CN108030653A - A kind of electric water pressing massage system - Google Patents

A kind of electric water pressing massage system Download PDF

Info

Publication number
CN108030653A
CN108030653A CN201711242648.XA CN201711242648A CN108030653A CN 108030653 A CN108030653 A CN 108030653A CN 201711242648 A CN201711242648 A CN 201711242648A CN 108030653 A CN108030653 A CN 108030653A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711242648.XA
Other languages
Chinese (zh)
Inventor
卢森林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Science and Technology Normal University
Original Assignee
Jiangxi Science and Technology Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Science and Technology Normal University filed Critical Jiangxi Science and Technology Normal University
Priority to CN201711242648.XA priority Critical patent/CN108030653A/en
Publication of CN108030653A publication Critical patent/CN108030653A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/0021Hydraulic massage
    • A61H9/0028Hand-held devices for spraying and removing liquid while moved on the skin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1409Hydraulic or pneumatic means

Abstract

The invention belongs to electric water pressing massage technical field, discloses a kind of electric water pressing massage system, and the electric water pressing massage system includes:Water supply module, power plant module, water pressure module, main control module, temperature control module, alarm module, solar powered module.Water supply module, power plant module, water pressure module connect main control module by circuit line respectively;Main control module connects temperature control module, alarm module, solar powered module by circuit line respectively.The present invention by alarm module can monitor water temperature or hydraulic pressure in real time, and alarm is sent if superscalar data, remind user to properly protect measure, the security that lifting massage apparatus uses;Endlessly solar energy can be obtained by solar powered module at the same time, ensure working at any time for electric water pressing massage system, save the energy, it is economic and environment-friendly.

Description

A kind of electric water pressing massage system
Technical field
The invention belongs to electric water pressing massage technical field, more particularly to a kind of electric water pressing massage system.
Background technology
The live and work pressure of modern is increasing, especially the white collar of working from 9am to 5pm, and activity is less daily;It is more next More people like carrying out fatigue-relieving using massage apparatus;However, existing electric water pressing massage needs to power by power supply, expend Electric energy, cannot then continue massage operation if there is power-off;If lack alarm mechanism water temperature overheat or water when in use at the same time Press through significantly, scald or the serious consequence of explosion, safe handling, which easily occurs, to be protected.
In conclusion problem existing in the prior art is:Existing electric water pressing massage needs to power by power supply, expends electricity Can, it cannot then continue massage operation if there is power-off;If lack alarm mechanism water temperature overheat or hydraulic pressure when in use at the same time Excessive, scald or the serious consequence of explosion, safe handling, which easily occurs, to be protected.
The content of the invention
In view of the problems of the existing technology, the present invention provides a kind of electric water pressing massage system.
The present invention is achieved in that a kind of electric water pressing massage system includes:
Water supply module, is connected with main control module, for extracting water from water tank by water pump;
Power plant module, is connected with main control module, for being driven by motor to water, produces impact force so as to human body Massaged at position;
Water pressure module, is connected with main control module, and equipment is detected in real time into pressure for the pressure sensor by installation;
Main control module, with water supply module, power plant module, water pressure module, temperature control module, alarm module, solar powered mould Block connects, and starts work for dispatching each electric elements, and sentenced according to water pressure module, temperature control module gathered data information Disconnected analysis, dispatches corresponding electric appliance element;
The main control module is to signal time-frequency domain matrixPre-processed, specifically Including following two step:
The first step is rightLow energy is carried out to pre-process, i.e., in each sampling instant p, WillValue of the amplitude less than thresholding ε is set to 0, and is obtained The setting of thresholding ε can be determined according to the average energy for receiving signal;
Second step, finds out the time-frequency numeric field data of p moment (p=0,1,2 ... P-1) non-zero, uses Represent, whereinRepresent the response of p moment time-frequencyCorresponding frequency indices when non-zero, to this A little non-zero normalization pretreatments, obtain pretreated vector b (p, q)=[b1(p,q),b2(p,q),…,bM(p,q) ]T, wherein
The main control module is estimated the jumping moment of each jump using clustering algorithm and is respectively jumped corresponding normalized mixed When closing matrix column vector, Hopping frequencies, comprise the following steps:
The first step is right at p (p=0,1,2 ... the P-1) momentThe frequency values of expression are clustered, in obtained cluster Heart numberRepresent carrier frequency number existing for the p moment,A cluster centre then represents the size of carrier frequency, uses respectivelyRepresent;
Second step, to each sampling instant p (p=0,1,2 ... P-1), utilizes clustering algorithm pairClustered, It is same availableA cluster centre, is usedRepresent;
3rd step, to allAverage and rounding, obtain the estimation of source signal numberI.e.
4th step, finds outAt the time of, use phRepresent, to the p of each section of continuous valuehIntermediate value is sought, is usedRepresent the l sections of p that are connectedhIntermediate value, thenRepresent the estimation at l-th of frequency hopping moment;
5th step, obtains according to estimation in second stepAnd the 4th estimate to obtain in step The frequency hopping moment estimate it is each jump it is correspondingA hybrid matrix column vectorSpecifically formula is:
HereIt is corresponding to represent that l is jumpedA mixing Matrix column vector estimate;
6th step, estimates the corresponding carrier frequency of each jump, usesIt is corresponding to represent that l is jumpedA frequency estimation, calculation formula are as follows:
Temperature control module, is connected with main control module, including heating module and temperature detecting module, for passing through heating module pair Water is heated, and coolant-temperature gage is detected in real time by temperature detecting module;
The method of estimation of the power sum of the temperature control module component signal is:
The expression formula of the overlapping mpsk signal of time-frequency is as follows:
Wherein y (t) is the mixing mpsk signal of Noise,It is the amplitude of i-th of mpsk signal, cikIt is i-th point Measure k-th of symbol of signal, TsiIt is the code-element period of i-th of signal, h (t) is raised cosine filter function,For Variance is the white Gaussian noise of N,
The overlapping mpsk signal of time-frequency is expressed as in the when bending moment that time delay is τ:
m2y(t;τ)=E { y (t) y* (t+ τ) }
The as power of time-frequency overlapped signal as τ=0
Wherein α is the rolloff-factor of signal.
As τ ≠ 0
Wherein wi=2 π fciRepresent the carrier wave frequency information of i-th of component signal, and
That is G (τ) only with α and time delay and chip rate ratioIt is related.
It is as follows to build second order time-varying moment equations system:
If there are p component signal, p equations simultaneousness is built, tries to achieve SiI=1,2 ... p, tries to achieve component signal Power Pi=Si(1- α/4) and total noise power
Alarm module, is connected with temperature control module, for the alarm by installation, is adopted according to water pressure module, temperature control module The data of collection, send alarm if excessive;
Solar powered module, is connected with main control module, for being converted solar energy into electrical energy by solar panel Permanent supply is carried out to electric water pressing massage system.
Further, the pressure calibration method of the water pressure module is as follows:
Step 1, sets the temperature of pressure sensor to be calibrated;
Temperature spread due to using pressure sensor in different experimental field and environmental test is larger, and staff can It is configured with combining the operating temperature of actual pressure sensor, as a preferred embodiment, being set in step 1 The temperature of pressure sensor to be calibrated in celsius temperature scale be value in the range of [- 40,300], it is particularly possible in temperature Celsius Angle value is value in the range of [60,200].
Step 2, the different pressure of input of the pressure sensor at a temperature of being set into step 1;
In this step 2, the response of above-mentioned different pressures can be inputted by normal pressure controller, the standard pressure The input of power controller can be to pressure sensor input different pressures to be calibrated, and above-mentioned different pressure can be by the people that works Member is random to be determined.
Step 3, obtains response of the pressure sensor to the different pressure of step 3.
In this step 3, response is value of electrical signals, and the value of electrical signals is current value and/or magnitude of voltage, as A kind of preferred embodiment, the response can individually select current value individually to select voltage as value of electrical signals Value is used as value of electrical signals, and can be used as value of electrical signals using simultaneous selection current value and magnitude of voltage.
Step 4, the linear relationship between the pressure response corresponding with step 3 inputted in obtaining step two.
Step 5, the accuracy of pressure sensor is confirmed according to the linear relationship obtained in step 4.
Further, the linear relationship method of the acquisition comprises the following steps:
First, the error threshold of pressure sensor is set;
Secondly, the linear relationship obtained according to step 4 draws the work linear equation of pressure sensor;
Then, the pressure of step 2 input is substituted into work linear equation and obtains corresponding theoretical response value;
Finally, the response of acquisition is compared with the theoretical response value obtained, if error is beyond the error threshold set Pressure sensor is inaccurate.
Advantages of the present invention and good effect are:The present invention can monitor water temperature or hydraulic pressure in real time by alarm module, and one Denier superscalar data then sends alarm, reminds user to properly protect measure, the security that lifting massage apparatus uses;Pass through at the same time Solar powered module can obtain endlessly solar energy, ensure working at any time for electric water pressing massage system, save energy Source, it is economic and environment-friendly.
Brief description of the drawings
Fig. 1 is electric water pressing massage system structure diagram provided in an embodiment of the present invention;
In figure:1st, water supply module;2nd, power plant module;3rd, water pressure module;4th, main control module;5th, temperature control module;6th, alarm mould Block;7th, solar powered module.
Embodiment
In order to further understand the content, features and effects of the present invention, the following examples are hereby given, and coordinate attached drawing Describe in detail as follows.
The structure of the present invention is explained in detail below in conjunction with the accompanying drawings.
As shown in Figure 1, electric water pressing massage system provided by the invention includes:Water supply module 1, power plant module 2, hydraulic pressure mould Block 3, main control module 4, temperature control module 5, alarm module 6, solar powered module 7.
Water supply module 1, is connected with main control module 4, for extracting water from water tank by water pump.
Power plant module 2, is connected with main control module 4, for being driven by motor to water, produces impact force so as to people Body region is massaged.
Water pressure module 3, is connected with main control module 4, and equipment is examined in real time into pressure for the pressure sensor by installation Survey.
Main control module 4, with water supply module 1, power plant module 2, water pressure module 3, temperature control module 5, alarm module 6, solar energy Power supply module 7 connects, and starts work for dispatching each electric elements, and according to water pressure module 3,5 gathered data of temperature control module Information carries out discriminatory analysis, dispatches corresponding electric appliance element.
Temperature control module 5, is connected with main control module 4, including heating module and temperature detecting module, for passing through heating module Water is heated, coolant-temperature gage is detected by temperature detecting module in real time.
Alarm module 6, is connected with temperature control module 5, for the alarm by installation, according to water pressure module 3, temperature control module The data of 5 collections, send alarm if excessive.
The main control module is to signal time-frequency domain matrixPre-processed, specific bag Include following two step:
The first step is rightLow energy is carried out to pre-process, i.e., in each sampling instant p, WillValue of the amplitude less than thresholding ε is set to 0, and is obtained The setting of thresholding ε can be determined according to the average energy for receiving signal;
Second step, finds out the time-frequency numeric field data of p moment (p=0,1,2 ... P-1) non-zero, usesRepresent, whereinRepresent the response of p moment time-frequency Corresponding frequency indices when non-zero, normalize these non-zeros and pre-process, obtain pretreated vector b (p, q)=[b1 (p,q),b2(p,q),…,bM(p,q)]T, wherein
The main control module is estimated the jumping moment of each jump using clustering algorithm and is respectively jumped corresponding normalized mixed When closing matrix column vector, Hopping frequencies, comprise the following steps:
The first step is right at p (p=0,1,2 ... the P-1) momentThe frequency values of expression are clustered, in obtained cluster Heart numberRepresent carrier frequency number existing for the p moment,A cluster centre then represents the size of carrier frequency, uses respectivelyRepresent;
Second step, to each sampling instant p (p=0,1,2 ... P-1), utilizes clustering algorithm pairClustered, It is same availableA cluster centre, is usedRepresent;
3rd step, to allAverage and rounding, obtain the estimation of source signal numberI.e.
4th step, finds outAt the time of, use phRepresent, to the p of each section of continuous valuehIntermediate value is sought, is usedRepresent the l sections of p that are connectedhIntermediate value, thenRepresent the estimation at l-th of frequency hopping moment;
5th step, obtains according to estimation in second stepAnd the 4th estimate to obtain in step The frequency hopping moment estimate it is each jump it is correspondingA hybrid matrix column vectorSpecifically formula is:
HereIt is corresponding to represent that l is jumpedA mixing Matrix column vector estimate;
6th step, estimates the corresponding carrier frequency of each jump, usesIt is corresponding to represent that l is jumpedA frequency estimation, calculation formula are as follows:
The method of estimation of the power sum of the temperature control module component signal is:
The expression formula of the overlapping mpsk signal of time-frequency is as follows:
Wherein y (t) is the mixing mpsk signal of Noise,It is the amplitude of i-th of mpsk signal, cikIt is i-th point Measure k-th of symbol of signal, TsiIt is the code-element period of i-th of signal, h (t) is raised cosine filter function,For Variance is the white Gaussian noise of N,
The overlapping mpsk signal of time-frequency is expressed as in the when bending moment that time delay is τ:
m2y(t;τ)=E { y (t) y* (t+ τ) }
The as power of time-frequency overlapped signal as τ=0
Wherein α is the rolloff-factor of signal.
As τ ≠ 0
Wherein wi=2 π fciRepresent the carrier wave frequency information of i-th of component signal, and
That is G (τ) only with α and time delay and chip rate ratioIt is related.
It is as follows to build second order time-varying moment equations system:
If there are p component signal, p equations simultaneousness is built, tries to achieve SiI=1,2 ... p, tries to achieve component signal Power Pi=Si(1- α/4) and total noise power
The pressure calibration method that the present invention provides water pressure module 3 is as follows:
Step 1, sets the temperature of pressure sensor to be calibrated;
Temperature spread due to using pressure sensor in different experimental field and environmental test is larger, and staff can It is configured with combining the operating temperature of actual pressure sensor, as a preferred embodiment, being set in step 1 The temperature of pressure sensor to be calibrated in celsius temperature scale be value in the range of [- 40,300], it is particularly possible in temperature Celsius Angle value is value in the range of [60,200].
Step 2, the different pressure of input of the pressure sensor at a temperature of being set into step 1;
In this step 2, the response of above-mentioned different pressures can be inputted by normal pressure controller, the standard pressure The input of power controller can be to pressure sensor input different pressures to be calibrated, and above-mentioned different pressure can be by the people that works Member is random to be determined.
Step 3, obtains response of the pressure sensor to the different pressure of step 3.
In this step 3, response is value of electrical signals, and the value of electrical signals is current value and/or magnitude of voltage, as A kind of preferred embodiment, the response can individually select current value individually to select voltage as value of electrical signals Value is used as value of electrical signals, and can be used as value of electrical signals using simultaneous selection current value and magnitude of voltage.
Step 4, the linear relationship between the pressure response corresponding with step 3 inputted in obtaining step two.
Step 5, the accuracy of pressure sensor is confirmed according to the linear relationship obtained in step 4.
The present invention provides the linear relationship method obtained and comprises the following steps:
First, the error threshold of pressure sensor is set;
Secondly, the linear relationship obtained according to step 4 draws the work linear equation of pressure sensor;
Then, the pressure of step 2 input is substituted into work linear equation and obtains corresponding theoretical response value;
Finally, the response of acquisition is compared with the theoretical response value obtained, if error is beyond the error threshold set Pressure sensor is inaccurate.
The above is only the preferred embodiments of the present invention, and not makees limitation in any form to the present invention, Every technical spirit according to the present invention belongs to any simple modification, equivalent change and modification made for any of the above embodiments In the range of technical solution of the present invention.

Claims (3)

1. a kind of electric water pressing massage system, it is characterised in that the electric water pressing massage system includes:
Water supply module, is connected with main control module, for extracting water from water tank by water pump;
Power plant module, is connected with main control module, for being driven by motor to water, produces impact force so as to human body Massaged;
Water pressure module, is connected with main control module, and equipment is detected in real time into pressure for the pressure sensor by installation;
Main control module, connects with water supply module, power plant module, water pressure module, temperature control module, alarm module, solar powered module Connect, start work for dispatching each electric elements, and carry out judging to divide according to water pressure module, temperature control module gathered data information Analysis, dispatches corresponding electric appliance element;
The main control module is to signal time-frequency domain matrixPre-processed, specifically include as Lower two steps:
The first step is rightLow energy is carried out to pre-process, i.e., will in each sampling instant pValue of the amplitude less than thresholding ε is set to 0, and is obtained The setting of thresholding ε can be determined according to the average energy for receiving signal;
Second step, finds out the time-frequency numeric field data of p moment (p=0,1,2 ... P-1) non-zero, uses Represent, whereinRepresent the response of p moment time-frequencyCorresponding frequency indices, right when non-zero The normalization pretreatment of these non-zeros, obtains pretreated vector b (p, q)=[b1(p,q),b2(p,q),…,bM(p, q)]T, wherein
The main control module estimates the jumping moment of each jump using clustering algorithm and respectively jumps corresponding normalized mixed moment When array vector, Hopping frequencies, comprise the following steps:
The first step is right at p (p=0,1,2 ... the P-1) momentThe frequency values of expression are clustered, obtained cluster centre numberRepresent carrier frequency number existing for the p moment,A cluster centre then represents the size of carrier frequency, uses respectively Represent;
Second step, to each sampling instant p (p=0,1,2 ... P-1), utilizes clustering algorithm pairClustered, equally It is availableA cluster centre, is usedRepresent;
3rd step, to allAverage and rounding, obtain the estimation of source signal numberI.e.
<mrow> <mover> <mi>N</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>r</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>d</mi> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mover> <mi>N</mi> <mo>^</mo> </mover> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
4th step, finds outAt the time of, use phRepresent, to the p of each section of continuous valuehIntermediate value is sought, is usedL=1, 2 ... represent the l sections of p that are connectedhIntermediate value, thenRepresent the estimation at l-th of frequency hopping moment;
5th step, obtains according to estimation in second stepp≠phAnd the 4th frequency estimated in step It is corresponding that jumping moment estimates each jumpA hybrid matrix column vectorSpecifically formula is:
<mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>p</mi> <mo>&amp;NotEqual;</mo> <msub> <mi>p</mi> <mi>h</mi> </msub> </mrow> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </munderover> <msubsup> <mi>b</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>p</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>p</mi> <mo>&amp;NotEqual;</mo> <msub> <mi>p</mi> <mi>h</mi> </msub> </mrow> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </mrow> </munderover> <msubsup> <mi>b</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>p</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mi>l</mi> <mo>&gt;</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mover> <mi>N</mi> <mo>^</mo> </mover> </mrow>
HereIt is corresponding to represent that l is jumpedA hybrid matrix Column vector estimate;
6th step, estimates the corresponding carrier frequency of each jump, usesIt is corresponding to represent that l is jumpedIt is a Frequency estimation, calculation formula are as follows:
<mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>p</mi> <mo>&amp;NotEqual;</mo> <msub> <mi>p</mi> <mi>h</mi> </msub> </mrow> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </munderover> <msubsup> <mi>f</mi> <mi>o</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>p</mi> <mo>&amp;NotEqual;</mo> <msub> <mi>p</mi> <mi>h</mi> </msub> </mrow> <mrow> <msub> <mover> <mi>p</mi> <mo>&amp;OverBar;</mo> </mover> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </mrow> </munderover> <msubsup> <mi>f</mi> <mi>o</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>l</mi> <mo>&gt;</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mover> <mi>N</mi> <mo>^</mo> </mover> <mo>;</mo> </mrow>
Temperature control module, is connected with main control module, including heating module and temperature detecting module, for by heating module to water into Row heating, coolant-temperature gage is detected by temperature detecting module in real time;
The method of estimation of the power sum of the temperature control module component signal is:
The expression formula of the overlapping mpsk signal of time-frequency is as follows:
<mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mi>i</mi> <mi>p</mi> </munderover> <msqrt> <msub> <mi>S</mi> <mi>i</mi> </msub> </msqrt> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>t</mi> </mrow> </msup> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <mi>N</mi> </msqrt> <mi>w</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
Wherein y (t) is the mixing mpsk signal of Noise,It is the amplitude of i-th of mpsk signal, cikIt is i-th of component signal K-th of symbol, TsiIt is the code-element period of i-th of signal, h (t) is raised cosine filter function,It is N for variance White Gaussian noise,
The overlapping mpsk signal of time-frequency is expressed as in the when bending moment that time delay is τ:
m2y(t;τ)=E { y (t) y* (t+ τ) }
The as power of time-frequency overlapped signal as τ=0
<mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>*</mo> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>&amp;alpha;</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> </mrow>
Wherein α is the rolloff-factor of signal.
As τ ≠ 0
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>*</mo> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mi>E</mi> <mo>&amp;lsqb;</mo> <munder> <mi>&amp;Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msup> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>*</mo> </msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <msup> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>*</mo> </msup> <mo>&amp;rsqb;</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>T</mi> <mi>s</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>T</mi> <mi>s</mi> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>&amp;tau;</mi> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein wi=2 π fciRepresent the carrier wave frequency information of i-th of component signal, and
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </munderover> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;pi;</mi> </mrow> <mi>&amp;pi;</mi> </munderover> <msup> <mi>H</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>w</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>d</mi> <mi>w</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> <mo>-</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>k</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mo>-</mo> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> <mo>+</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>4</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> <mo>-</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>4</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mo>{</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>sin</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;alpha;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>cos</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> <mo>}</mo> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msup> <mi>Ts</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>4</mn> <msup> <mi>&amp;alpha;</mi> <mn>2</mn> </msup> <msup> <mi>&amp;tau;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>&amp;tau;</mi> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>&amp;tau;</mi> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <mo>{</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>cos</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mi>&amp;alpha;</mi> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> <mo>+</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&amp;pi;</mi> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mi>&amp;alpha;</mi> </mfrac> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>sin</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mi>&amp;alpha;</mi> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> <mo>}</mo> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msup> <mi>Ts</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>&amp;alpha;</mi> <mn>2</mn> </msup> <msup> <mi>&amp;tau;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
That is G (τ) only with α and time delay and chip rate ratioIt is related.
It is as follows to build second order time-varying moment equations system:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>&amp;tau;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <msub> <mi>&amp;tau;</mi> <mn>2</mn> </msub> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>&amp;tau;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <msub> <mi>&amp;tau;</mi> <mn>3</mn> </msub> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
If there are p component signal, p equations simultaneousness is built, tries to achieve SiI=1,2 ... p, try to achieve the power P of component signali =Si(1- α/4) and total noise power
Alarm module, is connected with temperature control module, for the alarm by installation, is gathered according to water pressure module, temperature control module Data, send alarm if excessive;
Solar powered module, is connected with main control module, for being converted solar energy into electrical energy by solar panel to electricity Dynamic hydraulic pressure massage system carries out permanent supply.
2. electric water pressing massage system as claimed in claim 1, it is characterised in that the pressure calibration method of the water pressure module It is as follows:
Step 1, sets the temperature of pressure sensor to be calibrated;
Temperature spread due to using pressure sensor in different experimental field and environmental test is larger, and staff can tie The operating temperature for closing actual pressure sensor is configured, as a preferred embodiment, what is set in step 1 treats The temperature of the pressure sensor of calibration is value in the range of [- 40,300] in celsius temperature scale, it is particularly possible in celsius temperature scale For value in the range of [60,200];
Step 2, the different pressure of input of the pressure sensor at a temperature of being set into step 1;
In this step 2, the response of above-mentioned different pressures can be inputted by normal pressure controller, the normal pressure control Instrument processed input can to pressure sensor input different pressures to be calibrated, above-mentioned different pressure can by staff with Machine determines;
Step 3, obtains response of the pressure sensor to the different pressure of step 3;
In step 3, response is value of electrical signals, and the value of electrical signals is current value and/or magnitude of voltage, as a kind of excellent The embodiment of choosing, the response can individually select current value individually to select magnitude of voltage conduct as value of electrical signals Value of electrical signals, and value of electrical signals can be used as using simultaneous selection current value and magnitude of voltage;
Step 4, the linear relationship between the pressure response corresponding with step 3 inputted in obtaining step two.
Step 5, the accuracy of pressure sensor is confirmed according to the linear relationship obtained in step 4.
3. electric water pressing massage system as claimed in claim 2, it is characterised in that the linear relationship method of the acquisition include with Lower step:
First, the error threshold of pressure sensor is set;
Secondly, the linear relationship obtained according to step 4 draws the work linear equation of pressure sensor;
Then, the pressure of step 2 input is substituted into work linear equation and obtains corresponding theoretical response value;
Finally, the response of acquisition is compared with the theoretical response value obtained, the pressure if error is beyond the error threshold set Sensor is inaccurate.
CN201711242648.XA 2017-11-30 2017-11-30 A kind of electric water pressing massage system Pending CN108030653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711242648.XA CN108030653A (en) 2017-11-30 2017-11-30 A kind of electric water pressing massage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711242648.XA CN108030653A (en) 2017-11-30 2017-11-30 A kind of electric water pressing massage system

Publications (1)

Publication Number Publication Date
CN108030653A true CN108030653A (en) 2018-05-15

Family

ID=62094716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711242648.XA Pending CN108030653A (en) 2017-11-30 2017-11-30 A kind of electric water pressing massage system

Country Status (1)

Country Link
CN (1) CN108030653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294516A (en) * 2019-07-31 2019-10-01 江西科技师范大学 Reverse osmosis waste water suction type source separates toilet coupling and utilizes System and method for

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776957A (en) * 2015-04-10 2015-07-15 北京振兴计量测试研究所 Pressure sensor calibration method and pressure sensor calibration device
CN106265012A (en) * 2016-09-05 2017-01-04 成都朵猫文化传播有限公司 Electric water pressing massage equipment
CN106385291A (en) * 2016-12-06 2017-02-08 西安电子科技大学 Method for estimating signal-to-noise ratios of component signals of time-frequency overlap signal in cognitive radio
CN107176156A (en) * 2017-01-05 2017-09-19 宁波华盛联合制动科技有限公司 A kind of retarder safety control and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776957A (en) * 2015-04-10 2015-07-15 北京振兴计量测试研究所 Pressure sensor calibration method and pressure sensor calibration device
CN106265012A (en) * 2016-09-05 2017-01-04 成都朵猫文化传播有限公司 Electric water pressing massage equipment
CN106385291A (en) * 2016-12-06 2017-02-08 西安电子科技大学 Method for estimating signal-to-noise ratios of component signals of time-frequency overlap signal in cognitive radio
CN107176156A (en) * 2017-01-05 2017-09-19 宁波华盛联合制动科技有限公司 A kind of retarder safety control and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294516A (en) * 2019-07-31 2019-10-01 江西科技师范大学 Reverse osmosis waste water suction type source separates toilet coupling and utilizes System and method for

Similar Documents

Publication Publication Date Title
Feng et al. Wi-multi: A three-phase system for multiple human activity recognition with commercial wifi devices
CN106389056A (en) Head physiotherapy system used for neurology patients
EP2801792A2 (en) Non-intrusive load monitoring apparatus and method
CN207752550U (en) A kind of smart lock low-power consumption standby circuit
CN106382238B (en) A kind of method and its device for centrifuging pump cavitation diagnosis
CN106324449A (en) Partial discharge inspection system of portable switch cabinet
CN104503575B (en) A kind of method for designing of low-power consumption gesture identification circuit arrangement
CN106680672A (en) Portable switchgear partial discharge patrol detection system
CN104825256B (en) A kind of artificial limb system with perceptible feedback function
CN108030653A (en) A kind of electric water pressing massage system
CN108268894A (en) A kind of human body based on network Visual Graph is towards detection method
CN103400069A (en) Pulse wave identification device and method based on power spectrum analysis
Zhang et al. CSI-based location-independent human activity recognition using feature fusion
Zhang et al. A preliminary study of sensing appliance usage for human activity recognition using mobile magnetometer
CN101650240A (en) Detecting and analyzing apparatus for power efficiency of electric fork truck
CN103784060B (en) A kind of gauge fluid flow system
CN103801050A (en) Dumbbell
Zhang et al. Improving human activity recognition using subspace clustering
CN102499866B (en) Intelligent massage chair based on STM32 and working method thereof
CN203732619U (en) Three-phase alternating current data acquisition system based on MSP430F247IPM
CN103606530B (en) The fault detection method of the plasma etching process that fusion function type data describe
CN204813888U (en) Cinesthesia test equipment
CN104268372B (en) A kind of data processing method and device
CN208187441U (en) A kind of pressure-temperature sensor detection device
CN202433723U (en) Remote-control circuit of electric water heater based on single chip microcomputer NRF905

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180515

RJ01 Rejection of invention patent application after publication