CN108030496A - A kind of human upper limb shoulder Glenohumeral joint pivot and upper arm lifting angle coupled relation measuring method - Google Patents

A kind of human upper limb shoulder Glenohumeral joint pivot and upper arm lifting angle coupled relation measuring method Download PDF

Info

Publication number
CN108030496A
CN108030496A CN201711253607.0A CN201711253607A CN108030496A CN 108030496 A CN108030496 A CN 108030496A CN 201711253607 A CN201711253607 A CN 201711253607A CN 108030496 A CN108030496 A CN 108030496A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mmultiscripts
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711253607.0A
Other languages
Chinese (zh)
Other versions
CN108030496B (en
Inventor
李剑锋
张春召
张凯
高亚楠
周帅锋
曹强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201711253607.0A priority Critical patent/CN108030496B/en
Publication of CN108030496A publication Critical patent/CN108030496A/en
Application granted granted Critical
Publication of CN108030496B publication Critical patent/CN108030496B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1127Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using markers

Abstract

The invention discloses a kind of human upper limb shoulder Glenohumeral joint pivot and upper arm lifting angle coupled relation measuring method, the collection of shoulders of human body joint motions data:Index point moving mass is fixed on shoulder blade, on humerus, six index points are fixed on the seventh cervical spine of human body, eighth dorsal vertebra, jugular notch, xiphoid, lateral epicondyle, epicondylus medialis position, obtain the movable information of corresponding bone.The foundation of head movement model:Using shoulder blade, humerus as a rigid body, based on rotation geometry knowledge, the pivot kinematics model constant with respect to adjacent rigid pose is established.Glenohumeral joint pivot and lifting angle coupled relation solve:By consistency of the articulation center with respect to adjacent rigid index point pose, regression parameter is obtained, the instantaneous position of pivot is obtained to the greatest extent, so as to obtain lifting angle and pivot coupled relation.Measurement point of the present invention is fixed on human body by bondage or flange, reduces deformation, and it is accurate to calculate simple and measurement.

Description

A kind of human upper limb shoulder Glenohumeral joint pivot and upper arm lifting angle coupled relation Measuring method
Technical field
The invention belongs to field of measuring technique, is specifically that a kind of human upper limb shoulder Glenohumeral joint pivot is lifted with upper arm Lift angle coupled relation measuring method.
Background technology
Human upper limb shoulder Glenohumeral joint pivot is planning training dermoskeleton with the movable information that upper arm lifting angle couples The basic data that bone system guiding movement, the bionical shoulder joint mechanism of design and head movement function damage recover, to bone into , it is necessary to design the guiding movement rule of exoskeleton system with reference to relevant information during row rehabilitation training.Therefore, obtain relatively accurate The movable information of upper limb shoulder Glenohumeral joint pivot and upper arm lifting angle coupled relation is for ensureing bone training effect, setting Counting bionical shoulder joint mechanism, shoulder function simulation and human engineering has very strong theory significance and practical significance.
It is intricate shown in shoulders of human body joint Fig. 1, Fig. 2 according to skeleton information, it by humerus, shoulder blade, Clavicle, breastbone and Glenohumeral joint, acromioclavicular joint, articulatio sternoclavicularis and the scapulothoracu therebetween are formed by connecting, its mesothorax lock closes Section and the scapulothoracu kinematics are even unclear, according to human skeleton model kinematics analysis, the broad-mouthed receptacle for holding liquid upper arm in shoulder joints Joint (traditional shoulder joint) complete abduction/adduction, it is anteflexion/after in the motion process stretched, center of rotation is in human body It is drift in motion process of the shoulder joints relative to human body breastbone, and drift orbit is not linear, but have more The low curvature camber line of section is formed, and the drift at shoulder center is also not limited in sagittal plane, this makes research shoulder Glenohumeral joint Movement is more complicated.
By consulting domestic and foreign literature, shoulders of human body joint motions infomation detection is said from test method species:Point For ultraviolet light camera system, multidimensional camera system, ectoskeleton donning system, electromagnetic tracking system, flexible sensor system etc..From Substantially divide, two kinds of measuring methods of intrusive mood and non-intruding, intrusive mood measuring method can be divided into:It is directed through skin, tissue Measure the corresponding sports of shoulders of human body bone, such as ultraviolet light shooting, shoulders of human body autopsy experiment, this measuring method pair Human body harm is big, and experiment is complicated, general undesirable;Another kind is non-intrusion type measuring method:By in skeleton skin table Face paste takes index point, obtains the movable information of shoulder bone by the movement of index point, has Shanghai Communications University than more typical Patent of invention:The measuring method (patent No. 2005100304385) of non-intruding human hand and arm joint, but he is the shoulders of human body broad-mouthed receptacle for holding liquid upper arm Joint pivot goes to handle as centering, does not meet the specific characteristics of motion of shoulders of human body bone;Also Zhejiang University Yang Can Army's teaching inventive patent:Wearable high-precision data acquisition upper limb exoskeleton (the patent No.:2011102767071), the patent Also moved using shoulders of human body Glenohumeral joint pivot as centering.In order to obtain accurate Glenohumeral joint pivot and upper arm Lifting angle coupled relation, the present invention propose that a kind of human upper limb shoulder Glenohumeral joint pivot is coupled with human body upper arm lifting angle Relation measuring method, measuring method measurement is accurate, and measuring method is simple.
The content of the invention
The technical problem to be solved in the present invention is, there is provided a kind of Glenohumeral joint pivot and upper arm lifting angle of detecting Coupled relation, and a kind of simple in structure, easy to use, the concise measuring method of algorithm.Its inventive concept is:In human body shoulder In the research of portion's structure, modelling processing is the beginning of all work, is gained knowledge according to human dissection, and with reference to skeleton Learnt on the basis of, skeleton are kinematic:Shoulder Glenohumeral joint is equivalent to ball pair, extracts breastbone out from human body and (is equivalent to Determine rigid body, establish human body coordinate system), shoulder blade (is equivalent to dynamic rigid body 1), and humerus (being equivalent to dynamic rigid body 2) kinematic chain is done accordingly Kinematics analysis, as shown in Figure 3,4.There is rotation geometry knowledge to obtain:Glenohumeral joint pivot relative to adjacent shoulder blade, The position of humerus and posture remain constant, based on the kinematic principle, obtain shoulders of human body Glenohumeral joint pivot Movable information, and by each moment shoulder Glenohumeral joint pivot, obtain in the moment upper arm lifting angle information, so as to obtain To human body upper arm and the coupled relation of shoulder Glenohumeral joint pivot.As shown in Figure 8,9.
Scheme is used by the present invention solves technical problem:
The collection of shoulder joints exercise data:By containing four, in one plane the moving mass of index point is not fixed on shoulder On shoulder blade, humerus, six index points are fixed on the seventh cervical spine of human body, eighth dorsal vertebra, jugular notch, xiphoid, outer Epicondyle, epicondylus medialis position, obtain the movable information of corresponding bone.
The foundation of head movement model:Using shoulder blade, humerus as a rigid body, because three on a line Position and the posture of rigid body can be fully described in index point, analyze gathered data, choose shoulder blade, three on humerus moving mass A not continuous exercise data of index point on one wire, based on rotation geometry knowledge, establishes pivot with respect to adjacent rigid The constant kinematics model of pose.
Glenohumeral joint pivot and lifting angle coupled relation solve:By relatively adjacent bone index point (etc. of articulation center Valency is in corresponding bone) consistency of pose, regression parameter is obtained, the instantaneous position of pivot is obtained to the greatest extent, so as to obtain Lifting angle and pivot coupled relation.
In order to quantify the position of articulation center t at any time, it is updated with the detection frequency of VICON systems, Any time shoulder Glenohumeral joint pivot and the coupled relation at upper arm lifting angle is calculated using the matrix equation provided, All parameters in matrix equation are all the human body breastbones by above measuring, shoulder shoulder blade, humerus, and upper arm is outside upper Condyle, the surface data of epicondylus medialis position movement.
Compared with prior art, the present invention haing the following advantages and high-lighting effect:
A kind of human upper limb shoulder Glenohumeral joint pivot of the present invention is measured with human body upper arm lifting angle coupled relation Method, according to shoulders of human body bone and the anatomical structure in joint, can establish the kinematics model in shoulders of human body joint, according to VICON system detectios index point (wherein shoulder blade, humerus paste respectively one have four mark point sets into attribute block, the mark Will block reduces the influence of skin deformation in movement, and considers VICON system detectio data Losing Datas, on each attribute block Fix four index points not on one face, analyze experimental data, chosen from each moving mass not on one wire Three points, represent the movable information of corresponding bone) kinematic data, closed by algorithm is answered, obtaining accurate shoulders of human body Save pivot and human body upper arm lifting angle coupled relation.Whole measurement process is simple, easy to use, and algorithm is concise.
Each step to more than is described further below:
The collection of shoulder joints exercise data:
Four index points are fixed on to seventh cervical spine (C7), eighth dorsal vertebra (T8), jugular notch (IJ), the sword shape of breastbone first On cartilage (PX), an attribute block is fixed on operator's shoulder blade acromion position (shown in Fig. 6), a mark passes through flange soon (shown in Fig. 7) is fixed on the former optional position from Glenohumeral joint pivot human body upper arm, before two other index point is fixed on Condylus lateralis humeri (EL) under arm stretching state, on epicondylus medialis (EM), regulation experiment baffle, makes human body upper arm in 0 ° of lifting face, preceding Arm naturally droops in the lifting face, and forearm front portion is close to test baffle, as shown in Fig. 5,8.
In experimental data gatherer process, human body upper arm is close to baffle and carries out lifting by pendant position, until upper arm be raised to it is pre- Measuring point, thus reciprocal three cycles.Regulation experiment baffle again, makes human body upper arm successively between 15 °, 30 °, 45 ° ... 135 ° Lifting face in repeat above-mentioned experiment, the interval angles in lifting face are 15 °.
Using VICON measuring systems, the location information data of corresponding bony landmark point is obtained.These location information datas be all Described under VICON system coordinate systems.By the seventh cervical spine (C7) of human body, eighth dorsal vertebra (T8), jugular notch (IJ), sword shape Cartilage (PX), shoulder blade moving mass (four index points), humerus movement fast (four index points), lateral epicondyle (EL) and epicondylus medialis (EM) 14 index points are denoted as Pi, the position of each index point is expressed as (x in VICON base coordinates systemi yi zi) ', wherein I=1,2,14, VICON system coordinate system coordinate origins are O, and X, Y, Z axis is represented with x, y, z respectively:Four on breastbone Index point determines human body coordinate system, coordinate origin Othx, X, Y, Z axis uses x respectivelythx、ythx、zthxRepresent, be specially:
VICON system coordinate systems:
Human body coordinate system:
To obtain shoulder blade moving mass, humerus moves the fast, expression of lateral epicondyle and epicondylus medialis index point in human body coordinate system, needs Establish the conversion between human body coordinate system and VICON system coordinate systems:
Two coordinate system O (x, y, z) and Othx=(xthx,ythx,zthx) between homogeneous transformation matrices
R3×3For spin matrix, P1×3For motion vector;
In view of shoulder blade moving mass, the motion amplitude of humerus moving mass is larger, may be due to blocking during specific experiment The positional information of whole index points cannot be captured completely, as a result cause VICON system detectios data portion to be lost, by three not Position and the posture of rigid body can be fully described in index point on a line, thus in shoulder blade moving mass, humerus fortune Four index points on one face are fixed not on motion block, the mark that three data are not lost is chosen from shoulder blade and humerus attribute block The description that will point is moved as it.Work as i=5, when 6,7,9,10,11,13,14, shoulder blade moving mass (choosing three index points), Humerus movement fast (choosing three index points), lateral epicondyle and epicondylus medialis index point are expressed as P in human body coordinate systemii, i.e.,:
The foundation of head movement model:Using shoulder blade, humerus as a rigid body, by three not on a line Position and the posture of rigid body can be fully described in index point, and based on rotation geometry knowledge, it is relatively adjacent to establish pivot The constant kinematics model of rigid body pose.
Glenohumeral joint pivot and lifting angle coupled relation solve:By articulation center with respect to adjacent rigid index point pose Consistency, build kinematics model math equation, obtain regression parameter, and then obtain pivot instantaneous position, construction Lifting angle and the kinematical equation of pivot, so as to obtain lifting angle and pivot coupled relation.Specific method is:
S1. shoulder joint instantaneous centre of rotation is asked for
As shown in Figure 4:kP1kP2kP3It is index point on shoulder blade, footmark k represents frame number,kC1kC2kC3It is the mark on humerus Point, footmark k represent frame number, are derived by rotation geometry, articulation centerkJ is remained not relative to the index point in adjacent rigid Become, meet following relational expression:
kJ=[kP1-kP2,kP1-kP3,(kP1-kP2,kP1-kP3),kP1][a,b,c,1]' (5)
Wherein:(a, b, c, d, e, f) is regression parameter, and two formula simultaneous, obtain:
kJ=[kP1-kP2,kP1-kP3,(kP1-kP2,kP1-kP3),kC1-kC2,kC1-kC3,(kC1-kC2,kC1-kC3)]
[a, b, c, d, e, f ,] '=- (kP1-kC1) (7)
More frame data of corresponding continuous acquisition, obtain equation below group:
AX=B (8)
Wherein:
X=[a, b, c, d, e, f] '
B=[- (1P1-1C1);-(2P1-2C1);……;-(FP1-FC1)]
To the greatest extent and by the solution of matrix equation, regression parameter X is obtained
X=(A'A)-1A'B (9)
After obtaining regression parameter, the data for moving each moment are brought into formula (5) or (6), obtain each moment shoulder joint rotation The positional information at center.
S2. the coupled relation at shoulder Glenohumeral joint instantaneous centre of rotation and upper arm lifting angle is established:Humerus lifting angle is defined as the upper arm Angle between bone attitude vectors and human body coordinate system Z axis;
Humerus attitude vectors are:
Humerus lifting angle is:
Wherein VupaFor humerus attitude vectors, VEL、VEMBe lateral epicondyle, epicondylus medialis with respect to human body coordinate system attitude vectors, qkFor The opposite position vector with human body coordinate system in k frames of shoulder Glenohumeral joint pivot, zthxFor human body coordinate system Z breastbone sides To coordinate representation, θ is lifting angle, as shown in Figure 9.
By required pivot as a result, asking for lifting angle, so that the coupled relation of lifting angle and pivot is obtained, wherein just Parameter in journey is all the position of the index point by above measuring.
Brief description of the drawings
Fig. 1 is upper limb shoulder bone schematic diagram on the right side of human body.
Fig. 2 is upper limb shoulder skeletal structure schematic diagram on the right side of human body.
Fig. 3 is upper limb shoulder Glenohumeral joint on the right side of human body with respect to shoulder blade, humerus coordinate system schematic diagram.
Fig. 4 connects adjacent bone principle schematic for upper limb shoulder Glenohumeral joint on the right side of human body.
Fig. 5 is human upper limb mark point pasting method schematic diagram.
Fig. 6 is shoulder blade attribute block schematic diagram.
Fig. 7 is humerus attribute block flanged joint schematic diagram.
Fig. 8 moves schematic diagram for upper limb testing principle on the right side of human body.
Fig. 9 calculates schematic diagram for human body lifting angle.
Embodiment
The present invention is further illustrated below in conjunction with attached drawing.
The collection of shoulder joints exercise data:As shown in Fig. 5,6,7,8, in seventh cervical spine (C7), the eighth dorsal vertebra of human body (T8), shoulder blade moving mass (four index points), humerus movement fast (four index points), lateral epicondyle (EL) and epicondylus medialis (EM) patch 14 index points, the positional information of 14 index points is gathered by VICON measuring systems.Exemplified by being tested by 135 ° of lifting faces, During experiment, regulation experiment baffle, making human body upper arm, forearm naturally droops in the lifting face, preceding in 135 ° of lifting faces Arm front portion is close to test baffle, and arm has in lifting face naturally droops the pre- measuring point that position moves to human body upper arm lifting, Reciprocal three cycles.
Position and the posture of rigid body, comprehensive analysis experiment number can be fully described by three index points not on a line According to, in k frames, the description that the index point that three data are not lost is moved as it is chosen from shoulder blade and humerus attribute block, Jugular notch (IJ), xiphoid (PX), seventh cervical spine (C7), eighth dorsal vertebra (T8), shoulder blade moving mass are (selected successively for it Three index points), the position of humerus movement fast (selected three index points), lateral epicondyle (EL) and epicondylus medialis (EM) 12 index points Information is:
kP1(218.4188,294.7262,1438.967),kP2(229.7008,232.1246,1275.314);
kP3(220.3792,436.7015,1521.921),kP4(228.1619,454.5494,1229.671);
kP5(22.23278,402.5447,1475.425),kP6(48.78961,333.6144,1502.145);
kP7(64.55576,385.8308,1504.752),kP9(-24.298,297.6608,1291.269);
kP10(-31.8932,289.2097,1215.914),kP11(-1.66444,252.4488,1253.062);
kP13(-21.7984,306.7228,1134.667),kP14(56.23081,358.1233,1111.245);
By formula (2), the coordinate origin of human body coordinate system is obtained:
Othx=(218.4,294.7,1439.0)
Reference axis:
xthx=(- 1.8042,0.1257, -0.1724)
ythx=(- 0.003251, -0.041291,0.003917)
zthx=(- 0.000953,0.002238,0.022795)
Two coordinate system O (x, y, z) and Othx=(xthx,ythx,zthx) in the homogeneous transformation matrices at the moment:
Wherein R3×3For spin matrix, P1×3For motion vector
By above formula (4), can try to achieve shoulder blade moving mass (selected three index points), humerus movement fast (selected three index points), The expression of lateral epicondyle and epicondylus medialis index point in human body coordinate system:
kP55(201.8048,-88.2468,64.2858),kP66(168.9249,-19.3935,81.4985);
kP77(156.9326,-72.2040,87.9767),kP99(249.4705,2.1445,-124.9242);
kP1010(260.1084,4.0301,-199.8707),kP1111(225.4325,41.6508,-169.3847);
kP1313(255.3128,-21.7903,-279.5918),kP1414(182.4489,-81.1068,-304.4851);
The foundation of head movement model:Using shoulder blade, humerus as a rigid body, there are three not on a line Index point can describe position and the posture of rigid body, based on rotation geometry knowledge, establish pivot relatively it is adjacent just The constant kinematics model of posture.
Glenohumeral joint pivot and lifting angle coupled relation solve:By articulation center with respect to adjacent rigid index point pose Consistency, build kinematics model math equation.Bring equation (5), (6), (7), (8), (9) acquisition recurrence of above-mentioned structure into Parameter (- 0.7140,1.4648, -0.0252, -1.0384, -0.7816,0.0159), therefrom extracts shoulder blade and corresponds to return and join Number (- 0.7140,1.4648, -0.0252), substitutes into above-mentioned equation (5), (6), obtains an instantaneous position of shoulder joint pivot Put (209.9099, -62.751, -22.6918).Bring the position solution of acquisition into equation (10), (11), obtain lifting angle 3.0666 degree, you can obtain and correspond to the coupled relation at a lifting angle in one pivot of the moment, so as to set up shoulder Coupled relation of the Glenohumeral joint instantaneous centre of rotation at the moment and upper arm lifting angle.
In order to quantify the position of articulation center t at any time, it is updated with the detection frequency of VICON, is utilized The coupled relation of any time shoulder Glenohumeral joint pivot and upper arm, equation is calculated in the simple matrix equation provided In all parameters be all human body breastbone by above measuring, shoulder shoulder blade, humerus, upper arm lateral epicondyle, epicondylus medialis The surface data of movement.
Measured in a kind of human upper limb shoulder Glenohumeral joint pivot and human body upper arm lifting angle coupled relation Method, is to be used to detect upper limb shoulder Glenohumeral joint movable information on the right side of human body, is equally applicable to upper limb shoulder on the left of detection human body Portion's Glenohumeral joint movable information, is not limited to this example.
The above embodiment is explained and illustrated to the essence of the present invention, but is not construed as limitation of the present invention, Any simple modifications made based on essence of the invention, as long as its kinematics and test method are based on the principle, should all fall into this Within the scope of invention right is claimed.

Claims (5)

1. a kind of human upper limb shoulder Glenohumeral joint pivot and human body upper arm lifting angle coupled relation measuring method, its feature It is, including following three steps:
The collection of step (1) shoulder joints exercise data:By containing four, in one plane the moving mass of index point is not fixed On shoulder blade, humerus, seventh cervical spine, eighth dorsal vertebra, jugular notch, the sword shape that six index points are fixed on to human body are soft Bone, lateral epicondyle, epicondylus medialis position, obtain the movable information of corresponding bone;
The foundation of step (2) head movement model:Using shoulder blade, humerus as a rigid body, based on rotation geometry knowledge, Establish the pivot kinematics model constant with respect to adjacent rigid pose;
Step (3) Glenohumeral joint pivot and lifting angle coupled relation solve:By articulation center with respect to adjacent rigid index point The consistency of pose, obtains regression parameter, and then obtains the instantaneous position of pivot, so as to obtain lifting angle and pivot Coupled relation.
2. a kind of human upper limb shoulder Glenohumeral joint pivot according to claim 1 is coupled with human body upper arm lifting angle Relation measuring method, it is characterised in that measuring apparatus is VICON automatic Optic Motion Capture Systems.
3. a kind of human upper limb shoulder Glenohumeral joint pivot according to claim 1 is coupled with human body upper arm lifting angle Relation measuring method, it is characterised in that four index points, are fixed on the seventh cervical spine of breastbone by the step (1) first (C7), eighth dorsal vertebra (T8), jugular notch (IJ), on xiphoid (PX), an attribute block is fixed on operator's omoplate Bone acromion position, a mark are fixed on the former optional position from Glenohumeral joint pivot human body upper arm soon, two other mark Note point is fixed on forearm straight configuration to condylus lateralis humeri (EL), and on epicondylus medialis (EM), regulation experiment baffle, makes human body upper arm exist 0 ° of lifting face, tester's forearm naturally droop in the lifting face;
In experimentation, forearm front portion is close to test baffle, and arm naturally droops position in lifting face and moves to human body The pre- measuring point of upper arm lifting, reciprocal three cycles;Experiment baffle is sequentially adjusted in again, makes human body upper arm at 15 °, 30 °, 45 ° ... Above-mentioned experiment is repeated in 135 ° of lifting faces;
Using VICON measuring systems, the location information data of corresponding bony landmark point is obtained;These location information datas be all Described under VICON system coordinate systems;By the seventh cervical spine (C7) of human body, eighth dorsal vertebra (T8), jugular notch (IJ), sword shape Cartilage (PX), shoulder blade moving mass, humerus movement it is fast (, 14 index points of lateral epicondyle (EL) and epicondylus medialis (EM) be denoted as Pi, each The position of index point is expressed as (x in VICON base coordinates systemi yi zi) ', wherein i=1,2,14, VICON systems Coordinate system coordinate origin of uniting is O, and X, Y, Z axis is represented with x, y, z respectively:Four index points determine human body coordinate system on breastbone, sit Mark origin is Othx, X, Y, Z axis uses x respectivelythx、ythx、zthxRepresent, be specially:
VICON system coordinate systems:
X=(0,0,1)
Y=(0,1,0)
Z=(0,0,1)
O=(0,0,0)
Human body coordinate system:
<mrow> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>I</mi> <mi>J</mi> <mo>+</mo> <mi>C</mi> <mn>7</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>P</mi> <mi>X</mi> <mo>+</mo> <mi>T</mi> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
xthx=(IJ-PX) × (C7-PX)
ythx=zthx×xthx
Othx=IJ
To obtain shoulder blade moving mass, humerus moves the fast, expression of lateral epicondyle and epicondylus medialis index point in human body coordinate system, needs Establish the conversion between human body coordinate system and VICON system coordinate systems:
Two coordinate system O (x, y, z) and Othx=(xthx,ythx,zthx) between homogeneous transformation matrices
<mrow> <msup> <mi>T</mi> <mrow> <mi>O</mi> <mo>&amp;RightArrow;</mo> <msub> <mi>O</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>.</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>y</mi> <mo>.</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>y</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>z</mi> <mo>.</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>.</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>y</mi> <mo>.</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>y</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>z</mi> <mo>.</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>.</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>y</mi> <mo>.</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>y</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <mi>z</mi> <mo>.</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
R3×3For spin matrix, P1×3For motion vector;
In view of shoulder blade moving mass, the motion amplitude of humerus moving mass is larger, may be due to blocking during specific experiment The positional information of whole index points cannot be captured completely, as a result cause VICON system detectios data portion to be lost, by three not Position and the posture of rigid body is fully described in index point on a line, thus in shoulder blade moving mass, humerus moving mass Upper fixation not four index points on one face, choose the index point that three data are not lost from shoulder blade and humerus attribute block Description as its movement;Work as i=5, when 6,7,9,10,11,13,14, shoulder blade moving mass, humerus movement is fast (chooses three Index point), lateral epicondyle and epicondylus medialis index point be expressed as P in human body coordinate systemii, i.e.,:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mi>T</mi> <mrow> <mi>O</mi> <mo>&amp;RightArrow;</mo> <msub> <mi>O</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
Shoulder blade moving mass, humerus move fast, lateral epicondyle and epicondylus medialis index point is expressed as P in human body coordinate systemii, wherein I=5,6...14, are:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>P</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mi>T</mi> <mrow> <mn>1</mn> <mo>&amp;RightArrow;</mo> <mn>2</mn> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>P</mi> <mi>i</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
4. a kind of human upper limb shoulder Glenohumeral joint pivot and human body upper arm lifting angle coupling according to claims 1 Conjunction relation measuring method, it is characterised in that the step (2), using shoulder blade, humerus as a rigid body, because of three Position and the posture of rigid body can be fully described in the index point on a line, analyze gathered data, choose shoulder blade, Three not continuous exercise datas of index point on one wire, based on rotation geometry knowledge, are established in rotation on humerus moving mass The heart kinematics model constant with respect to adjacent rigid pose.
5. a kind of human upper limb shoulder Glenohumeral joint pivot and human body upper arm lifting angle coupling according to claims 1 Conjunction relation measuring method, it is characterised in that the step (3), by articulation center with respect to adjacent rigid index point pose not Denaturation, builds kinematics model math equation, obtains regression parameter, and then obtains the instantaneous position of pivot, constructs lifting Angle and the kinematical equation of pivot, so as to obtain lifting angle and pivot coupled relation;
S1. shoulder joint instantaneous centre of rotation is asked for
kP1kP2kP3It is index point on shoulder blade, footmark k represents frame number,kC1kC2kC3It is the index point on humerus, footmark k tables Show frame number, derived by rotation geometry, articulation centerkJ remains constant relative to the index point in adjacent rigid, meets as follows Relational expression:
kJ=[kP1-kP2,kP1-kP3,(kP1-kP2,kP1-kP3),kP1][a,b,c,1]'
kJ=[kC1-kC2,kC1-kC3,(kC1-kC2,kC1-kC3),kC1]·[d,e,f,1]'
Wherein:(a, b, c, d, e, f) is regression parameter, and two formula simultaneous, obtain:
kJ=[kP1-kP2,kP1-kP3,(kP1-kP2,kP1-kP3),kC1-kC2,kC1-kC3,(kC1-kC2,kC1-kC3)]
[a, b, c, d, e, f ,] '=- (kP1-kC1)
More frame data of corresponding continuous acquisition, obtain equation below group:
AX=B
Wherein:
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>3</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>1</mn> </mmultiscripts> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>3</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>1</mn> </mmultiscripts> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>3</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mn>2</mn> </mmultiscripts> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>3</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mn>2</mn> </mmultiscripts> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>..</mn> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>..</mn> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>..</mn> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>..</mn> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>..</mn> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>..</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>3</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>P</mi> <mi>F</mi> </mmultiscripts> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>3</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>2</mn> </msub> <mo>,</mo> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>1</mn> </msub> <mo>-</mo> <msub> <mmultiscripts> <mi>C</mi> <mi>F</mi> </mmultiscripts> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
X=[a, b, c, d, e, f] '
B=[- (1P1-1C1);-(2P1-2C1);……;-(FP1-FC1)]
To the greatest extent and by the solution of matrix equation, regression parameter X is obtained
X=(A'A)-1A'B
After obtaining regression parameter, bring following equation into, the data for moving each moment are brought into, obtain each moment shoulder joint rotation Turn the positional information at center;
iJ=[iP1-iP2,iP1-iP3,(iP1-iP2,iP1-iP3),iP1][a,b,c,1]'
Or
iJ=[iC1-iC2,iC1-iC3,(iC1-iC2,iC1-iC3),iC1]·[d,e,f,1]'
S2. the coupled relation at shoulder Glenohumeral joint instantaneous centre of rotation and upper arm lifting angle is established
Humerus lifting angle is defined as the angle between humerus attitude vectors and human body coordinate system Z axis;
Humerus attitude vectors are:
<mrow> <msub> <mi>V</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>M</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>q</mi> <mi>k</mi> </msup> </mrow>
Humerus lifting angle is:
<mrow> <mi>&amp;theta;</mi> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>a</mi> </mrow> </msub> <mo>.</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mo>|</mo> <msub> <mi>V</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>a</mi> </mrow> </msub> <mo>|</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
Wherein VupaFor humerus attitude vectors, VEL、VEMBe lateral epicondyle, epicondylus medialis with respect to human body coordinate system attitude vectors, qkFor shoulder The opposite position vector with human body coordinate system in k frames of portion's Glenohumeral joint pivot, zthxFor human body coordinate system Z breastbones direction Coordinate representation, θ is lifting angle;
By required pivot as a result, asking for lifting angle, so that the coupled relation of lifting angle and pivot is obtained, wherein just Parameter in journey is all the position of the index point by above measuring.
CN201711253607.0A 2017-12-02 2017-12-02 Method for measuring coupling relation between rotating center of upper limb shoulder glenohumeral joint and lifting angle of upper arm of human body Active CN108030496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711253607.0A CN108030496B (en) 2017-12-02 2017-12-02 Method for measuring coupling relation between rotating center of upper limb shoulder glenohumeral joint and lifting angle of upper arm of human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711253607.0A CN108030496B (en) 2017-12-02 2017-12-02 Method for measuring coupling relation between rotating center of upper limb shoulder glenohumeral joint and lifting angle of upper arm of human body

Publications (2)

Publication Number Publication Date
CN108030496A true CN108030496A (en) 2018-05-15
CN108030496B CN108030496B (en) 2021-03-16

Family

ID=62095343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711253607.0A Active CN108030496B (en) 2017-12-02 2017-12-02 Method for measuring coupling relation between rotating center of upper limb shoulder glenohumeral joint and lifting angle of upper arm of human body

Country Status (1)

Country Link
CN (1) CN108030496B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544278A (en) * 2018-05-29 2019-12-06 杭州海康机器人技术有限公司 rigid body motion capture method and device and AGV pose capture system
CN110741413A (en) * 2018-11-29 2020-01-31 深圳市瑞立视多媒体科技有限公司 rigid body configuration method and optical motion capture method
CN112370299A (en) * 2020-10-13 2021-02-19 深圳华鹊景医疗科技有限公司 Upper limb exoskeleton shoulder joint center compensation method, device and system
CN112535475A (en) * 2020-11-24 2021-03-23 中国标准化研究院 Functional shoulder joint rotation center positioning method based on rigid upper arm model
CN112545498A (en) * 2020-12-02 2021-03-26 中国标准化研究院 Human body functional joint rotation center detection and positioning analysis method
CN112617816A (en) * 2020-12-17 2021-04-09 吉林大学 Method for positioning functional elbow joint rotation center based on kinematic parameters
CN113080942A (en) * 2021-03-25 2021-07-09 孙美义 Joint rotation axis positioning instrument and positioning method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748642A (en) * 2005-10-13 2006-03-22 上海交通大学 Method for non-intrusion measuring human hand and arm joint
US20080058175A1 (en) * 2003-01-21 2008-03-06 Gautier Kenneth B Multi-axis resistance exercise device
CN102026578A (en) * 2008-04-15 2011-04-20 史密夫和内修整形外科股份公司 Medical navigation method & system
CN105726039A (en) * 2016-03-31 2016-07-06 合肥工业大学 Limb spasticity evaluating and testing method and device for achieving method
CN106153077A (en) * 2016-09-22 2016-11-23 苏州坦特拉自动化科技有限公司 A kind of initialization of calibration method for M IMU human motion capture system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080058175A1 (en) * 2003-01-21 2008-03-06 Gautier Kenneth B Multi-axis resistance exercise device
CN1748642A (en) * 2005-10-13 2006-03-22 上海交通大学 Method for non-intrusion measuring human hand and arm joint
CN102026578A (en) * 2008-04-15 2011-04-20 史密夫和内修整形外科股份公司 Medical navigation method & system
CN105726039A (en) * 2016-03-31 2016-07-06 合肥工业大学 Limb spasticity evaluating and testing method and device for achieving method
CN106153077A (en) * 2016-09-22 2016-11-23 苏州坦特拉自动化科技有限公司 A kind of initialization of calibration method for M IMU human motion capture system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FABIEN DAL MASO: "Coupling between 3D displacements and rotations at the glenohumeral joint during dynamic tasks in healthy participants", 《CLINICAL BIOMECHANICS》 *
KLOPCAR N,LENARCC J: "Bilateral and unilateral shoulder girdle kinematics during humeral elevation", 《CLINICAL BIOMECHANICS》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544278A (en) * 2018-05-29 2019-12-06 杭州海康机器人技术有限公司 rigid body motion capture method and device and AGV pose capture system
CN110741413A (en) * 2018-11-29 2020-01-31 深圳市瑞立视多媒体科技有限公司 rigid body configuration method and optical motion capture method
CN110741413B (en) * 2018-11-29 2023-06-06 深圳市瑞立视多媒体科技有限公司 Rigid body configuration method and optical motion capturing method
CN112370299A (en) * 2020-10-13 2021-02-19 深圳华鹊景医疗科技有限公司 Upper limb exoskeleton shoulder joint center compensation method, device and system
CN112370299B (en) * 2020-10-13 2023-04-25 深圳华鹊景医疗科技有限公司 Upper limb exoskeleton shoulder joint center compensation method, device and system
WO2022110573A1 (en) * 2020-11-24 2022-06-02 中国标准化研究院 Rigid upper arm model-based method for positioning functional rotation center of shoulder
CN112535475B (en) * 2020-11-24 2021-11-19 中国标准化研究院 Functional shoulder joint rotation center positioning method based on rigid upper arm model
CN112535475A (en) * 2020-11-24 2021-03-23 中国标准化研究院 Functional shoulder joint rotation center positioning method based on rigid upper arm model
US11883160B2 (en) 2020-11-24 2024-01-30 China National Institute Of Standardization Positioning method of functional rotation center of shoulder based on rigid upper arm model
CN112545498A (en) * 2020-12-02 2021-03-26 中国标准化研究院 Human body functional joint rotation center detection and positioning analysis method
US11707209B2 (en) 2020-12-02 2023-07-25 China National Institute Of Standardization Detecting method and positioning analysis method of human functional joint rotation center
CN112617816B (en) * 2020-12-17 2021-09-21 吉林大学 Method for positioning functional elbow joint rotation center based on kinematic parameters
CN112617816A (en) * 2020-12-17 2021-04-09 吉林大学 Method for positioning functional elbow joint rotation center based on kinematic parameters
CN113080942A (en) * 2021-03-25 2021-07-09 孙美义 Joint rotation axis positioning instrument and positioning method

Also Published As

Publication number Publication date
CN108030496B (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN108030496A (en) A kind of human upper limb shoulder Glenohumeral joint pivot and upper arm lifting angle coupled relation measuring method
CN102525795B (en) Fast automatic positioning method of foot massaging robot
CN107806837B (en) Non-invasive wrist joint axis motion model measuring method
CN100361070C (en) skeleton motion extraction method by means of optical-based motion capture data
CN110801226A (en) Human knee joint moment testing system method based on surface electromyographic signals and application
CN108388887A (en) Biped robot&#39;s Analytical Methods of Kinematics based on toddlerhood child&#39;s Gait extraction
CN107041585A (en) The measuring method of human dimension
CN108098780A (en) A kind of new robot apery kinematic system
CN107898626A (en) A kind of binocular vision acupoint positioning instrument and its method of work
CN116507286A (en) Ultrasonic image data acquisition, analysis and identification integrated robot and platform
CN112057040B (en) Upper limb movement function rehabilitation evaluation method
CN109064486A (en) A kind of anthropomorphic robot and human body attitude method for evaluating similarity
CN107802268B (en) A kind of human elbow anterior flexion and rear stretching and the outer instantaneous spiral shell shaft measurement method of forearm medial rotation rotation
CN111803099A (en) Human upper limb muscle force prediction device and method based on radial basis function neural network
CN110400618B (en) Three-dimensional gait generation method based on human motion structure characteristics
Fang et al. A real-time identification and tracking method for the musculoskeletal model of human arm
Hunt et al. Pham: prosthetic hand assessment measure
CN108013880A (en) A kind of instantaneous aroused in interest measuring method of human elbow anterior flexion and rear stretching around instantaneous aroused in interest movement
Fong et al. An investigation into the reliability of upper-limb robotic exoskeleton measurements for clinical evaluation in neurorehabilitation
Zhang et al. The design of a hemiplegic upper limb rehabilitation training system based on surface EMG signals
CN110675936B (en) Fitness compensation assessment method and system based on OpenPose and binocular vision
Zhibin et al. A new skeleton model and the motion rhythm analysis for human shoulder complex oriented to rehabilitation robotics
Chen et al. An inertial-based human motion tracking system with twists and exponential maps
Heidari et al. Quantification of upper-body synergies: a case comparison for stroke and non-stroke victims
WO2021254427A1 (en) Integrated robot and platform for ultrasound image data acquisition, analysis, and recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant