CN108037318A - A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting - Google Patents

A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting Download PDF

Info

Publication number
CN108037318A
CN108037318A CN201711289227.2A CN201711289227A CN108037318A CN 108037318 A CN108037318 A CN 108037318A CN 201711289227 A CN201711289227 A CN 201711289227A CN 108037318 A CN108037318 A CN 108037318A
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711289227.2A
Other languages
Chinese (zh)
Inventor
钟元
刘宗南
丁久辉
贺乃馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhi Ling Fei (beijing) Technology Co Ltd
Original Assignee
Zhi Ling Fei (beijing) Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhi Ling Fei (beijing) Technology Co Ltd filed Critical Zhi Ling Fei (beijing) Technology Co Ltd
Priority to CN201711289227.2A priority Critical patent/CN108037318A/en
Publication of CN108037318A publication Critical patent/CN108037318A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

The invention belongs to unmanned air vehicle technique field, discloses a kind of unmanned plane accelerometer calibration method based on ellipsoid fitting.Random-Rotation unmanned plane, makes its posture position span cover the three dimensions scope where fitting spheroid as far as possible, a series of output valve of accelerometer in the case where each test position stationary acquisition obtains different postures;Ellipsoidal Surface is fitted by the accelerometer output valve measured;Calibration factor is obtained by the Ellipsoidal Surface fitted;Compensated using the output of calibration parameter and calibrating patterns to unmanned plane accelerometer.The present invention being capable of the quickly and accurately null offset of calibrating accolerometer and calibration factor;Independent of large-scale precision equipment, only multiple and different postures need to be positioned over by accelerometer is static;Calculation amount is small, and arithmetic speed is fast, can be rapidly completed calibration, has certain engineering application value.The method of the present invention is easy to operate, quickly calibrated suitable for the unmanned plane accelerometer of most occasions independent of external device.

Description

A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting
Technical field
The invention belongs to unmanned air vehicle technique field, more particularly to a kind of unmanned plane accelerometer calibration based on ellipsoid fitting Method.
Background technology
Accelerometer is an indispensable sensor for unmanned plane.It provides nobody for flight control system The attitude information of machine so that unmanned plane can carry out navigational guidance and control.But accelerometer is being produced, installing and measured Certain error can be inevitably produced in journey, in order to ensure the accuracy of accelerometer measures data, need before the use pair plus Speedometer is calibrated.Existing accelerometer calibration method is generally dependent upon high-precision turntable.But turntable there is The features such as quality and volume are big, not easily shifted and equipment is expensive.It is this easy to carry for unmanned plane, in a variety of contexts For using flexible aircraft, calibrating accolerometer can not be carried out using turntable under many circumstances.There can only be turntable in advance Local calibration in advance, whether then no matter using area changes, is all no longer calibrated.For the changeable unmanned plane of using area For, it is evident that it can so produce calibration error.
In conclusion problem existing in the prior art is:There are turntable quality and body for existing accelerometer calibration method Big, the not easily shifted and equipment of product is expensive, the problems such as calibration can not be realized in use, causes the accelerometer measures data of unmanned plane It is inaccurate.
The content of the invention
In view of the problems of the existing technology, the present invention provides a kind of unmanned plane accelerometer school based on ellipsoid fitting Quasi- method, unmanned plane.
The present invention is achieved in that a kind of unmanned plane accelerometer calibration method based on ellipsoid fitting, this method master To be applied to the calibration of unmanned plane accelerometer, the unmanned plane accelerometer calibration method based on ellipsoid fitting includes following Step:
Step 1, Random-Rotation unmanned plane, makes its posture position span cover three dimensions where fitting spheroid as far as possible Scope, a series of output valve of accelerometer in the case where each test position stationary acquisition obtains different postures.In order to enable calibration Method is feasible, and the posture of unmanned plane must not be less than six kinds;
Step 2, since accelerometer output valve is integer, so needing to carry out data conversion to output valve, is converted into reality The acceleration measuring value on border, then according to least square fitting Ellipsoidal Surface, the Ellipsoidal Surface fitted includes ellipsoid The calibration factor of sphere center position and each axis;
Step 3, calibration is obtained by the sphere center position of the ellipsoid fitted and the calibration factor and calibrating patterns of each axis Coefficient, including three null offsets and three calibration factors;
Step 4, using the output of six calibration factors and calibrating patterns to each reference axis of unmanned plane accelerometer into Row compensation, obtains the real measured value of accelerometer.
Further, the calibrating patterns of accelerometer are:
ar=K (am-a0);
It is unfolded:
Wherein amx、amy、amzFor the measured value of three axis of accelerometer, arx、ary、arzFor the true of three axis of accelerometer Value, a0x、aoy、a0zFor the zero drift error of three axis of accelerometer, kx、ky、kzFor the calibration factor of three axis of accelerometer. (calibrating patterns ar=K (am-a0), step 3 has obtained k and a0, the output of accelerometer is am, calculated according to calibrating patterns As a result)
Further, when the static placement of unmanned plane, three output valve relations of the accelerometer after correction:
Wherein, g represents local gravitational acceleration, then is obtained by calibrating patterns:
Further, the Quadratic Surface Equation of ellipsoid is:
F (ξ, z)=ξTZ=ax2+by2+cz2+ 2dxy+2exz+2fyz+2px+2qy+2rz+t=0;
Wherein ξ=[a, b, c, d, e, f, p, q, r, t]TFor quadratic surface parameter vector to be asked, v=[x2,y2,z2,2xy, 2xz,2yz,2x,2y,2z,1]TFor the computing mix vector of measurement data;F (ξ, v) arrives secondary song for measurement data (x, y, z) The algebraic distance of face F (ξ, z);During Quadratic Surface Fitting, the quadratic sum for choosing measurement data to quadratic surface algebraic distance is minimum For judgment criterion:
Wherein:
The constraints that ellipsoid fitting algorithm based on least square method obtains Ellipsoidal Surface is:
F (ξ, v) matrix of the Quadratic Function Optimization for the best fit Ellipsoidal Surface that least square method with Ellipsoidal Restrictions obtains Expression can be arranged as vector form:
(X-X0)TA(X-X0)=1;
Wherein,It is the matrix related with three and half axial length of ellipsoid and ellipsoid rotation angle,It is then the center point coordinate of fitting ellipsoid.
Further, obtained according to the measurement calibrating patterns of accelerometer:
(ar)T(ar)=[K (am-a0)]T[K(am-a0)]=| | g | |2
Arrange:
Contrast ellipsoid fitting formula obtains:
Ellipsoid is fitted, goes out calibration factor using the parametric solution of ellipsoid;Two formula joint solutions can obtain school more than Quasi- coefficient kx、ky、kzAnd a0x、aoy、a0z
Another object of the present invention is to provide a kind of unmanned plane accelerometer calibration based on ellipsoid fitting described in The unmanned plane of method.
Advantages of the present invention and good effect are:Independent of the extraneous large-scale precision equipment as turntable, it is only necessary to Gathered data under 6 different postures is positioned over by unmanned plane accelerometer is static, calibration algorithm just can rapidly calculate acceleration Spend meter 3 null offsets and 3 calibration factors, suitable for most occasions such as indoor and outdoor unmanned plane accelerometer it is quick Calibration.Emulation experiment shows that this method calculation amount is small, and arithmetic speed is fast, can be rapidly completed calibration, it is possible to increase unmanned plane adds The measurement accuracy of speedometer about 4%, carrys out calibrating accolerometer using turntable and has a substantially suitable precision with existing, but this Invention substantially operates simpler, and the time used in calibrating accolerometer is obviously shortened, and has larger engineering application value.
Brief description of the drawings
Fig. 1 is the unmanned plane accelerometer calibration method flow diagram provided in an embodiment of the present invention based on ellipsoid fitting.
Fig. 2 is experimental result schematic diagram provided in an embodiment of the present invention;
In figure:(a) X-axis exports;(b) Y-axis exports;(c) Z axis exports.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, with reference to embodiments, to the present invention It is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, it is not used to Limit the present invention.
The present invention is independent of external device, easy to operate, calibration accuracy is high, can flexibly use in all case, energy 6 coefficients of enough calibrated scale coefficients and null offset etc., improve the measurement accuracy of accelerometer.
The application principle of the present invention is explained in detail below in conjunction with the accompanying drawings.
As shown in Figure 1, the unmanned plane accelerometer calibration method provided in an embodiment of the present invention based on ellipsoid fitting includes Following steps:
S101:Random-Rotation unmanned plane, makes its posture position span cover three dimensions model where fitting spheroid as far as possible Enclose, a series of output valve of accelerometer in the case where each test position stationary acquisition obtains different postures;
S102:Ellipsoidal Surface is fitted by the accelerometer output valve measured;
S103:Calibration factor is obtained by the Ellipsoidal Surface fitted;
S104:Compensated using the output of calibration parameter and calibrating patterns to unmanned plane accelerometer.
In a preferred embodiment of the invention:The calibrating patterns of accelerometer are:
ar=K (am-a0);
Expansion can obtain:
Wherein amx、amy、amzFor the measured value of three axis of accelerometer, arx、ary、arzFor the true of three axis of accelerometer Value, a0x、aoy、a0zFor the zero drift error of three axis of accelerometer, kx、ky、kzFor the calibration factor of three axis of accelerometer. The calibration of accelerometer is exactly that the calibration factor of three above zero drift error and three axis is obtained by certain method.
When the static placement of unmanned plane, there is following relation between three output valves of the accelerometer after correction:
Wherein, g represents local gravitational acceleration, then can be obtained by calibrating patterns:
From the foregoing, it will be observed that when if the calibration factor of three axis of accelerometer is not exactly the same, during the measurement of accelerometer just An ellipsoid can be distributed in.So the present invention is exactly to fit an ellipsoid by measuring multi-group data, then according to plan The ellipsoid closed out solves the calibration factor of accelerometer, so this calibration method is called ellipsoid fitting.
Ellipsoid is special quadratic surface, and quadric general equation is:
F (ξ, z)=ξTZ=ax2+by2+cz2+ 2dxy+2exz+2fyz+2px+2qy+2rz+t=0;
Wherein ξ=[a, b, c, d, e, f, p, q, r, t]TFor quadratic surface parameter vector to be asked, v=[x2,y2,z2,2xy, 2xz,2yz,2x,2y,2z,1]TFor the computing mix vector of measurement data.F (ξ, v) arrives secondary song for measurement data (x, y, z) The algebraic distance of face F (ξ, z).During Quadratic Surface Fitting, the quadratic sum for choosing measurement data to quadratic surface algebraic distance is minimum For judgment criterion, i.e.,:
Wherein:
The basic principle of ellipsoid fitting is exactly to make the quadratic sum of measurement data to the distance of ellipsoidal surfaces minimum, but cannot The combination of each data is ensured on the curved surface of ellipsoid, therefore it is ellipse to introduce the ellipsoid fitting algorithm acquisition based on least square method The constraints of ball curved surface is:
F (ξ, v) matrix of the Quadratic Function Optimization for the best fit Ellipsoidal Surface that least square method with Ellipsoidal Restrictions obtains Expression can be arranged as vector form:
(X-X0)TA(X-X0)=1;
Wherein,It is the matrix related with three and half axial length of ellipsoid and ellipsoid rotation angle,It is then the center point coordinate of fitting ellipsoid.
It can be obtained according to the measurement calibrating patterns of accelerometer:
(ar)T(ar)=[K (am-a0)]T[K(am-a0)]=| | g | |2
Arrangement can obtain:
Contrast ellipsoid fitting formula can obtain:
As long as from the foregoing, it will be observed that fitting ellipsoid, can just the parametric solution of ellipsoid be utilized to go out calibration factor.
The application effect of the present invention is explained in detail with reference to experiment.
Unmanned plane is calibrated by the accelerometer calibration step of the proposition of the present invention.After the completion of calibration, in order to verify The validity of the bearing calibration, the static placement straight down of the X-axis of accelerometer accelerates before collection calibration and after calibration respectively The output of degree three axis of meter is contrasted, and experimental result is as shown in Figure 2
Ideally, the three axis output for calibrating the accelerometer of completion should be respectively 1,0,0.Since there are acceleration Count and be disposed vertically deviation and noise equal error, three axis of accelerometer are exported under actual conditions has slight error apart from ideal value. But it was found from being contrasted before calibration with the experimental data after calibration, which significantly reduces the mistake of accelerometer Difference, improves measurement accuracy.
Unmanned plane accelerometer calibration method based on ellipsoid fitting can quickly and accurately calibrating accolerometer zero Point drift and calibration factor.Without relying on large-scale precision equipment, only multiple and different postures need to be positioned over by accelerometer is static .In addition, calculation amount of the present invention is small, arithmetic speed is fast, can be rapidly completed calibration, has certain engineering application value.
The foregoing is merely illustrative of the preferred embodiments of the present invention, is not intended to limit the invention, all essences in the present invention All any modification, equivalent and improvement made within refreshing and principle etc., should all be included in the protection scope of the present invention.

Claims (6)

  1. A kind of 1. unmanned plane accelerometer calibration method based on ellipsoid fitting, it is characterised in that described based on ellipsoid fitting Unmanned plane accelerometer calibration method comprises the following steps:
    Step 1, Random-Rotation unmanned plane, makes its posture position span cover three dimensions scope where fitting spheroid as far as possible, A series of output valve of accelerometer in the case where each test position stationary acquisition obtains different postures;
    Step 2, to output valve data conversion, is converted into actual acceleration measuring value, according to least square fitting ellipsoid Curved surface, the Ellipsoidal Surface fitted include the sphere center position of ellipsoid and the calibration factor of each axis;
    Step 3, calibration system is obtained by the sphere center position of the ellipsoid fitted and the calibration factor and calibrating patterns of each axis Number, including three null offsets and three calibration factors;
    Step 4, is mended using the output of six calibration factors and calibrating patterns to each reference axis of unmanned plane accelerometer Repay, obtain the real measured value of accelerometer.
  2. 2. the unmanned plane accelerometer calibration method based on ellipsoid fitting as claimed in claim 1, it is characterised in that acceleration The calibrating patterns of meter are:
    ar=K (am-a0);
    It is unfolded:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>k</mi> <mi>y</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>k</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>*</mo> <mrow> <mo>(</mo> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein amx、amy、amzFor the measured value of three axis of accelerometer, arx、ary、arzFor the actual value of three axis of accelerometer, a0x、aoy、a0zFor the zero drift error of three axis of accelerometer, kx、ky、kzFor the calibration factor of three axis of accelerometer.
  3. 3. the unmanned plane accelerometer calibration method based on ellipsoid fitting as claimed in claim 2, it is characterised in that when nobody During the static placement of machine, three output valve relations of the accelerometer after correction:
    <mrow> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mi>g</mi> <mn>2</mn> </msup> <mo>;</mo> </mrow>
    Wherein, g represents local gravitational acceleration, then is obtained by calibrating patterns:
    <mrow> <msubsup> <mi>k</mi> <mi>x</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mi>y</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mi>z</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>z</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>g</mi> <mn>2</mn> </msup> <mo>.</mo> </mrow>
  4. 4. the unmanned plane accelerometer calibration method based on ellipsoid fitting as claimed in claim 1, it is characterised in that ellipsoid Quadratic Surface Equation is:
    F (ξ, z)=ξTZ=ax2+by2+cz2+ 2dxy+2exz+2fyz+2px+2qy+2rz+t=0;
    Wherein ξ=[a, b, c, d, e, f, p, q, r, t]TFor quadratic surface parameter vector to be asked, v=[x2,y2,z2,2xy,2xz, 2yz,2x,2y,2z,1]TFor the computing mix vector of measurement data;F (ξ, v) arrives quadratic surface F for measurement data (x, y, z) The algebraic distance of (ξ, z);During Quadratic Surface Fitting, the quadratic sum of selection measurement data to quadratic surface algebraic distance is minimum to be sentenced Disconnected criterion:
    <mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>&amp;xi;</mi> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <mn>6</mn> </msup> </mrow> </munder> <mo>=</mo> <mo>|</mo> <mo>|</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>&amp;xi;</mi> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <mn>6</mn> </msup> </mrow> </munder> <msup> <mi>&amp;xi;</mi> <mi>T</mi> </msup> <msup> <mi>D</mi> <mi>T</mi> </msup> <mi>D</mi> <mi>&amp;xi;</mi> <mo>;</mo> </mrow>
    Wherein:
    <mrow> <mi>D</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>z</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>y</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>z</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mn>2</mn> </msub> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>y</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mi>N</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>N</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>z</mi> <mi>N</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mi>N</mi> </msub> <msub> <mi>y</mi> <mi>N</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mi>N</mi> </msub> <msub> <mi>z</mi> <mi>N</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>y</mi> <mi>N</mi> </msub> <msub> <mi>z</mi> <mi>N</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mi>N</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>y</mi> <mi>N</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mi>N</mi> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    The constraints that ellipsoid fitting algorithm based on least square method obtains Ellipsoidal Surface is:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfenced open = "|" close = "|"> <mtable> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mfrac> <mi>b</mi> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <mi>d</mi> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi>b</mi> <mn>2</mn> </mfrac> </mtd> <mtd> <mi>c</mi> </mtd> <mtd> <mfrac> <mi>e</mi> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi>d</mi> <mn>2</mn> </mfrac> </mtd> <mtd> <mfrac> <mi>e</mi> <mn>2</mn> </mfrac> </mtd> <mtd> <mi>f</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;NotEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mi>c</mi> <mo>-</mo> <mfrac> <msup> <mi>b</mi> <mn>2</mn> </msup> <mn>4</mn> </mfrac> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    F (ξ, v) matrix of the Quadratic Function Optimization for the best fit Ellipsoidal Surface that least square method with Ellipsoidal Restrictions obtains represents It can arrange as vector form:
    (X-X0)TA(X-X0)=1;
    Wherein,It is the matrix related with three and half axial length of ellipsoid and ellipsoid rotation angle, It is then the center point coordinate of fitting ellipsoid.
  5. 5. the unmanned plane accelerometer calibration method based on ellipsoid fitting as claimed in claim 4, it is characterised in that according to adding The measurement calibrating patterns of speedometer obtain:
    (ar)T(ar)=[K (am-a0)]T[K(am-a0)]=| | g | |2
    Arrange:
    <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mi>g</mi> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mrow>
    Contrast ellipsoid fitting formula obtains:
    <mrow> <mi>A</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mi>g</mi> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>;</mo> </mrow>
    <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>-</mo> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    Ellipsoid is fitted, goes out calibration factor using the parametric solution of ellipsoid.
  6. 6. a kind of utilize the unmanned plane accelerometer calibration method based on ellipsoid fitting described in 5 any one of Claims 1 to 5 Unmanned plane.
CN201711289227.2A 2017-12-07 2017-12-07 A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting Pending CN108037318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711289227.2A CN108037318A (en) 2017-12-07 2017-12-07 A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711289227.2A CN108037318A (en) 2017-12-07 2017-12-07 A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting

Publications (1)

Publication Number Publication Date
CN108037318A true CN108037318A (en) 2018-05-15

Family

ID=62096008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711289227.2A Pending CN108037318A (en) 2017-12-07 2017-12-07 A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting

Country Status (1)

Country Link
CN (1) CN108037318A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781144A (en) * 2019-01-30 2019-05-21 京东方科技集团股份有限公司 Data correcting method, device, electronic equipment and computer readable storage medium
CN111121824A (en) * 2020-01-03 2020-05-08 西北工业大学 Calibration method of MEMS sensor
CN113436267A (en) * 2021-05-25 2021-09-24 影石创新科技股份有限公司 Visual inertial navigation calibration method and device, computer equipment and storage medium
CN114264997A (en) * 2021-12-14 2022-04-01 武汉联影生命科学仪器有限公司 Gradient sensitivity calibration method and device and magnetic resonance equipment
CN114415261A (en) * 2021-12-10 2022-04-29 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) Rapid calibration method for portable relative gravimeter
CN114415261B (en) * 2021-12-10 2024-07-02 华中光电技术研究所(中国船舶集团有限公司第七一七研究所) Rapid calibration method of portable relative gravimeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995152A (en) * 2014-05-09 2014-08-20 北京航空航天大学 Three-dimensional measurement accelerometer error non-singularity estimation method in external field environment
CN104535054A (en) * 2014-12-31 2015-04-22 国家电网公司 Magnetic compass rope calibration method of unmanned aerial vehicle
CN104613983A (en) * 2015-02-03 2015-05-13 中国航天时代电子公司 Whole machine magnetometer calibration method applied to micro unmanned plane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995152A (en) * 2014-05-09 2014-08-20 北京航空航天大学 Three-dimensional measurement accelerometer error non-singularity estimation method in external field environment
CN104535054A (en) * 2014-12-31 2015-04-22 国家电网公司 Magnetic compass rope calibration method of unmanned aerial vehicle
CN104613983A (en) * 2015-02-03 2015-05-13 中国航天时代电子公司 Whole machine magnetometer calibration method applied to micro unmanned plane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张海鹰 等: "基于椭球拟合三轴加速度计误差补偿方法", 《传感器世界》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781144A (en) * 2019-01-30 2019-05-21 京东方科技集团股份有限公司 Data correcting method, device, electronic equipment and computer readable storage medium
CN109781144B (en) * 2019-01-30 2021-03-19 京东方科技集团股份有限公司 Data correction method and device, electronic equipment and computer readable storage medium
US11526580B2 (en) 2019-01-30 2022-12-13 Beijing Boe Optoelectronics Technology Co., Ltd. Data correction method and apparatus, electronic device and computer-readable storage medium
CN111121824A (en) * 2020-01-03 2020-05-08 西北工业大学 Calibration method of MEMS sensor
CN113436267A (en) * 2021-05-25 2021-09-24 影石创新科技股份有限公司 Visual inertial navigation calibration method and device, computer equipment and storage medium
CN114415261A (en) * 2021-12-10 2022-04-29 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) Rapid calibration method for portable relative gravimeter
CN114415261B (en) * 2021-12-10 2024-07-02 华中光电技术研究所(中国船舶集团有限公司第七一七研究所) Rapid calibration method of portable relative gravimeter
CN114264997A (en) * 2021-12-14 2022-04-01 武汉联影生命科学仪器有限公司 Gradient sensitivity calibration method and device and magnetic resonance equipment
CN114264997B (en) * 2021-12-14 2024-03-22 武汉联影生命科学仪器有限公司 Gradient sensitivity calibration method and device and magnetic resonance equipment

Similar Documents

Publication Publication Date Title
CN107894241A (en) A kind of unmanned plane magnetic sensor calibration method, unmanned plane based on ellipsoid fitting
CN108037318A (en) A kind of unmanned plane accelerometer calibration method based on ellipsoid fitting
CN108413887B (en) Wing-shaped deformation measuring method, device and platform of fiber bragg grating assisted distributed POS
CN106353824B (en) System compensation and magnetic disturbance the compensation fusion method of airborne flux-gate magnetic gradient tensor instrument
CN106289246B (en) A kind of flexible link arm measure method based on position and orientation measurement system
CN104613983B (en) A kind of complete machine magnetometer calibration method applied to Small and micro-satellite
CN102313543B (en) Magnetic azimuth measuring system based on giant magneto-resistance sensor, measurement method and perpendicular compensation method
CN103591949B (en) The quadrature compensation method of three-axis attitude measuring system nonorthogonality error
CN103900559B (en) A kind of high-precision attitude resolving system based on Interference Estimation
CN102680004B (en) Scale factor error calibration and compensation method of flexible gyroscope position and orientation system (POS)
CN108562288A (en) A kind of Laser strapdown used group of system-level online self-calibration system and method
CN105785477A (en) Geomagnetic vector measurement error calibration method with combination of element restriction and summation restriction
CN103323625B (en) Error calibration compensation method of accelerometers in MEMS-IMU under dynamic environment
CN105891755A (en) Aircraft hanging-type fluxgate magnetic gradient tensor instrument correction method
CN107121707A (en) A kind of error calibration method of magnetic sensor measuring basis and structure benchmark
CN104061960A (en) Determination method for pressure altitude parameters on subsonic vehicle body
CN105737858A (en) Attitude parameter calibration method and attitude parameter calibration device of airborne inertial navigation system
CN103471613A (en) Parameter simulation method for inertial navigation system of aircraft
CN104477402B (en) A kind of airframe docking attitude-adjusting method considering the alignment of stringer benchmark and linearity requirement
CN104459828A (en) Geomagnetism vector system non-alignment correction method based on axis rotating method
CN108919156A (en) Bearing calibration under three axis magnetometer line based on noise compensation
CN104483973A (en) Low-orbit flexible satellite attitude tracking control method based on sliding-mode observer
CN102589573A (en) Sensor field calibration method in miniature integrated navigation system
CN106441301A (en) Air vehicle launching initial parameter acquiring method and system
CN106940454A (en) The ground simulation method and system of Caliberation Flight in the detection of magnetic air gradient tensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180515