CN108027449B - 经牵引的地震节点 - Google Patents

经牵引的地震节点 Download PDF

Info

Publication number
CN108027449B
CN108027449B CN201680051853.5A CN201680051853A CN108027449B CN 108027449 B CN108027449 B CN 108027449B CN 201680051853 A CN201680051853 A CN 201680051853A CN 108027449 B CN108027449 B CN 108027449B
Authority
CN
China
Prior art keywords
seismic
rope
nodes
node
water column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680051853.5A
Other languages
English (en)
Other versions
CN108027449A (zh
Inventor
D.J.朗伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Geophysical Corp
Original Assignee
Ion Geophysical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Geophysical Corp filed Critical Ion Geophysical Corp
Publication of CN108027449A publication Critical patent/CN108027449A/zh
Application granted granted Critical
Publication of CN108027449B publication Critical patent/CN108027449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/186Hydrophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • G01V1/201Constructional details of seismic cables, e.g. streamers
    • G01V1/202Connectors, e.g. for force, signal or power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/168Deployment of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers

Abstract

海洋地震传感器系统包括具有至少一个地震传感器的地震节点。传感器配置用于在绳索上牵引通过水柱时对地震能量进行采样。耦合可以适于调制从绳索到地震节点的加速的传输。

Description

经牵引的地震节点
(多个)相关申请的交叉引用
本申请要求2015年7月7日提交的题为TOWED SEISMIC NODE的美国临时申请号62/189,647的优先权,其整体地并且出于所有目的而通过引用并入本文。
背景技术
本申请总体上涉及地震勘探,并且具体地涉及用于搜集地震数据的传感器布置。适合的应用包括但不限于用于在海洋地震勘测中使用的地震节点。
在经牵引的海洋地震探查中,通常接近海面而在海洋船只后面牵引水听器阵列。水听器安装到多个传感器线缆,其通常被称为托缆。托缆充当用于水听器的平台或载体,所述水听器在阵列中沿着每一个托缆的长度分布。
同样接近海面牵引的地震源的集合操作成周期性地发射声学能量。感兴趣的声学能量向下传播通过海水(或其它水柱),穿透海底,从海底岩层和其它底层结构反射,并且向上通过水柱返回到水听器阵列。
经反射的地震能量(或声波能量)到达经牵引的水听器阵列中的接收器点。阵列包括沿托缆线缆中的每一个分布的许多此类接收器点,其中传感器配置成在接收器点中的每一个处生成数据记录,所述数据记录表征从海床下方的表面下结构接收的向上行进的声学小波(或地震波)。随后处理水听器数据记录以生成底层结构的地震图像。
噪声是经牵引的托缆操作中的主要考虑。噪声源涵盖相干和随机(或非相干)效应两者,包括但不限于海洋生命、源磁泡事件、船只噪声、波浪噪声以及起因于海面的波噪声。由于托缆行进通过水柱时的流效应,以及由于地震系统对加速的灵敏性,牵引托缆同样生成噪声。
这些噪声分量中的一些传播通过托缆(或托缆线缆),并且一些传播通过水柱本身。此类噪声贡献的存在可以不利地影响表面下图像的精度,所述表面下图像从经处理的地震数据来获得。因此,存在针对具有降低的噪声和改进的地震图像质量的更高级的海洋地震勘测技术的持续需求。
发明内容
描述了一种节点地震系统,其中使用一个或多个简单的绳索、线缆或类似强度构件来牵引一个或多个自主地震节点。每一个节点可以配置有横向位置控制能力、深度控制能力或两者。可调整的系绳系统可以被提供用于将节点束缚(tether)至绳索或者线缆。
取决于应用,每一个节点可以确定其自己在水柱中的绝对位置,或者其关于牵引绳索或线缆的相对位置。每个节点因而可以控制其自己在阵列中的相应(绝对或相对)位置,同时在牵引之下。
单独的地震节点、模块化地震阵列和节点地震系统可以根据本文公开的示例和实施例来配置。还涵盖了部署与操作地震节点、阵列和系统的方法。
在一个特定实施例中,海洋地震传感器系统包括具有设置在水动力主体中的至少一个地震传感器的地震节点。水动力主体适于调制阻力(drag)和流噪声,并且传感器配置用于在通过水柱牵引时对地震能量进行采样。系绳将水动力主体耦合到绳索,例如,所述绳索使地震节点经受牵引力。
至少一个主动或被动控制表面可以提供在水动力主体上,并且配置用于在束缚至绳索时关于水柱定位地震节点。系绳可以包括一个或多个弹性构件,所述一个或多个弹性构件适于调制绳索的加速的一个或多个频率分量的传输,例如,以便减少地震节点的相对加速。因此,可以降低噪声,并且可以生成改进的地震图像。
附图说明
图1A是图示了如本文描述的示例性地震勘测的剖面图。
图1B是地震勘测的平面图。
图2是示出了适合于部署海洋地震阵列的代表性部署系统的示意性图示。
图3A是示出了适合于在海洋地震阵列或勘测中使用的示例性或样本节点设计的剖面图。
图3B是样本节点设计的顶视图。
图4是示出了适合于供不同节点设计使用的非对称系绳配置的剖面图。
图5是示出了具有通过轴向通道的牵引绳索的地震节点的截面图。
图6是图示了包括经牵引的地震节点和海底节点两者的代表性海洋地震勘测的剖面图。
具体实施方式
在下文中,参照本发明的实施例。然而,应当理解到,本发明不限于具体描述的实施例。设想到如就各种实施例描述的以下特征和元素的任何组合以实现和实施本发明。如在这些各种实施例中所述,本发明的特征提供了优于现有技术的优点。尽管本发明的实施例可以实现优于现有技术以及优于其它可能的解决方案的此类优点,但是是否通过给定实施例实现特定优点并不限制本发明。以下的方面、特征、实施例和优点仅仅是说明性的,并且不被视为随附权利要求的元素或限制,除非在明确记载的情况下。同样地,对“本发明”的引用不应当被解释为本文公开的任何发明主题的概括,并且不应当被视为限制权利要求,除非在明确包括的情况下。
诸如由Tenghamn等人在通过引用并入本文的美国专利号7,239,577中描述的托缆系统可以采用多个水听器或听地器,所述多个水听器或听地器沿托缆线缆布置并且配置成使表面反射与感兴趣的期望地震能量分离,所述感兴趣的期望地震能量来自于表面下的岩层或者其它目标结构。然而,由于来自在水听器或听地器或者其它地震传感器中捕获的牵引能量的噪声贡献,此类测量可能是不完美的,尤其是在低频率处。
托缆噪声和阻力效应
沿托缆长度变化的张力也影响对颗粒运动的托缆响应。例如,应当使托缆略微移位(例如,竖直地)的声音能量必须克服线缆中的线内张力。在给定张力沿托缆变化(接近牵引船只最大并且在尾部最小)的情况下,传感器响应沿托缆线缆的长度并不均匀。而且,随着长度增加并且其它阻力效应发生(诸如在托缆上生长的藤壶),张力进一步增加,具有对传感器响应的相当地更大影响。
沿托缆传播的噪声分布可以使用听地器阵列来表征以测量与托缆中心轴线一致传播的声音能量。取决于关于线内方向的能量到达角度,这还可以导致非均匀阵列响应。因而将有利的是,在整个托缆长度之上(随着时间以及关于到达角度两者)提供更加均匀的传感器响应,如本文所述。
托缆系统通常沿着沿托缆长度限定的通信路径来传递数据和遥测。托缆电子器件通常从牵引船只机载的舷侧电力系统来供电,并且电流必须流动长距离至托缆内电子器件,所述托缆内电子器件可以离船许多英里。这导致功率无效率,并且用于功率或数据遥测的长电路中的任何破坏都可以引起数据丢失或者导致勘测工作停止。通信与电力系统中的单点故障也限制了可扩展性,包括在可以在给定勘测中使用多少传感器上的限制。
在沿托缆线缆传递功率和遥测的情况下,还必须通过正压载来抵消导体重量。通过将水听器置于托缆中心(或沿纵向轴线),可以使托缆外皮处的流噪声衰减,提供托缆的外半径与传感器之间的径向距离或间距以针对噪声效应来缓冲传感器。这些因素可以要求相对较大的托缆直径,例如粗略地49mm(大约两英寸)或更多,这意味着托缆具有与水接触的大的表面积。这个增加的表面积是阻力(drag)的显著原因,牵引船只必须以减小的牵引速度、较高的燃料消耗或两者为代价来克服这一点。
这些噪声问题中的一些通过海底节点系统来解决,诸如通过Lambert等人在2015年5月12日提交的美国专利申请号14/710,373以及题为OCEAN BOTTOM SYSTEM的美国公开号2015/0331126中所述,其中每一个整体地并且出于所有目的而通过引用并入本文。此类系统部署在海底上,并且可以在静态时采集地震测量结果。
海底节点可以通过远程水下交通工具操作使用远程操作的船只(ROV)或无人驾驶的自主水下船只(AUV)进行部署,或者从绳索或线缆系统上的表面船只来部署。产生速率和数据收集时标可能比经牵引的托缆系统更慢并且更加昂贵,因为必须取回并且重新部署海底接收器以便取得不同位置上的另外的数据。
因此,提供了一种用于记录地震数据的改进的地震节点系统,其中传感器系统捕获感兴趣的地震数据但是基本上拒绝噪声,其具有甚至相对于现代的现有技术托缆应用的改进的地震数据产生率。此外,该系统提供了相比利用当前海底或经牵引的托缆系统可获得的更高的数据质量,并且通过减少总体阻力而降低燃料成本。
附图
图1A在剖面图中图示了根据本公开的示例性地震勘测100。图1B是如在图1A中示出的地震勘测100的平面图。还包括系统、设备、方法和装置实施例,包括专用的地震传感器硬件以及计算机软件和固件部件两者,其适于操作所述硬件以在减少的噪声贡献的情况下获得更高质量的地震成像数据。
如图1A和1B中所示,地震船只110在水柱115的表面114处或附近牵引一个或多个绳索或线缆112,所述水柱115例如为海洋、海、湖泊、河流、贮水池或者其它水体。附着到绳索112的是自主记录节点(地震节点)或其它设备120,其由地震船只110牵引通过水柱115。在此特定示例中,船只110还牵引地震源140,例如,耦合到脐带线缆142的气枪阵列。
由源140发射的声学能量145(虚线)向下通过水柱115行进至海床或其它底表面116。能量的一部分从底部反射,并且一部分通过底部116行进至底层的表面下的结构118。表面下的结构118还反射能量,其向上朝着水柱115的表面114传播回来。反射还可以发生在表面114处,生成上行和下行地震波场的组合。
经反射的地震能量(或波场)146可以通过分布在地震勘测100的地震节点120中的地震传感器或接收器来捕获和采样。波场能量可以使用水听器、听地器、加速度计和/或每一个节点120中的压差测量部件、或者对通过水柱115的声学(声音)波和相关联的地震能量敏感的其它仪器来采集为地震数据。
地震节点120可以在内部供电,每一个具有其自己单独的计时参考或时钟以及用于存储地震数据的存储器。通过一个或多个地震接收器或传感器(诸如,水听器、听地器或其组合)来采集数据。各个节点120可以直接附着到绳索112,例如,利用夹紧机构或者其它附着构件,或者节点120可以经由系绳124来附着,所述系绳124在一端耦合到节点或接收器120并且在另一(相反)端耦合到绳索112的相邻部分。
尾部漂浮物或浮标125可以提供在绳索112的末端处,如在图1A和1B中示出,或者此位置可以被处于系绳或未束缚(直接附着)的配置中的地震节点或其它设备120所占据。一个或多个漂浮物或浮标125还可以提供在绳索112的头部处,或者沿绳索112的中间位置处。
系绳124配置成提供绳索112与节点120之间的机械隔离度并且减少耦合张力。特别地,张力通常在每一个单独的系绳124中比在相邻绳索112中明显更小,所述系绳124耦合在绳索112与一个或多个单独的节点120之间,所述绳索112耦合到可以分布在数百或数千米的线缆长度之上的许多节点120。系绳124还可以并入有弹力的构件以便吸收绳索112中的振动和振荡,减少相对加速以及地震节点120中的对应噪声效应。
各个节点120可以提供有导航仪器以确定水柱115中的绝对位置,或者确定关于牵引绳索112、船只110或其它导航参考的相对位置。各个节点120还可以提供有翅片、薄片、翼形物、平面或者其它控制表面,其配置成允许节点120控制或者维持相对于船只110的真实航线或者关于绳索112和/或船只110在水柱115的表面114上的位置的相应横向位置。控制表面可以是被动的或者在取向上关于节点主体固定,或者经主动致动以改变其取向,以便维持或者调整关于牵引绳索112和/或水柱115的表面114的节点位置。
节点120还可以包括深度测量和深度控制部件,例如,类似于利用从Louisiana,Harahan的ION Geophysical可获得的型号5011 COMPASS BIRD或者ACOUSTIC BIRD系统提供的那些。另外的导航部件包括但不限于罗盘、声学接收器、声学收发器、陀螺仪器、惯性导航设备、以及适合于确定、维持和调整每一个相应节点120的位置的其它仪器。
取决于应用,导航、控制和地震数据采集功能性还可以在不同节点或设备120之中划分。例如,导航(转向)、控制(处理器)和地震传感器元件可以组合在单个设备120中,或者提供在分离的不同设备120中,所述分离的不同设备120附着于沿相同绳索或线缆112的不同位置中或者沿不同绳索或线缆112部署。
在转向节点或转向设备120(例如,具有横向转向和/或深度调整能力)中的导航部件与控制节点或控制设备120(例如,具有基于计算机的位置确定部件)中的控制部件之间执行包括位置和控制信号的导航数据的通信。控制与转向节点120可以或者可以不包括地震传感器320,并且它们可以提供为设置在沿绳索112的不同位置中的不同设备120,或者控制、转向和感测功能可以组合到多目的地震节点120中。导航数据和控制通信可以经由声学换能器、电磁信号干扰、电容或电感设备、以及其它有线或无线网络部件的任何组合来提供。
取决于实施例,还可以如由Lambert等人在题为GPS-BASED UNDERWATER CABLEPOSITIONING SYSTEM的美国专利7,190,634中描述的那样来采用导航和控制功能,其整体地并且出于所有目的而通过引用并入本文。可转向的浮标也可以遍及勘测范围定位,使用声学测量结果和/或其它位置信号来确定到一个或多个参考浮标或者其它适合的位置参考的距离。自动导航控制可以实现在每一个节点120中,或者可以提供专用控制设备以保持每一个相应节点120关于参考的相对位置。牵引船或其它地震船只110还可以提供有导航系统,例如,如配置成控制参考相对于地理勘探或勘测目标的位置,允许地震勘测100将节点120中的每一个维持在期望的位置中。
部署和恢复
图2示出了配置用于地震勘测110的部署和取回的代表性部署系统200。在一个特定实施例中,通过一系列滑轮212从绞车210部署简单的绳索或线缆112,所述一系列滑轮212将绳索112放置成接近地震节点或设备120的仓库或类似供应220。设备120附着到绳索112并且经由一个或多个滑车轮设备214部署到水柱115中。
系统200可以部署在牵引船只或其它地震船只110上,如图2中所示。计算机控制系统230可以用来配置用于绳索112上的节点120的期望部署布置,以用于在特定地震阵列或勘测100中使用。
期望的所部署的布置的数据库232可以用于节点或其它设备120向每一个绳索112的手动或机器人(自动化)连接。例如,各个节点120可以使用夹紧机构或类似机械附着126而耦合到沿绳索112的所选位置。在此示例中,附着126将系绳124的一端耦合到沿绳索112的期望位置,使得节点120部署在地震勘测100中的所选位置中。预选择的位置的不同集合也是可能的,如由控制系统230以及存储在数据库232中的对应勘测配置所确定。
在部署之前,每一个节点120中的内部时钟或其它计时参考通常相对于主时钟同步。在部署之后,可以通过经由绞车210将绳索112带回船只110机载,并且从绳索112自动地或手动地拆卸节点120来恢复节点120,以用于存储、电池充电和数据恢复。
一个示例性实施例包括通信系统或网络240(虚线双箭头),其向下并且沿着绳索112的长度延伸,以便促进计时并且经由沿每一个绳索112分布的各个节点或其它设备120与船只110之间的导航信息的传送来提供在线质量控制水平。
例如,通信系统240可以配置用于在分布于地震勘测100中的节点120和船只110上的计算机控制系统230之间,以及在沿每一个绳索112分布的各个节点或其它设备120之间交换位置数据和控制(转向和导航)信号。要指出,经由系统240的通信的丢失不一定妨碍通过勘测100的地震数据的产生,并且系统240可以用于被动追踪且很好地作为各个节点120的主动定位。
使用一个或多个电磁、声学、无线电、光学、电容和电感信号部件,针对通信系统240来涵盖有线和无线通信网络两者。在一个特定应用中,采用利用电感线圈的被动频移键控(FSK)通信系统,例如,如在通过Louisiana、Harahan的ION Geophysical制造的型号5011COMPASS BIRD或ACOUSTIC BIRD系统中提供。另一可能是单个导线通信系统240,例如使用具有海水返回回路的电感线圈部件。
若干不同噪声源可以使在典型托缆系统中接收的信号模糊不清,但是可以解决这些贡献以缓解噪声效应并且改进总体地震图像质量,如在本文中描述。还考虑流噪声贡献,包括当牵引通过水柱115时,由于水在绳索112以及各个地震节点120的主体周围流动引起的压力变化而引起的噪声贡献。
图3A是示出了适合于在如本文描述的海洋地震阵列或勘测系统100中使用的地震节点120的示例性设计的剖面图。图3B是代表性节点设计120的顶视图。节点与系绳系统300包括节点120和系绳124,其在附着315处耦合到节点主体或外壳310,并且经由夹子或其它机械附着126耦合到绳索112的相邻区段。
在图3A和3B的示例中,地震节点或设备120设计有平滑的水动力成形的主体或外壳310,其适于通过减少或最小化行进通过水柱115时的湍流来调制阻力和流噪声,并且减轻由湍流引起的对应阻力和噪声贡献。调制阻力和流噪声系数包括减少阻力噪声以改进给定牵引速度下的燃料消耗和成像,并且使噪声频率移出感兴趣的范围,使得对应噪声贡献在图像处理期间减少。
水听器或其它地震传感器320还可以沿节点主体310的中心线CL、接近设备120的几何或水动力中心放置,以便将传感器320隔开在离主体或外壳310的外表面312的增加或最大化的距离处。可以提供一个或多个声音导管或声学传导路径322,其从传感器320通过设备120的主体310延伸到设备外壳的外表面312上的水柱115。
还可以利用具有多个水听器或类似传感器320的水听器流噪声减少与最小化技术,例如,如由Fay在题为OPTIMUM FLOW NOISE CANCELLING HYDROPHONE MODULE的美国专利号4,388,711中描述,其通过引用并入本文。牵引噪声可以使用加速消除水听器传感器320来解决,诸如,由TX、Houston的Teledyne Geophysical制造的TELEDYNE T2BX传感器。牵引噪声还可以使用加速度计类型的传感器320来减少,例如,如由Lambert等人在2014年5月12日提交的美国专利申请号14/275,497以及题为SEISMIC SYSTEM WITH GHOST ANDMOTION REJECTION的美国公开号2014/0328138中描述,其中每一个以其整体并且出于所有目的而通过引用并入本文。
此外,牵引噪声可以通过经由相对短的系绳或系绳系统124将设备120连接到绳索112而减少。在这些实施例中,绳索112与设备120之间的系绳连接构件124中的张力T基本上仅取决于行进通过水柱115并且根据对应牵引速度的节点120和系绳124系统300的阻力。这与主绳索112中的通常高得多的张力T R 形成对照,所述张力T R 根据绳索长度和直径而增加,并且跨经由系绳124到节点120的每一个耦合或附着126而变化。
地震节点或设备120还可以形成有关于周围水柱115接近中性或者大幅的浮力。在这些实施例中,设备120具有对水柱115中的颗粒运动的更均匀响应,如与其中张力明显较大并且浮力不一定为中性的托缆系统相比。一个或多个薄片或翅片330、翼形物332、稳定器、平面和其它控制表面还可以提供在设备主体310上,以便生成提升力来控制每一个设备120关于绳索112的深度和横向位置。
系绳系统124可以由有弹性的材料形成,或者包括有弹性的构件以抑制和过滤或控制从绳索112传输到地震节点或设备120的加速能量的频率和幅度。通过牵引船只以及机械耦合到牵引绳索(或牵引用绳索)112的勘测的其它部件,向绳索112上赋予波能量。因此,绳索112向设备120上赋予加速和振动能量,其具有多个不同的频率分量。系绳124可以适于抑制该能量,并且减少设备120关于绳索112的相邻区段的对应加速和位移,所述设备120通过系绳124耦合到该相邻区段。
节点与系绳系统300的谐振频率可以与系绳区段或构件124的长度相关联。有弹性的系绳区段(或构件)124可以建模为带张力的连续横梁,其受以下偏微分方程支配:
Figure 290646DEST_PATH_IMAGE001
. [1]。
在此方程中,E是系绳区段124的杨氏模量,I是转动惯量,y(x,t)是作为时间t的函数的沿纵向坐标x的横向位移,并且T是张力,如沿对应系绳构件124限定。乘积ρA是系绳构件124的每一单位长度的横梁等效质量(密度ρ乘以面积A),并且p(x,t)是每一单位长度ℓ的外力(例如,由于以特定牵引速度行进通过水柱115的同时,地震节点或设备120的主体310和系绳区段124上的阻力)。当针对固有振荡频率ω n求解此方程时,结果根据以下方程而取决于系绳构件124的长度ℓ:
Figure 207786DEST_PATH_IMAGE002
[2]。
在此方程中,ω n是第n个本征振荡模式的角频率,并且ℓ是系绳长度。可以针对地震介质(例如,水柱)的黏性阻力以及如本领域中已知的其它效应进行另外的校正。对于声学传感器或者其它地震传感器部件320,还可以在设计中小心保持基频ω 1和谐频ω 2, ω 3等在感兴趣的测量带宽之外。通过基于在给定牵引速度下经历的阻力来调整系绳长度,沿系绳传输的固有频率还可以从感兴趣的范围移出,如本文中所述。
在这些实施例中的一些中,可以采用用于系绳124的可变长度机构来检测和自动调谐系绳系统300的固有频率ω n。例如,系绳长度ℓ可以通过提供在节点主体310中的小机动化绞车或其它机械致动器340而变化,例如,利用在节点主体310的任一侧上的一个或多个系带类型的附着315处耦合到系绳124的致动器340(如图3A中所示)或者经由单个(顶部)系绳附着315,如图3B中所示。
由节点主体310中的加速度计和其它声学或地震传感器320生成的信号可以通过微处理器(μP)控制系统350来采样和分析,以便检测不合期望的激发模式或者所观察的振荡频率ω。基于对应信号幅度,控制处理器350可以配置成控制绞车340(或类似机构)来调整系绳24的长度ℓ以使固有频率ω n移位离开所观察的频率ω,以便减少或者最小化由于牵引效应所引起的对应振荡幅度和加速的谐振和传播。
设备控制器(或电子器件)350可以并入用于时间戳以及存储由传感器320获得的地震数据的内部(本地或从属)时钟和存储器部件,连同配置成确定深度、位置和速度的导航部件。设备120还可以提供有内部电源和通信接口,所述通信接口适于导航数据和控制信号的声学、电磁、电容或电感通信,如上文所述。
应当小心保持系绳124不影响设备120或节点主体310并且引起另外的不想要的噪声。此问题可以以若干方式来解决,例如,使用具有双面系绳附着315的系带连接(如图3A中所示),或者利用设备120顶部上的单个附着315(如图3B中所示)。还可以使用非对称和轴向系绳附着,例如,如图4和5中所示。
图4是代表性地震节点或设备120的剖面图,其示出了适合于供示例性水动力节点主体设计310使用的非对称配置中的系绳124。在此配置中,系绳124耦合到提供于节点主体310的一侧上的附着315。
经由系绳124中的张力T提供的牵引力和系绳附着可以关于节点主体310的中心线CL为非对称的或离轴的以及平面外的(歪斜的),如图4中所示。控制表面(诸如薄片或翅片330和翼形物332)可以提供在节点主体310上以提供提升和横向转向力,所述提升和横向转向力配置成控制节点主体310关于绳索112的位置。提升(负或正)以及转向(横向)力可以足以保持薄片或控制表面330、332以及节点主体310的其它部分远离牵引绳索112,使得除了沿柔性系绳构件124提供的连接之外,绳索112和设备120机械隔离。
将牵引绳索112和节点设备120设计有不同的浮力还可以维持设备120从绳索112隔开的间距,或者帮助这样做。在此示例中,设备120和绳索112可以具有不同的单独浮力,但是设备120、系绳124和绳索112的组合浮力可以保持关于水柱115的接近中性。
图5是示出了具有通过节点主体310的牵引绳索112的地震节点或设备120的截面视图,例如,基本上沿中心轴线CL。设备120可以提供有水动力主体310,所述水动力主体310经成形以用于使牵引绳索112通过中心轴线CL,而没有触碰到节点主体310的内部上的通道360,或者除了在系绳124处之外,没有牵引绳索112与节点主体之间的大量机械接触,如图5中所示。
具有多个附着315的两个或更多系绳区段或构件124的系统可以配置成在设备120上赋予净牵引力,所述净牵引力关于节点中心线CL、关于牵引绳索112和/或关于牵引通道360基本上对称。在这些实施例中的每一个中,除了柔性牵引绳索连接或系绳124之外,设备120可以基本上从绳索112机械隔离,如上文所述。
在图5的特定示例中,多个系绳区段126保持牵引绳索112和节点主体310在内部通道360的前向入口或开口362处隔开,朝向设备120的前端(图5中的左侧),并且沿着沿中心轴线CL的通道360延伸到节点主体310的后端(图5中的右侧)处的通道360的船尾出口或开口364。替换地,可以允许节点主体310内的内部通道360的内表面与绳索112之间的无意接触,而同时经由系绳构件124到附着315的耦合来提供基本上所有的牵引力。
声学移动性
声学移动性在本文中定义为如实地遵循它所包括在其中的介质的颗粒运动的对象的能力。此性质可以受若干物理参数所支配,包括但不限于对象密度和尺寸。例如,其密度与环境介质的密度匹配并且其相对于介质内的颗粒运动的波长小的对象将在介质中移动,其中相位和幅度基本上与介质中的颗粒运动的相位和幅度匹配。将此类设备或对象描述成具有良好的声学移动性。
增加的密度将通常使对象的声学移动性降低或降级,同时大幅降低的密度可以导致具有相对于介质中的颗粒运动的幅度的增加的幅度的对象运动。具有相比于声学波长而言大的相关尺度的对象也将具有降低的声学移动性。
在海洋地震勘测的感兴趣的能量通常接近竖直地向上传播通过水柱115时,通过给予节点主体310低的水中重量(基本上中性的浮力)以及水平面中的大表面积,人们可以将设备120设计成具有良好的声学移动性,以便捕获对应于竖直传播的声学或地震能量的位移。因而,通过增加特定平面中的设备的表面积,薄片、翅片、翼形物和其它控制表面300也可以贡献于声学移动性。然而,取决于应用,水平面中的声学能量一般可以被视为令人讨厌的噪声。与水平面中相对较高的表面积相比,设备120因而还可以设计有在竖直面中相对较低的表面积,以便与竖直地震信号贡献相比,减少牵引阻力并且抑制水平噪声响应。
因而,水动力主体310可以适于关于在水平方向上(例如,平行于表面或者大体沿着表面)传播的声学或地震能量而言,优先地或者选择性地捕获在竖直方向上(例如,对水面垂直或者横穿)传播的声学或地震能量,从而增加信噪比。相反地,水动力主体310可以适于关于竖直(采集相对更多的信号)而言,优先地减少在水平方向上传播的声学或地震能量(采集相对较少的噪声)的捕获。这可以通过为设备120的主体310提供不同的水平和竖直轮廓,或者通过调整竖直表面(或翅片)330和水平表面(或翼形物)332的相对大小而完成,以便为设备120提供相对较大的水平截面或者表面积以及相对较小的竖直截面或表面积。
在采用颗粒速度感测的情况下,设备120(或机载控制器350;参见图3B)应当具有对传感器部件320的访问,所述传感器部件320配置成提供表征节点主体310关于水面的取向的信息。基于取向(以及其它导航数据),控制处理器可以配置成维持或者调整节点主体310关于牵引绳索112和水柱115的深度、横向位置和取向。对位置和取向的调整可以通过经由对应控制表面致动器机构(翅片/翼形物控制器)355来控制一个或多个翅片、翼形物、薄片或其它表面330和332,以及还通过经由系绳致动器机构340来调整一个或多个系绳构件124的长度来作出。
如果加速度计或者其它地震传感器320没有提供充足的信息来独立地确定节点主体310的取向,则分离的取向传感器可以被包括有处理器/控制系统350。替换地,机械装置(诸如万向节或经枢转的支持系统)可以配置成将传感器320维持在关于水柱115的已知取向中。地震节点或设备120还可以经压载以便维持正确的取向,例如,如由Olivier在题为DEVICE FOR LATERALLY STEERING STREAMER CABLES的美国专利号7,092,315中描述,其以其整体并且出于所有目的而通过引用并入本文。这些被动取向技术允许利用最小功率使用的正确取向。
图6是图示了示例性海洋地震阵列或勘测系统100的剖面图,包括经牵引的地震节点120和海底节点130两者。经牵引的节点120沿绳索112部署,并且由船只110牵引通过水柱115。海底节点130部署在水柱115的海底或底表面118上,例如,自主节点的阵列,或者沿一个或多个海底地震线缆122部署。
在一个特定实施例中,地震勘测100可以利用多个经牵引的自主地震传感器节点120和海底节点130来进行。地震节点120的第一部分或集合101可以由船只110在水柱115中的所选深度下进行牵引,如本文中所述。地震节点130的第二部分或集合102可以被部署到海底118以用于收集另外的地震数据。海底地震节点130的第二集合或阵列102可以经由绳索、远程操作的车辆(ROV)、自主水下车辆(AUV)或者使用自主的机载导航系统来部署。
在一个特定实施例中,节点120的第一集合101可以通过船只110部署为经牵引的阵列,所述船只110还包括耦合到脐带线缆142的地震源140。在其它实施例中,节点120的经牵引的集合或阵列101可以通过除了源船只之外的船只110来牵引。
图6图示了与地震源140组合的包括经牵引的节点120以及海底节点130两者的示例性地震勘测100。如图6中所示,地震源140可以部署在经牵引的阵列101上方(在比经牵引的阵列101更小的深度下),其中经牵引的节点120在水柱115中源140的深度下方沿绳索112分布。替换地,地震源140可以部署在与经牵引的阵列101相同的深度或者比经牵引的阵列101更深(下方),其中经牵引的节点120在水柱115中源140的深度处或上方沿绳索112分布。
在一些实施例中,节点120的第一集合或阵列101可以在预定义的采集模式中进行牵引,例如,如由Brooks等人在2015年5月13日提交的美国专利申请号14/711,154以及题为METHODS AND SYSTEMS FOR CONDUCTING RECONNAISSANCE MARINE SEISMIC SURVEYS的美国公开号2015/0331127中描述的曲折模式或其它布置,其中每一个整体地并且出于所有目的而通过引用并入本文。包括海底部署的节点130和经牵引的节点120两者的地震勘测100的一个优点在于,经牵引的节点120可以配置用于捕获相对较短偏移的地震数据,而海底节点130可以配置用于捕获相对较长偏移的地震数据,由此提供互补数据集来改进总体数据质量。
在一个实施例中,地震勘测100可以牵涉到在其中已经部署一个或多个海底线缆122的区域之上牵引节点120。海底线缆122可以包括非自主传感器节点130,其在物理上和/或电气上连接到提供于线缆122中的遥测系统,以便促进功率、数据和其它通信的传输。替换地,自主节点130可以独立地部署在海底118上或者沿被动线缆或绳索122分布,所述被动线缆或绳索122包括适于自主节点130的部署的柔性结构部件。在这些实施例中的任一个中,节点130可以包括对等(peer-to-peer)通信接口(例如,声学、电容或电感),但是不一定要求沿线缆122的功率或数据通信。
示例
示例性海洋地震传感器系统包括具有设置在水动力主体中的至少一个地震传感器的地震节点,其适于调制水柱中的阻力和流噪声。传感器配置用于对在水柱中传播的地震能量进行采样,例如,如由地震源出于海洋地震勘测的目的而产生。
系绳将水动力主体耦合到线缆或绳索,所述线缆或绳索在牵引通过水柱时可以使地震节点经受加速。取决于牵引速度、阻力和其它因素,加速可以包括一个或多个不同的频率分量。
至少一个控制表面可以提供在水动力主体上,并且配置用于在通过绳索牵引节点或者将节点束缚至绳索时,关于绳索或水柱(或两者)定位地震节点。系绳可以适于调制加速的频率分量中的一个或多个的传输,以便减少地震节点的加速相对于绳索的加速的幅度。
水动力主体可以具有不同的水平和竖直轮廓,其配置成关于在水平方向上传播的声学或地震能量而言,优先地捕获在竖直方向上传播的声学或地震能量。主体还可以配置成关于竖直而言,优先地减少在水平方向上传播的声学或地震能量的捕获,以便改进由传感器采样或采集的地震数据的信噪比。例如,主体本身或者水平(翼形物)和竖直(翅片)表面可以调整为提供相对较大的水平截面或表面积以及相对较小的竖直截面或表面积。
取决于应用,一个(或多个)控制表面可以配置成在牵引通过水柱时维持绳索和水动力主体之间的间距。导航系统还可以提供(例如,具有有线或无线收发器),并且配置成在牵引通过水柱时确定地震节点的位置。一个或多个致动器然后可以配置成调整控制表面以维持绳索和水动力主体之间的间距以及在牵引通过水柱时地震节点的位置中的一个或两者。
在这些示例中的任一个中,致动器可以提供为选择性地调整水动力主体与绳索之间的系绳的长度。基于该调整,系绳的固有振动频率可以关于加速的所述一个或多个频率分量而移位。
一个(或多个)地震传感器可以定位在地震节点内,在节点外壳的外表面内间隔。一个或多个声学通道还可以延伸通过水动力主体,提供从地震节点内的地震传感器延伸到地震节点外壳外的水柱的声学通道。
基于由通过系绳耦合到线缆的一个或多个单独的地震节点生成的相对小的拖曳力,系绳中的张力通常小于相邻绳索线缆中的张力。由于各个系绳附着的下游的耦合到线缆的其余部分的所有地震节点所生成的阻力,这与绳索中可能的相对更高得多的张力形成对比。
系绳中的张力可以关于水动力主体的中心线离轴取向,例如,使用到节点外壳的单点或多点系带附着。替换地,通道可以包括在水动力主体中,并且适于接合(engage)在轴向延伸通过地震节点的绳索。在这些示例中,系绳可以配置成施加沿绳索轴线取向的基本上对称的牵引力,因为它沿通道延伸通过水动力主体。
地震节点可以包括用于时间戳以及存储由传感器生成的地震数据的本地(从属)时钟和存储器部件,连同用于传输导航和控制数据的内部电源和通信部件。绳索因而可以提供为简单的被动强度部件,其配置用于在系绳上将水动力主体牵引通过水柱,而不需要绳索与地震节点之间的另外的功率或数据通信。
海洋地震装置实施例包括沿水柱中可部署的绳索分布的一个或多个地震节点。地震节点中的每一个可以包括设置在适于调制阻力和流噪声的水动力主体中的至少一个地震传感器,其中传感器配置用于对在水柱中传播的地震能量进行采样。替换地,节点中的一些可以包括地震传感器,并且其它的可以包括导航、转向和控制元件。
一个或多个被动或主动控制表面可以配置用于关于水柱定位地震节点中的每一个,其中一个或多个系绳构件将相应的水动力主体耦合到绳索。绳索使经牵引的地震节点经受加速,并且系绳构件适于调制加速的频率分量中的一个或多个以减少沿着系绳构件从绳索向地震节点的加速的传输,和/或减少地震节点相对于它们所束缚的相邻绳索区段的加速的幅度。
在一些实施例中,地震节点包括致动器,所述致动器配置成调整系绳构件中的一个或多个的长度,如在一个(或多个)相应水动力主体和绳索之间限定。基于系绳长度,系绳构件的固有振动频率因而关于加速的所述一个或多个频率分量而移位,以便减少从绳索向经束缚的节点的噪声引发的运动的传输。
绳索可以由被动强度部件形成,在没有用于绳索和地震节点之间的通信的功率或数据线的情况下,所述被动强度部件配置用于在系绳构件上将水动力主体牵引通过水柱。导航系统可以提供在节点中的一个或多个上,例如,具有无线收发器,其中导航系统配置成致动相应的(主动)控制表面以在由绳索牵引时维持水柱中的地震节点的位置。维持位置可以包括根据预定义的航行线路或勘测计划来调整深度和横向位置,以及维持地震节点与绳索之间的间距以除了沿系绳之外,通过避免直接接触或其它机械耦合来进一步减少噪声效应。
部署系统可以提供有配置用于将绳索部署到水柱中的绞车,以及配置用于存储地震节点的仓库。地震节点在预选择的位置处耦合到绳索,以用于沿绳索部署到水柱中。在一些实施例中,部署系统包括自动化耦合机构,其适于基于预定义的配置的数据库而将地震节点耦合到绳索,其中预定义配置中的每一个可以确定用于沿绳索分布的地震节点的预选择的位置的不同集合。
方法实施例包括提供多个地震节点,地震节点中的每一个具有设置在水动力主体中的至少一个地震传感器,其适于调制水柱中的阻力和流噪声。传感器配置用于当部署节点时对传播通过水柱的地震能量进行采样。
适合的部署步骤包括经由一个或多个系绳构件将地震节点耦合到绳索,以及将绳索部署到水柱中,其中地震节点沿绳索分布。适合的牵引步骤包括沿绳索将地震节点牵引通过水柱。绳索使地震节点经受具有一个或多个频率分量的加速,所述一个或多个频率分量可以经由系绳构件来调制以减少沿系绳构件的加速的传输,和/或相对于绳索的加速而减少地震节点的加速。
另外的方法步骤包括调整一个或多个系绳构件的长度,如在相应的水动力主体与绳索之间限定。因此,系绳构件的一个或多个固有振动频率可以关于加速的频率分量而移位,以便减少从绳索到地震节点的噪声引发的振动或加速的传输。
地震节点中的一个或多个上的控制表面可以经致动以维持或者调整相应水动力主体与绳索之间的间距以及相应地震节点关于绳索或水柱的位置中的一个或多个。地震节点中的一个或多个上的控制表面还可以经致动以在束缚到由地震船只牵引的绳索时维持水柱内的深度和位置。
虽然关于特定示例和实施例描述了本发明,但是要理解到,可以作出改变并且可以代用等同方案以使本公开适于不同的材料、问题和情况,而同时保持在如所要求保护的本发明的精神和范围内。本发明因而不限于所公开的特定特征和示例,而是涵盖落入随附权利要求的范围内的所有实施例。虽然前述内容针对的是本发明的特定实施例,但是还可以设想到其它的以及另外的实施例,而没有脱离由接下来的权利要求所确定的本发明的范围。

Claims (25)

1.一种地震装置,包括:
绳索,可部署在水柱中并且配置成被牵引;以及
耦合到绳索的一个或多个地震节点;
地震节点中的每一个包括配置用于对水柱中的地震能量进行采样的至少一个地震传感器;以及
将地震节点耦合到绳索的一个或多个系绳构件,其中系绳构件包括选择用于相对于绳索来调制地震节点的加速的一个或多个频率分量的有弹性的材料;
其中地震节点中的每一个设置在提供水平和竖直轮廓的水动力主体中,其适于关于在水平方向上传播的声学或地震能量而言,优先地捕获在竖直方向上传播的声学或地震能量。
2.权利要求1所述的地震装置,还包括配置成调整系绳构件中的一个或多个的长度的致动器,其中其固有频率关于加速的所述一个或多个频率分量而移位。
3.权利要求1所述的地震装置,其中绳索包括被动强度部件,所述被动强度部件配置用于在没有绳索与地震节点之间的功率或数据通信的情况下将所述一个或多个地震节点牵引通过水柱。
4.权利要求1所述的地震装置,其中地震节点包括:一个或多个转向节点,每一个具有配置成致动相应控制表面以用于关于水柱定位相应地震节点的控制器,以及配置用于经由无线收发器向转向节点传送导航数据的一个或多个控制节点,其中导航数据确定相应地震节点在由绳索牵引时的定位。
5.权利要求1所述的地震装置,还包括:
部署系统,所述部署系统具有配置用于部署绳索的绞车以及配置用于存储地震节点的仓库,其中地震节点在所选位置处耦合到绳索以用于部署到水柱中;或者
自动化耦合机构,所述自动化耦合机构适于根据预定义的配置的数据库来将地震节点耦合到绳索,所述预定义的配置确定地震节点在沿绳索的不同预选择的位置中的部署。
6.权利要求1所述的地震装置,还包括:
部署在水柱中的地震源,所述地震源配置成生成地震波场以用于通过由绳索牵引的地震节点进行采样;或者
部署在水柱下方的多个海底节点,其中海底节点配置成在从由绳索牵引的地震节点的不同偏移处对地震波场进行采样。
7.一种用于牵引的地震节点的方法,包括:
提供多个地震节点,地震节点中的每一个具有配置用于对地震能量进行采样的至少一个地震传感器;
将地震节点中的每一个耦合到绳索;
将绳索部署到水柱中;
沿着绳索牵引地震节点;以及
利用地震节点对水柱中的地震能量进行采样;其中地震节点经由一个或多个系绳构件耦合到绳索,并且还包括选择所述一个或多个系绳构件的长度以调制绳索的加速的至少一个频率分量的传输;
其中节点具有不同水平和竖直轮廓,其中所述水平轮廓具有比竖直轮廓的表面积相对更大的表面积,并且还包括节点关于水平方向而言选择性地捕获在竖直方向上传播通过水柱的声学能量。
8.权利要求7所述的方法,还包括致动一个或多个控制表面来在由绳索牵引时维持所述一个或多个地震节点在水柱内的深度和横向位置。
9.权利要求7所述的方法,还包括利用由绳索牵引的地震节点以及利用部署在水柱下方的多个海底节点对地震波场进行采样,其中海底节点在从由绳索牵引的地震节点的不同偏移处对地震波场进行采样。
10.一种地震传感器系统,包括:
具有至少一个地震传感器的地震节点;以及
地震节点与绳索之间的耦合,其中所述耦合包括适于调制绳索的加速的一个或多个频率分量向地震节点的传输的有弹性的耦合构件;
其中地震传感器配置用于在由绳索牵引地震节点时对地震能量进行采样;并且
其中地震节点包括具有不同水平和竖直轮廓的水动力主体,其配置成关于在对应水平方向上传播的声学能量而言,优先地捕获在竖直方向上传播通过水柱的声学能量。
11.权利要求10所述的地震传感器系统,其中地震节点包括:
具有电源、时钟以及用于存储地震数据的存储器的自主节点,其中绳索包括被动强度部件,所述被动强度部件配置用于在没有绳索与地震节点之间的功率或数据线路通信的情况下将自主地震节点牵引通过水柱。
12.权利要求10所述的地震传感器系统,还包括:
用于在由绳索牵引通过水柱时定位地震节点的一个或多个主动或被动控制表面;或者
导航系统,所述导航系统配置成生成表示由控制表面对地震节点的定位的导航数据。
13.权利要求12所述的地震传感器系统,还包括:
配置成选择性地调整有弹性的耦合构件的长度的致动器,其中其固有频率关于所述一个或多个频率分量而移位以减少到地震节点的加速的传输;
控制器,所述控制器配置成基于通过水柱的绳索的牵引速度和由传感器生成的数据中的一个或多个来确定有弹性的耦合构件的被选择性地调整的长度,其中由传感器生成的数据表征地震节点的加速;或者
从地震传感器延伸到水柱的一个或多个声学通道,其中地震传感器在地震节点内从水柱隔开。
14.权利要求10所述的地震传感器系统,还包括适于接合在轴向上延伸通过那里的绳索的地震节点中的通道,其中所述耦合配置成施加净牵引力,所述净牵引力基本上沿着延伸通过通道的绳索取向。
15.一种地震装置,包括:
绳索,可部署在水柱中并且配置成被牵引;以及
耦合到绳索的一个或多个地震节点;
地震节点中的每一个包括配置用于对水柱中的地震能量进行采样的至少一个地震传感器;
其中地震节点中的每一个设置在提供水平和竖直轮廓的水动力主体中,其适于关于在水平方向上传播的声学或地震能量而言,优先地捕获在竖直方向上传播的声学或地震能量。
16.权利要求15所述的地震装置,其中地震节点包括:一个或多个转向节点,每一个具有配置成致动相应控制表面以用于关于水柱定位相应地震节点的控制器,以及配置用于经由无线收发器向转向节点传送导航数据的一个或多个控制节点,其中导航数据确定相应地震节点在由绳索牵引时的定位。
17.权利要求15所述的地震装置,还包括自动化耦合机构,所述自动化耦合机构适于根据预定义的配置的数据库来将地震节点耦合到绳索,所述预定义的配置确定地震节点在沿绳索的不同预选择的位置中的部署。
18.一种用于牵引的地震节点的方法,包括:
提供多个地震节点,地震节点中的每一个具有配置用于对地震能量进行采样的至少一个地震传感器;
将地震节点中的每一个耦合到绳索;
将绳索部署到水柱中;
沿绳索牵引地震节点;以及
利用地震节点对水柱中的地震能量进行采样;
其中节点具有不同水平和竖直轮廓,其中所述水平轮廓具有与竖直轮廓的表面积相比相对更大表面积,并且还包括节点关于水平方向而言选择性地捕获在竖直方向上传播通过水柱的声学能量。
19.权利要求18所述的方法,还包括致动一个或多个控制表面来在由绳索牵引时维持所述一个或多个地震节点在水柱内的深度和横向位置。
20.一种地震传感器系统,包括:
具有至少一个地震传感器的地震节点;以及
地震节点与绳索之间的耦合;
其中地震传感器配置用于在由绳索牵引地震节点时对地震能量进行采样;并且
其中地震节点包括具有不同水平和竖直轮廓的水动力主体,其配置成关于在对应水平方向上传播的声学能量而言,优先地捕获在竖直方向上传播通过水柱的声学能量。
21.权利要求20所述的地震传感器系统,其中地震节点包括具有电源、时钟以及用于存储地震数据的存储器的自主节点,其中绳索包括被动强度部件,所述被动强度部件配置用于在没有绳索与地震节点之间的功率或数据线路通信的情况下将自主地震节点牵引通过水柱。
22.权利要求20所述的地震传感器系统,还包括用于在由绳索牵引通过水柱时定位地震节点的一个或多个主动或被动控制表面。
23.权利要求20所述的地震传感器系统,还包括导航系统,所述导航系统配置成生成表示由控制表面对地震节点的定位的导航数据。
24.权利要求20所述的地震传感器系统,其中地震传感器在地震节点内从水柱隔开,并且还包括从地震传感器延伸到水柱的一个或多个声学通道。
25.权利要求20所述的地震传感器系统,还包括适于接合在轴向上延伸通过那里的绳索的地震节点中的通道,其中所述耦合配置成施加净牵引力,所述净牵引力基本上沿着延伸通过通道的绳索取向。
CN201680051853.5A 2015-07-07 2016-07-07 经牵引的地震节点 Active CN108027449B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562189647P 2015-07-07 2015-07-07
US62/189647 2015-07-07
PCT/US2016/041248 WO2017007879A1 (en) 2015-07-07 2016-07-07 Towed seismic node

Publications (2)

Publication Number Publication Date
CN108027449A CN108027449A (zh) 2018-05-11
CN108027449B true CN108027449B (zh) 2020-11-10

Family

ID=56507838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680051853.5A Active CN108027449B (zh) 2015-07-07 2016-07-07 经牵引的地震节点

Country Status (7)

Country Link
US (2) US10024990B2 (zh)
EP (2) EP3805812B1 (zh)
CN (1) CN108027449B (zh)
BR (1) BR112017028613B1 (zh)
CA (1) CA2990830A1 (zh)
MX (1) MX2018000311A (zh)
WO (1) WO2017007879A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX351823B (es) 2013-03-11 2017-10-30 Ion Geophysical Corp Modo de ahorro de energía para sistemas de adquisición de datos sísmicos del fondo del océano.
BR112017028613B1 (pt) * 2015-07-07 2022-12-20 Ion Geophysical Corporation Aparelho sísmico, método, e sistema de sensor sísmico
WO2018039121A1 (en) * 2016-08-22 2018-03-01 Seabed Geosolutions B.V. Wavegate for a seismic surface vessel
DK201970585A1 (en) * 2017-05-23 2019-10-01 Ion Geophysical Corporation SEISMIC NODE DEPLOYMENT SYSTEM
US10859695B2 (en) * 2017-11-28 2020-12-08 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Acoustic system and method for characterizing granular media
EP3797319B1 (en) 2018-05-23 2023-08-30 Blue Ocean Seismic Services Limited An autonomous data acquisition system
EP4354680A2 (en) 2018-06-08 2024-04-17 DigiCourse LLC Sensor node attachment mechanism and cable retrieval system
US11048007B2 (en) * 2018-10-05 2021-06-29 Magseis Ff Llc Systems and methods to control discharge speed of an ocean bottom seismic data acquisition unit via a moving underwater vehicle
CN111323810B (zh) * 2020-03-16 2022-05-31 自然资源部第二海洋研究所 一种震源位于拖缆下方的海洋地震探测系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102257A (zh) * 1985-03-05 1986-10-15 埃克森生产研究公司 分布式海洋地震源控制系统和方法
WO2010027966A2 (en) * 2008-09-03 2010-03-11 Fairfield Industries Incorporated Seismic cable with adjustable buoyancy
CN201508415U (zh) * 2009-09-24 2010-06-16 中国海洋大学 高分辨率海洋地震勘探多道数字拖缆
CN103052893A (zh) * 2010-06-10 2013-04-17 凯伊特塔公司 在水生介质内进行地震勘探的方法和装置以及部署方法
CN204166144U (zh) * 2014-10-22 2015-02-18 中国海洋石油总公司 一种缆绳结构

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388711A (en) 1981-07-28 1983-06-14 The United States Of America As Represented By The Secretary Of The Navy Optimum flow noise cancelling hydrophone module
DK159628C (da) 1988-01-21 1991-04-29 Berendsen Sophus Marine As Laasemekanisme til et tov, en line eller et lignende langstrakt boejeligt organ
US6580661B1 (en) * 1998-12-22 2003-06-17 Richard Anton Marschall Hydrophone array
US6024344A (en) 1999-02-17 2000-02-15 Western Atlas International, Inc. Method for recording seismic data in deep water
EP1506433B1 (en) 2002-05-23 2009-12-30 ION Geophysical Corporation Gps-based underwater cable positioning system
US7239577B2 (en) 2002-08-30 2007-07-03 Pgs Americas, Inc. Apparatus and methods for multicomponent marine geophysical data gathering
US7310287B2 (en) 2003-05-30 2007-12-18 Fairfield Industries Incorporated Method and apparatus for seismic data acquisition
US7092315B2 (en) * 2004-05-27 2006-08-15 Input/Output, Inc. Device for laterally steering streamer cables
US7660206B2 (en) 2004-12-21 2010-02-09 Optoplan As Ocean bottom seismic station
US20060176774A1 (en) * 2005-02-10 2006-08-10 Rune Toennessen Apparatus and methods for controlling position of marine seismic sources
US7883292B2 (en) 2008-06-30 2011-02-08 Fairfield Industries Incorporated Node storage, deployment and retrieval system
US8087848B2 (en) 2008-08-27 2012-01-03 Fairfield Industries Incorporated Powered sheave for node deployment and retrieval
US7933165B2 (en) 2008-09-03 2011-04-26 Fairfield Industries Incorporated Connector for seismic cable
US8730766B2 (en) 2010-01-22 2014-05-20 Ion Geophysical Corporation Seismic system with ghost and motion rejection
EP2541283B1 (en) * 2011-06-29 2016-08-17 Sercel Method and device for estimating an underwater acoustic sound velocity in a network of acoustic nodes
FR2985039B1 (fr) 2011-12-21 2015-07-03 Cggveritas Services Sa Noeud sous-marin couple avec l'eau pour des etudes sismiques
US9256002B2 (en) 2012-04-09 2016-02-09 Fairfield Industries Incorporated Coupler/ coupling ring assembly, methods, and applications
US8966718B2 (en) 2012-04-09 2015-03-03 Fairfield Industries Incorporated Coupling ring, methods and applications
US9003612B2 (en) 2012-04-09 2015-04-14 Fairfield Industries Incorporated Coupler, methods, and applications
CN103033845B (zh) * 2012-12-17 2015-05-13 中国科学院地质与地球物理研究所 单分量垂向组合式海底地震采集系统
US9448311B2 (en) 2013-01-31 2016-09-20 Seabed Geosolutions B.V. Underwater node for seismic surveys and method
NO337396B1 (no) * 2014-03-07 2016-04-04 Seafloor Geophysical Solutions As System og fremgangsmåte for å koble seismiske havbunnsnoder til en tauet kabel
US10473806B2 (en) 2014-05-13 2019-11-12 Ion Geophysical Corporation Ocean bottom system
US9581712B2 (en) 2014-05-15 2017-02-28 Ion Geophysical Corporation Methods and systems for conducting reconnaissance marine seismic surveys
WO2016020540A1 (en) 2014-08-07 2016-02-11 Seabed Geosolutions B.V. Autonomous seismic nodes for the seabed
US9429671B2 (en) 2014-08-07 2016-08-30 Seabed Geosolutions B.V. Overboard system for deployment and retrieval of autonomous seismic nodes
WO2016020500A1 (en) 2014-08-07 2016-02-11 Seabed Geosolutions B.V. System for automatically attaching and detaching seismic nodes directly to a deployment cable
BR112017028613B1 (pt) * 2015-07-07 2022-12-20 Ion Geophysical Corporation Aparelho sísmico, método, e sistema de sensor sísmico

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102257A (zh) * 1985-03-05 1986-10-15 埃克森生产研究公司 分布式海洋地震源控制系统和方法
WO2010027966A2 (en) * 2008-09-03 2010-03-11 Fairfield Industries Incorporated Seismic cable with adjustable buoyancy
CN201508415U (zh) * 2009-09-24 2010-06-16 中国海洋大学 高分辨率海洋地震勘探多道数字拖缆
CN103052893A (zh) * 2010-06-10 2013-04-17 凯伊特塔公司 在水生介质内进行地震勘探的方法和装置以及部署方法
CN204166144U (zh) * 2014-10-22 2015-02-18 中国海洋石油总公司 一种缆绳结构

Also Published As

Publication number Publication date
US20180348387A1 (en) 2018-12-06
CN108027449A (zh) 2018-05-11
US10024990B2 (en) 2018-07-17
EP3320377B1 (en) 2021-05-26
MX2018000311A (es) 2018-03-14
US20170010372A1 (en) 2017-01-12
US11163077B2 (en) 2021-11-02
BR112017028613B1 (pt) 2022-12-20
EP3805812B1 (en) 2022-10-12
BR112017028613A2 (pt) 2018-09-04
EP3805812A1 (en) 2021-04-14
CA2990830A1 (en) 2017-01-12
WO2017007879A1 (en) 2017-01-12
EP3320377A1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
CN108027449B (zh) 经牵引的地震节点
US7391674B2 (en) Methods and systems for determining orientation of seismic cable apparatus
US9013952B2 (en) Marine seismic survey systems and methods using autonomously or remotely operated vehicles
US9841521B2 (en) Variable depth multicomponent sensor streamer
EP2316044B1 (en) Determining seismic streamer array geometry and seismic sensor response using dual sensor seismic streamer arrays
US20100135112A1 (en) Methods and Apparatus for Acquisition of Marine Seismic Data
GB2589011A (en) Modified simultaneous long-offset acquistion with improved low frequency performance for full wavefield inversion
US11079506B2 (en) Multicomponent streamer
US9354344B2 (en) Interfacing marine survey devices using acoustic transducers
US20200393590A1 (en) Low frequency acquisition with towed streamers
JP2003019999A (ja) 海底地層探査システム
EP4339652A1 (en) Negative offset interleaved high resolution system for seismic surveys
US20210124073A1 (en) Modified simultaneous long-offset acquisition with improved low frequency performance for full wavefield inversion
JP2006138706A (ja) ハイドレート層の層厚推定方法
Haumonté et al. FreeCable™: a new autonomous system for offshore seismic acquisition using an USV swarm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant