵横波交会及不同物相的概率密度函数的示意图。
分别将孔隙度的每个值定义为一类物相,如孔隙度增加2%,则定义其为孔隙度增加2%的物相。由于孔隙度增大或减小不同数值时的速度、阻抗、弹性参数曲线存在叠置现象,通过相应的速度、阻抗、弹性参数曲线交会图,利用贝叶斯分类法计算一类物相对应的概率密度函数,如图3所示,一类物相数据集中区域则属于该类物相的概率越高,反之若数据分散或与其它物相叠置,则属于该类物相的概率越低。该概率密度函数与数据点的分布范围相关,数据分布越集中且与其它相叠置范围较小则其为这一类相的概率越高,相反地,分布较散且与其它相叠置的数据其概率越低。
图4示出了根据本发明的一个实施例的高孔概率体的示意图。
基于每一类物相所对应的速度、阻抗、弹性参数曲线交会图,以速度、阻抗、弹性参数曲线交会图中的其中两个参数为目标进行反演,利用概率密度函数对反演数据体进行解释,预测每一类物相所对应的孔隙度的概率,如图4所示,概率越高则比现有储层孔隙度高的概率越大,预测结果与沉积微相刻画结果具有较好的一致性。
综上所述,本发明可以在少井区有效开展孔隙度预测工作,提升少井区孔隙度预测精度,为勘探开发提供更有力的技术支持。
本领域技术人员应理解,上面对本发明的实施例的描述的目的仅为了示例性地说明本发明的实施例的有益效果,并不意在将本发明的实施例限制于所给出的任何示例。
根据本发明的实施例,提供了一种少井区基于统计岩石物理建模的孔隙度预测系统,可以包括:存储器,存储有计算机可执行指令;处理器,处理器运行存储器中的计算机可执行指令,执行以下步骤:基于地质资料与测井曲线,建立岩石物理模型;基于岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算孔隙度加上孔隙度增量时相应的速度、阻抗、弹性参数曲线;分别将孔隙度加相应的孔隙度增量为定义一类物相,建立相应的速度、阻抗、弹性参数曲线交会图,在交会图上利用贝叶斯分类法计算一类物相对应的概率密度函数;基于测井数据和叠前地震道集数据进行叠前地震反演,获得速度、阻抗、弹性参数反演数据体,利用概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。
在一个示例中,基于地质资料与测井曲线,建立岩石物理模型包括:利用罗伊斯-博伊特-希尔平均构建包含不同矿物混合物的岩石骨架模型;利用微分等效介质理论以及库斯特-陶克瑞兹等效模量理论在岩石骨架模型中加入不同形状孔隙,构建干岩石模型;通过盖思曼流体替换在干岩石模型的孔隙中加入流体,获取岩石物理模型。
在一个示例中,测井曲线包括纵波速度曲线、横波速度曲线、密度曲线、矿物组分测井解释曲线、孔隙度测井解释曲线及含水饱和度测井曲线。
在一个示例中,基于纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线;地震资料包括叠前地震道集与叠后数据。
本发明可以在少井区有效开展孔隙度预测工作,提升少井区孔隙度预测精度,为勘探开发提供更有力的技术支持。
本领域技术人员应理解,上面对本发明的实施例的描述的目的仅为了示例性地说明本发明的实施例的有益效果,并不意在将本发明的实施例限制于所给出的任何示例。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

1.一种少井区基于统计岩石物理建模的孔隙度预测方法,包括:
基于地质资料与测井曲线,建立岩石物理模型;
基于所述岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算孔隙度加上孔隙度增量时相应的速度、阻抗、弹性参数曲线;
分别将孔隙度加相应的孔隙度增量定义为一类物相,建立相应的速度、阻抗、弹性参数曲线交会图,在交会图上利用贝叶斯分类法计算所述一类物相对应的概率密度函数;
基于测井数据和叠前地震道集数据进行叠前地震反演,获得所述速度、阻抗、弹性参数反演数据体,利用所述概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。
2.根据权利要求1所述的少井区基于统计岩石物理建模的孔隙度预测方法,其中,所述基于地质资料与测井曲线,建立所述岩石物理模型包括:
利用罗伊斯-博伊特-希尔平均构建包含不同矿物混合物的岩石骨架模型;
利用微分等效介质理论以及库斯特-陶克瑞兹等效模量理论在所述岩石骨架模型中加入不同形状孔隙,构建干岩石模型;
通过盖思曼流体替换在所述干岩石模型的孔隙中加入流体,获取所述岩石物理模型。
3.根据权利要求2所述的少井区基于统计岩石物理建模的孔隙度预测方法,其中,所述孔隙包括铸模孔、粒间孔、微裂缝和湿粘土柔性孔的至少其中之一。
4.根据权利要求1所述的少井区基于统计岩石物理建模的孔隙度预测方法,其中,所述测井曲线包括纵波速度曲线、横波速度曲线、密度曲线、矿物组分测井解释曲线、孔隙度测井解释曲线及含水饱和度测井曲线。
5.根据权利要求4所述的少井区基于统计岩石物理建模的孔隙度预测方法,其中,还包括:基于所述纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线。
6.根据权利要求1所述的少井区基于统计岩石物理建模的孔隙度预测方法,其中,所述地震资料包括叠前地震道集与叠后数据。
7.一种少井区基于统计岩石物理建模的孔隙度预测系统,其特征在于,该系统包括:
存储器,存储有计算机可执行指令;
处理器,所述处理器运行所述存储器中的计算机可执行指令,执行以下步骤:
基于地质资料与测井曲线,建立岩石物理模型;
基于所述岩石物理模型,在预定范围内将孔隙度增量设置为多个常数值,并分别计算孔隙度加上孔隙度增量时相应的速度、阻抗、弹性参数曲线;
分别将孔隙度加相应的孔隙度增量定义为一类物相,建立相应的速度、阻抗、弹性参数曲线交会图,在交会图上利用贝叶斯分类法计算所述一类物相对应的概率密度函数;
基于测井数据和叠前地震道集数据进行叠前地震反演,获得所述速度、阻抗、弹性参数反演数据体,利用所述概率密度函数对反演数据体进行转换,预测每一类物相所对应的孔隙度概率体。
8.根据权利要求7所述的少井区基于统计岩石物理建模的孔隙度预测系统,其中,所述基于地质资料与测井曲线,建立所述岩石物理模型包括:
利用罗伊斯-博伊特-希尔平均构建包含不同矿物混合物的岩石骨架模型;
利用微分等效介质理论以及库斯特-陶克瑞兹等效模量理论在所述岩石骨架模型中加入不同形状孔隙,构建干岩石模型;
通过盖思曼流体替换在所述干岩石模型的孔隙中加入流体,获取所述岩石物理模型。
9.根据权利要求7所述的少井区基于统计岩石物理建模的孔隙度预测系统,其中,所述测井曲线包括纵波速度曲线、横波速度曲线、密度曲线、矿物组分测井解释曲线、孔隙度测井解释曲线及含水饱和度测井曲线。
10.根据权利要求7所述的少井区基于统计岩石物理建模的孔隙度预测系统,其中,基于所述纵波速度、横波速度、密度测井曲线计算阻抗曲线与弹性参数曲线;所述地震资料包括叠前地震道集与叠后数据。
CN201710876544.8A 2017-09-25 2017-09-25 少井区基于统计岩石物理建模的孔隙度预测方法及系统 Active CN108037528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710876544.8A CN108037528B (zh) 2017-09-25 2017-09-25 少井区基于统计岩石物理建模的孔隙度预测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710876544.8A CN108037528B (zh) 2017-09-25 2017-09-25 少井区基于统计岩石物理建模的孔隙度预测方法及系统

Publications (2)

Publication Number Publication Date
CN108037528A true CN108037528A (zh) 2018-05-15
CN108037528B CN108037528B (zh) 2019-08-30

Family

ID=62093116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710876544.8A Active CN108037528B (zh) 2017-09-25 2017-09-25 少井区基于统计岩石物理建模的孔隙度预测方法及系统

Country Status (1)

Country Link
CN (1) CN108037528B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907324A (zh) * 2018-09-14 2020-03-24 中国石油化工股份有限公司 一种碳酸盐岩孔隙成分分析方法及系统
CN112147679A (zh) * 2019-06-26 2020-12-29 中国石油化工股份有限公司 在模糊逻辑框架下基于弹性参数的岩性预测方法和装置
CN112230283A (zh) * 2020-10-12 2021-01-15 北京中恒利华石油技术研究所 一种基于测井曲线支持向量机建模的地震孔隙度预测方法
CN112649867A (zh) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 虚拟井构建方法及系统
CN112946752A (zh) * 2021-03-19 2021-06-11 成都捷科思石油天然气技术发展有限公司 基于裂缝密度模型预测裂缝概率体的方法
CN113033637A (zh) * 2021-03-16 2021-06-25 电子科技大学 一种基于岩石物理样本增强的集成学习岩相预测方法
CN113138412A (zh) * 2020-01-20 2021-07-20 中国石油天然气集团有限公司 深层页岩气孔隙度地震预测方法及装置
CN113534263A (zh) * 2021-07-13 2021-10-22 广州海洋地质调查局 一种不依赖测井资料的含油气饱和度预测方法
CN113960659A (zh) * 2021-10-14 2022-01-21 中国矿业大学 一种地震岩石物理驱动的煤层气储层含气量预测方法
CN116291415A (zh) * 2023-04-12 2023-06-23 西南石油大学 一种计算含气地层孔隙度的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444619A (en) * 1993-09-27 1995-08-22 Schlumberger Technology Corporation System and method of predicting reservoir properties
US20090271118A1 (en) * 2005-06-24 2009-10-29 Saltzer Rebecca L Method for Obtaining Porosity and Shale Volume From Seismic Data
CN104252007A (zh) * 2013-06-26 2014-12-31 中国石油化工股份有限公司 一种相容性岩石物理建模方法
CN104516018A (zh) * 2013-09-30 2015-04-15 中国石油化工股份有限公司 一种地球物理勘探中岩性约束下的孔隙度反演方法
CN105205296A (zh) * 2014-06-09 2015-12-30 中国石油化工股份有限公司 一种求取页岩气储层孔隙度的方法
CN106168676A (zh) * 2015-05-22 2016-11-30 中国石油化工股份有限公司 基于地震资料的地层岩性和流体识别方法和装置
CN106556867A (zh) * 2015-09-29 2017-04-05 中国石油天然气股份有限公司 基于贝叶斯分类的相控孔隙度反演方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444619A (en) * 1993-09-27 1995-08-22 Schlumberger Technology Corporation System and method of predicting reservoir properties
US20090271118A1 (en) * 2005-06-24 2009-10-29 Saltzer Rebecca L Method for Obtaining Porosity and Shale Volume From Seismic Data
CN104252007A (zh) * 2013-06-26 2014-12-31 中国石油化工股份有限公司 一种相容性岩石物理建模方法
CN104516018A (zh) * 2013-09-30 2015-04-15 中国石油化工股份有限公司 一种地球物理勘探中岩性约束下的孔隙度反演方法
CN105205296A (zh) * 2014-06-09 2015-12-30 中国石油化工股份有限公司 一种求取页岩气储层孔隙度的方法
CN106168676A (zh) * 2015-05-22 2016-11-30 中国石油化工股份有限公司 基于地震资料的地层岩性和流体识别方法和装置
CN106556867A (zh) * 2015-09-29 2017-04-05 中国石油天然气股份有限公司 基于贝叶斯分类的相控孔隙度反演方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘倩 等: ""基于逆建模理论的储层特征定量预测方法"", 《地球物理学报》 *
洪忠 等: ""基于岩石物理的致密碎屑岩气藏岩性及流体概率预测"", 《石油物探》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907324A (zh) * 2018-09-14 2020-03-24 中国石油化工股份有限公司 一种碳酸盐岩孔隙成分分析方法及系统
CN110907324B (zh) * 2018-09-14 2023-01-03 中国石油化工股份有限公司 一种碳酸盐岩孔隙成分分析方法及系统
CN112147679A (zh) * 2019-06-26 2020-12-29 中国石油化工股份有限公司 在模糊逻辑框架下基于弹性参数的岩性预测方法和装置
CN112147679B (zh) * 2019-06-26 2024-04-16 中国石油化工股份有限公司 在模糊逻辑框架下基于弹性参数的岩性预测方法和装置
CN112649867B (zh) * 2019-10-12 2024-04-09 中国石油化工股份有限公司 虚拟井构建方法及系统
CN112649867A (zh) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 虚拟井构建方法及系统
CN113138412A (zh) * 2020-01-20 2021-07-20 中国石油天然气集团有限公司 深层页岩气孔隙度地震预测方法及装置
CN112230283A (zh) * 2020-10-12 2021-01-15 北京中恒利华石油技术研究所 一种基于测井曲线支持向量机建模的地震孔隙度预测方法
CN112230283B (zh) * 2020-10-12 2021-08-10 北京中恒利华石油技术研究所 一种基于测井曲线支持向量机建模的地震孔隙度预测方法
CN113033637A (zh) * 2021-03-16 2021-06-25 电子科技大学 一种基于岩石物理样本增强的集成学习岩相预测方法
CN112946752A (zh) * 2021-03-19 2021-06-11 成都捷科思石油天然气技术发展有限公司 基于裂缝密度模型预测裂缝概率体的方法
CN112946752B (zh) * 2021-03-19 2022-04-05 成都捷科思石油天然气技术发展有限公司 基于裂缝密度模型预测裂缝概率体的方法
CN113534263A (zh) * 2021-07-13 2021-10-22 广州海洋地质调查局 一种不依赖测井资料的含油气饱和度预测方法
CN113960659A (zh) * 2021-10-14 2022-01-21 中国矿业大学 一种地震岩石物理驱动的煤层气储层含气量预测方法
CN116291415B (zh) * 2023-04-12 2023-11-24 西南石油大学 一种计算含气地层孔隙度的方法及系统
CN116291415A (zh) * 2023-04-12 2023-06-23 西南石油大学 一种计算含气地层孔隙度的方法及系统

Also Published As

Publication number Publication date
CN108037528B (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN108037528B (zh) 少井区基于统计岩石物理建模的孔隙度预测方法及系统
US10572611B2 (en) Method and system for characterizing fractures in a subsurface region
US10846447B2 (en) Method and system for stacking fracture prediction
US10712472B2 (en) Method and system for forming and using a subsurface model in hydrocarbon operations
CN104950331B (zh) 一种砂泥岩储层的孔隙度与泥质含量的地震预测方法
CN103984027B (zh) 基于椭球体双重孔隙模型的岩石纵波速度预测方法
CN105182424B (zh) 一种基于斑块饱和模型定量预测储层孔隙度的方法和装置
CN105445791A (zh) 一种基于多种地震属性的地层孔隙压力预测方法
CN111399044A (zh) 一种储层渗透率预测方法、装置及存储介质
Baird et al. Frequency-dependent seismic anisotropy due to fractures: Fluid flow versus scattering
Benetatos et al. Coping with uncertainties through an automated workflow for 3D reservoir modelling of carbonate reservoirs
da Rocha et al. Permeability estimation and analysis of fracture networks using resistivity logs in an offshore Aptian carbonate reservoir pre-salt, in the Southeastern Santos Basin
Li et al. An Integrated quantitative modeling approach for fault-related fractures in tight sandstone reservoirs
WO2019245644A1 (en) Methods and systems for simulation gridding with partial faults
CN106568918A (zh) 页岩有机碳含量toc预测方法
CN109655936A (zh) 一种碎屑岩岩性替换的弹性参数计算方法及系统
Bratton Stress induced changes in elastic wave attributes in the Wattenberg Field, Colorado, USA
Ji et al. Calculation method and characteristic analysis of dispersion curves of Rayleigh channel waves in transversely isotropic media
Nemati et al. Spatial distribution of fractures in the Asmari Formation of Iran in subsurface environment: effect of lithology and petrophysical properties
Price et al. Linking Depositional Environment Interpretations and Stratal Architecture to Source Rock Richness and Mechanical Property Distribution in the Delaware Basin
Salazar et al. Building a model with realistic pore pressures: Modifying the SEAM Phase I subsalt model
Jiang et al. An efficient rock physics scheme for estimating crack density and fluid saturation of shale gas reservoir
Abdullah et al. Application of Techniques of Natural Fracture Characterization for Appraisal of Tight Carbonate Reservoirs: A Case Study From Jurassic of Kuwait
Blauth et al. Work Flow for Geological Characterization and Modeling of the Albian Carbonate Reservoirs from Offshore Campos Basin, Brazil
Li et al. Effects of rock anisotropy on integrated modelling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant