CN108018083B - Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline - Google Patents
Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline Download PDFInfo
- Publication number
- CN108018083B CN108018083B CN201610971963.5A CN201610971963A CN108018083B CN 108018083 B CN108018083 B CN 108018083B CN 201610971963 A CN201610971963 A CN 201610971963A CN 108018083 B CN108018083 B CN 108018083B
- Authority
- CN
- China
- Prior art keywords
- solvent
- extraction
- gasoline
- reaction
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003502 gasoline Substances 0.000 title claims abstract description 151
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 55
- 230000023556 desulfurization Effects 0.000 title claims abstract description 55
- 239000002904 solvent Substances 0.000 claims abstract description 220
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 136
- 239000011593 sulfur Substances 0.000 claims abstract description 136
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 127
- 238000000605 extraction Methods 0.000 claims abstract description 102
- 238000006243 chemical reaction Methods 0.000 claims abstract description 93
- 239000003054 catalyst Substances 0.000 claims abstract description 88
- 230000001590 oxidative effect Effects 0.000 claims abstract description 82
- 238000004332 deodorization Methods 0.000 claims abstract description 71
- 239000000463 material Substances 0.000 claims abstract description 42
- 238000002156 mixing Methods 0.000 claims abstract description 12
- 239000007800 oxidant agent Substances 0.000 claims abstract description 10
- 238000000638 solvent extraction Methods 0.000 claims description 118
- 238000005984 hydrogenation reaction Methods 0.000 claims description 77
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 42
- 238000006266 etherification reaction Methods 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 34
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 34
- 238000004821 distillation Methods 0.000 claims description 33
- 238000011084 recovery Methods 0.000 claims description 33
- 230000008929 regeneration Effects 0.000 claims description 33
- 238000011069 regeneration method Methods 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 31
- 150000001336 alkenes Chemical class 0.000 claims description 31
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 30
- 238000009835 boiling Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 29
- 239000012752 auxiliary agent Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 22
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 20
- 238000000895 extractive distillation Methods 0.000 claims description 17
- 238000005194 fractionation Methods 0.000 claims description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 15
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 10
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 claims description 10
- LCEDQNDDFOCWGG-UHFFFAOYSA-N morpholine-4-carbaldehyde Chemical compound O=CN1CCOCC1 LCEDQNDDFOCWGG-UHFFFAOYSA-N 0.000 claims description 10
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 239000010970 precious metal Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 7
- 239000003456 ion exchange resin Substances 0.000 claims description 7
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 7
- 238000005292 vacuum distillation Methods 0.000 claims description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 6
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 235000013877 carbamide Nutrition 0.000 claims description 6
- 238000004523 catalytic cracking Methods 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 239000010457 zeolite Substances 0.000 claims description 6
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 claims description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 5
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 5
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- 150000002576 ketones Chemical class 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 235000006408 oxalic acid Nutrition 0.000 claims description 5
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 claims description 5
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 claims description 4
- 229940102253 isopropanolamine Drugs 0.000 claims description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims description 4
- 235000005985 organic acids Nutrition 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 claims description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 claims description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 3
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 claims description 3
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 claims description 2
- AIDFJGKWTOULTC-UHFFFAOYSA-N 1-butylsulfonylbutane Chemical compound CCCCS(=O)(=O)CCCC AIDFJGKWTOULTC-UHFFFAOYSA-N 0.000 claims description 2
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 claims description 2
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 claims description 2
- DCALJVULAGICIX-UHFFFAOYSA-N 1-propylpyrrolidin-2-one Chemical compound CCCN1CCCC1=O DCALJVULAGICIX-UHFFFAOYSA-N 0.000 claims description 2
- JEXYCADTAFPULN-UHFFFAOYSA-N 1-propylsulfonylpropane Chemical compound CCCS(=O)(=O)CCC JEXYCADTAFPULN-UHFFFAOYSA-N 0.000 claims description 2
- WKFQMDFSDQFAIC-UHFFFAOYSA-N 2,4-dimethylthiolane 1,1-dioxide Chemical compound CC1CC(C)S(=O)(=O)C1 WKFQMDFSDQFAIC-UHFFFAOYSA-N 0.000 claims description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 claims description 2
- SOZYDBBOFTUUPT-UHFFFAOYSA-N 3-ethylthiolane 1,1-dioxide Chemical compound CCC1CCS(=O)(=O)C1 SOZYDBBOFTUUPT-UHFFFAOYSA-N 0.000 claims description 2
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 claims description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 2
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000003672 ureas Chemical class 0.000 claims description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims 1
- 150000003464 sulfur compounds Chemical class 0.000 claims 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 24
- 150000003568 thioethers Chemical class 0.000 abstract description 16
- 229930195733 hydrocarbon Natural products 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 7
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 5
- 238000007670 refining Methods 0.000 abstract description 2
- -1 non-thiol sulfides Chemical class 0.000 description 16
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 description 13
- 239000003921 oil Substances 0.000 description 12
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 11
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 10
- 229930192474 thiophene Natural products 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 239000003513 alkali Substances 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000000622 liquid--liquid extraction Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000002019 disulfides Chemical class 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000012190 activator Substances 0.000 description 5
- 150000003577 thiophenes Chemical class 0.000 description 5
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000009931 harmful effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 3
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 3
- 101100208039 Rattus norvegicus Trpv5 gene Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004508 fractional distillation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004010 onium ions Chemical group 0.000 description 2
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- YLGQLQSDQXOIBI-UHFFFAOYSA-N (29h,31h-phthalocyaninato(2-)-n29,n30,n31,n32)platinum Chemical compound [Pt+2].[N-]1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)[N-]3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 YLGQLQSDQXOIBI-UHFFFAOYSA-N 0.000 description 1
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 1
- ZNYRFEPBTVGZDN-UHFFFAOYSA-N 5S,6S-epoxy-15R-hydroxy-ETE Chemical compound COCCOCCOCCOCCO ZNYRFEPBTVGZDN-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical group [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Chemical class 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZQRGREQWCRSUCI-UHFFFAOYSA-N [S].C=1C=CSC=1 Chemical compound [S].C=1C=CSC=1 ZQRGREQWCRSUCI-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000009874 alkali refining Methods 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical class Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000002030 fractions by solvent Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- LBAIJNRSTQHDMR-UHFFFAOYSA-N magnesium phthalocyanine Chemical group [Mg].C12=CC=CC=C2C(N=C2NC(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2N1 LBAIJNRSTQHDMR-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- MCTALTNNXRUUBZ-UHFFFAOYSA-N molport-000-691-724 Chemical compound [Pd+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MCTALTNNXRUUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/14—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including at least two different refining steps in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
技术领域technical field
本发明涉及烃类物料的精制领域,具体地,涉及一种汽油深度脱硫的方法和一种用于汽油深度脱硫的设备,更具体地,涉及一种含硫汽油通过加氢方式与非加氢方式组合而成的深度脱硫工艺。The present invention relates to the refining field of hydrocarbon materials, in particular, to a method for deep desulfurization of gasoline and a device for deep desulfurization of gasoline, and more particularly, to a kind of sulfur-containing gasoline that is combined with non-hydrogenated gasoline by hydrogenation A deep desulfurization process formed by a combination of methods.
背景技术Background technique
众所周知,汽车尾气中有毒、有害物质的排放严重影响着空气质量,为此,世界各国都对作为发动机燃料的油品质量限定了越来越严格的标准。我国于2013年1月1日起在全国范围内实行Ⅳ号排放标准,并已在北京、上海等大城市实行Ⅴ号排放标准。Ⅳ号、Ⅴ号排放标准分别规定车用汽油中硫含量不大于50μg/g和10μg/g。As we all know, the emission of toxic and harmful substances in automobile exhaust seriously affects air quality. Therefore, countries around the world have set more and more stringent standards for the quality of oil used as engine fuel. my country has implemented No. IV emission standards nationwide since January 1, 2013, and has implemented No. V emission standards in large cities such as Beijing and Shanghai. IV and V emission standards stipulate that the sulfur content in motor gasoline should not exceed 50 μg/g and 10 μg/g, respectively.
汽油中的硫主要来自于催化裂化汽油,随着油品加工原料向重质化方向发展,将导致催化裂化汽油的硫含量进一步增高。因此,降低催化裂化汽油的硫含量是降低成品汽油硫含量的关键所在。The sulfur in gasoline mainly comes from catalytically cracked gasoline. With the development of oil processing raw materials to the direction of heaviness, the sulfur content of catalytically cracked gasoline will further increase. Therefore, reducing the sulfur content of catalytically cracked gasoline is the key to reducing the sulfur content of finished gasoline.
汽油中的硫主要包括硫醇类、硫醚类、二硫醚类及噻吩类(包括噻吩及噻吩衍生物)等。作为燃料的汽油标准中,其硫醇硫含量及总硫含量被规定了最高限值。当硫醇硫含量超标或总硫含量超标时必须对汽油进行脱硫醇或脱硫精制。The sulfur in gasoline mainly includes mercaptans, sulfides, disulfides and thiophenes (including thiophene and thiophene derivatives). In the gasoline standard as a fuel, the mercaptan sulfur content and the total sulfur content are stipulated with maximum limits. When the mercaptan sulfur content exceeds the standard or the total sulfur content exceeds the standard, the gasoline must be desulfurized or desulfurized.
由于作为车用汽油池调和组分的催化裂化汽油富含烯烃,采用常规加氢方式易因为烯烃的饱和而导致辛烷值损失较大。为了避免加工过程中辛烷值的较大损失,人们通常采用分段处理的方式对催化裂化汽油进行脱硫精制。Since the catalytically cracked gasoline, which is used as a blending component of the gasoline pool for vehicles, is rich in olefins, the conventional hydrogenation method is prone to cause a large loss of octane number due to the saturation of olefins. In order to avoid the large loss of octane number in the process, people usually use staged treatment to desulfurize and refine the catalytically cracked gasoline.
US3957625报道了一种汽油脱硫的方法。所述方法是将汽油切割为轻、重两部分,通过对重汽油馏分进行选择性加氢处理的方式而降低汽油中的硫含量。以及US6610197报道了一种汽油脱硫的方法,该方法是将汽油切割为轻、重两部分,对轻馏分进行非加氢处理,对重馏分进行加氢处理,以此来降低汽油中的硫含量。US3957625 reports a method for gasoline desulfurization. The method is to cut gasoline into light and heavy parts, and reduce the sulfur content in the gasoline by selectively hydrotreating the heavy gasoline fraction. And US6610197 has reported a kind of method for gasoline desulfurization, and this method is to cut gasoline into light and heavy parts, carry out non-hydroprocessing to light fractions, and carry out hydroprocessing to heavy fractions to reduce the sulfur content in the gasoline with this .
US6623627报道了一种低硫汽油的生产方法,该方法是将汽油切割为低、中、高沸点三部分馏分,其中含硫醇的低沸点馏分与碱液接触选择性脱除硫醇,含噻吩的中沸点馏分通过抽提进行脱硫,中沸点馏分的含噻吩的抽提液与高沸点馏分在加氢脱硫区进行脱硫反应,然后将分别处理后的轻、中、重馏分混合得到硫含量降低的汽油产品。所述低沸点馏分与碱液接触是采取碱液抽提的方式进行,所述碱液在抽提硫醇后进行氧化再生,并通过沉降的方式分离出氧化过程所产生的二硫化物后循环使用。然而该现有技术并没有公开含噻吩的中沸点馏分的溶剂抽提方法。US6623627 reports a method for producing low-sulfur gasoline. The method is to cut gasoline into three fractions of low, medium and high boiling points, wherein the low-boiling fractions containing mercaptans are contacted with lye to selectively remove mercaptans and thiophene-containing fractions. The middle boiling point fraction is desulfurized by extraction, the thiophene-containing extract of the middle boiling point fraction and the high boiling point fraction are subjected to desulfurization reaction in the hydrodesulfurization zone, and then the separately treated light, medium and heavy fractions are mixed to obtain a reduced sulfur content. gasoline products. The contact between the low-boiling fraction and the lye is carried out by means of lye extraction, the lye is oxidized and regenerated after the mercaptan is extracted, and the disulfides produced by the oxidation process are separated by sedimentation and then recycled. use. However, the prior art does not disclose a solvent extraction process for thiophene-containing middle boiling fractions.
CN102851069A报道了一种汽油脱硫的方法,该方法包括将汽油切割分馏沸程相对高的重馏分和沸程相对低的轻馏分;在选择性加氢脱硫条件下,将重馏分和氢气与加氢脱硫催化剂接触进行选择性加氢脱硫,得到脱硫后的重馏分;将轻馏分与碱液接触进行轻馏分脱硫,将得到的吸收了硫化物的碱液和氧化剂与氧化催化剂以及一部分所述脱硫后的重馏分接触同时进行碱液再生和碱液脱硫,使得碱液中的硫化物的盐氧化成二硫化物,同时使碱液中的二硫化物抽提入所述脱硫后的重馏分中,然后进行相分离,并将尾气排出;将得到的至少一部分所述吸收了二硫化物的重馏分返回进行所述选择性加氢脱硫;将所述脱硫后的重馏分与脱硫后的轻馏分混合得到产品。CN102851069A reports a method for desulfurization of gasoline, which comprises cutting gasoline to fractionate heavy fractions with relatively high boiling range and light fractions with relatively low boiling range; The desulfurization catalyst is contacted to carry out selective hydrodesulfurization to obtain heavy fractions after desulfurization; the light fractions are contacted with lye to carry out light fraction desulfurization, and the obtained lye and oxidant that have absorbed sulfides are combined with the oxidation catalyst and a part of the desulfurized The heavy fractions of the lye are contacted to carry out lye regeneration and lye desulfurization simultaneously, so that the salt of the sulfide in the lye is oxidized into disulfide, and simultaneously the disulfide in the lye is extracted into the heavy fraction after the desulfurization, Then phase separation is carried out, and the tail gas is discharged; at least a part of the obtained disulfide-absorbed heavy fraction is returned for the selective hydrodesulfurization; the desulfurized heavy fraction is mixed with the desulfurized light fraction get product.
CN103555359A公开了一种催化裂化汽油的深度脱硫方法,该方法也是通过溶剂抽提的方式脱除汽油馏分中的硫化物。其溶剂抽提部分采用的是液-液抽提脱硫方式。CN103555359A discloses a deep desulfurization method for catalytically cracked gasoline, which also removes sulfides in gasoline fractions by solvent extraction. The solvent extraction part adopts the liquid-liquid extraction desulfurization method.
CN103740405A公开了一种生产低硫汽油的碱洗-萃取-加氢组合工艺,该工艺是将汽油切割为轻、重馏分,轻馏分经碱精制后再进行萃取脱硫,并将萃取出来的含硫组分与重馏分混合进行选择性加氢,萃取脱硫后的轻馏分与选择性加氢后的重馏分混合成为低硫汽油产品。所述碱精制是采取简单碱洗的方式进行,必然耗碱严重。其萃取脱硫方式采用的也是液-液抽提方式。CN103740405A discloses a combined process of alkali washing-extraction-hydrogenation for producing low-sulfur gasoline. The process is to cut gasoline into light and heavy fractions, and then carry out extraction and desulfurization after the light fractions are purified by alkali, and the extracted sulfur-containing fractions are subjected to extraction and desulfurization. The components are mixed with heavy fractions for selective hydrogenation, and the light fractions after extraction and desulfurization are mixed with heavy fractions after selective hydrogenation to form low-sulfur gasoline products. The alkali refining is carried out by means of simple alkali washing, which inevitably consumes serious alkali. The extraction desulfurization method also adopts the liquid-liquid extraction method.
在上述所公开的脱硫方法或工艺中,碱处理的目的在于脱除汽油馏分中相对分子质量较小的硫醇,例如碳数不大于4的硫醇,而溶剂抽提的目的在于脱除汽油馏分中非硫醇类的硫化物,主要是噻吩化合物。当通过碱处理与溶剂处理的汽油馏分质量分数增大,相应地通过加氢处理的汽油馏分的质量分数就会降低,则由加氢处理所带来的辛烷值损失无疑就会相对减少。然而,常规的液-液溶剂抽提通常脱硫效率较低,而且吸收的非硫化物的烃类较多,后续需要水洗分离,而分离出来的含硫物料携带的杂质也较多,不利于送入加氢装置进行处理,尤其回收后的溶剂往往因为再生不彻底,导致溶剂循环使用时抽提硫化物的能力下降。In the desulfurization method or process disclosed above, the purpose of alkali treatment is to remove mercaptans with relatively small molecular weights in gasoline fractions, such as mercaptans with a carbon number not greater than 4, while the purpose of solvent extraction is to remove gasoline The non-thiol sulfides in the fraction are mainly thiophene compounds. When the mass fraction of gasoline fractions treated by alkali treatment and solvent treatment increases, the mass fraction of gasoline fractions subjected to hydrotreating will decrease accordingly, and the loss of octane number caused by hydrotreating will undoubtedly be relatively reduced. However, conventional liquid-liquid solvent extraction usually has a low desulfurization efficiency, and absorbs more non-sulfide hydrocarbons, which requires subsequent washing and separation, and the separated sulfur-containing materials carry more impurities, which is not conducive to sending In particular, the recovered solvent is often not fully regenerated, resulting in a decrease in the ability to extract sulfides when the solvent is recycled.
为了获得更低硫的汽油产品,并避免辛烷值的较大损失,有必要提供一种新的工艺方法以克服前述现有技术的缺点。In order to obtain a lower sulfur gasoline product and avoid a large loss of octane number, it is necessary to provide a new process method to overcome the aforementioned shortcomings of the prior art.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服现有技术的缺陷,在避免辛烷值的较大损失的前提下,提供一种能够获得更低硫的汽油产品的新的汽油深度脱硫的方法和用于该方法的设备。The object of the present invention is to overcome the defects of the prior art, and under the premise of avoiding the larger loss of octane number, a new method for deep desulfurization of gasoline that can obtain a lower sulfur gasoline product and a method for the method are provided. equipment.
本发明的发明人发现,抽提蒸馏相比于常规的液-液抽提对硫化物的脱除效率要更高一些,抽提蒸馏过程中抽提溶剂对烯烃的吸收也要比常规的液-液抽提更少一些,如此一方面有利于更多地保留烯烃,减少烯烃随硫化物抽提后在后续的(并入重馏分中)加氢处理时而导致的辛烷值损失,另一方面抽提溶剂中溶解更少的烯烃,可以减少烯烃因发生氧化聚合等对溶剂循环利用的有害影响,避免抽提溶剂因有害杂质的累积而频繁再生。并且发现,小分子的硫醇难以被抽提溶剂完全抽提,但低沸点的硫醇转化为高沸点的硫醚类二硫化物后,虽然通过常规的液-液抽提方式仍难以脱除,但在抽提蒸馏条件下,依靠蒸馏塔的上下温差却很容易使高沸点的二硫化物从汽油馏分中分离出来并随吸收了噻吩硫的抽提溶剂一起排出而脱除。本发明的发明人基于前述研究提供了本发明如下的汽油深度脱硫的方法。The inventors of the present invention found that, compared with conventional liquid-liquid extraction, extractive distillation has higher removal efficiency of sulfides, and the extraction solvent absorbs olefins in the process of extractive distillation. -Liquid extraction is less, so on the one hand it is beneficial to retain more olefins and reduce the octane number loss caused by the subsequent (incorporated into heavy ends) hydroprocessing of olefins after sulfide extraction, and on the other hand On the one hand, less olefins are dissolved in the extraction solvent, which can reduce the harmful effects of olefins on solvent recycling due to oxidative polymerization, and avoid frequent regeneration of the extraction solvent due to the accumulation of harmful impurities. It is also found that small molecular mercaptans are difficult to be completely extracted by the extraction solvent, but after low-boiling mercaptans are converted into high-boiling thioether disulfides, although conventional liquid-liquid extraction methods are still difficult to remove However, under the condition of extractive distillation, it is easy to separate high-boiling disulfides from gasoline fractions and remove them together with the extraction solvent that absorbs thiophene sulfur, depending on the temperature difference between the upper and lower temperature of the distillation column. The inventors of the present invention provide the following method for deep desulfurization of gasoline of the present invention based on the aforementioned research.
为了实现上述目的,第一方面,本发明提供一种汽油深度脱硫的方法,包括:In order to achieve the above object, in a first aspect, the present invention provides a method for deep desulfurization of gasoline, comprising:
(1)将汽油原料在70~140℃的切割点温度下分馏以得到轻馏分和重馏分;(1) fractional distillation of gasoline feedstock at a cut-point temperature of 70 to 140° C. to obtain light ends and heavy ends;
(2)在氧化脱臭催化剂存在下,将所述轻馏分与氧化剂接触以进行氧化脱臭反应,得到氧化脱臭后轻馏分;(2) in the presence of an oxidative deodorization catalyst, contacting the light fraction with an oxidant to carry out an oxidative deodorization reaction to obtain the light fraction after oxidative deodorization;
(3)将所述氧化脱臭后轻馏分与抽提溶剂接触以通过蒸馏进行溶剂抽提,得到含硫溶剂和溶剂抽提后轻馏分,然后通过减压蒸馏将所述含硫溶剂与其中含有的硫化物分离以得到溶剂抽提后含硫物料和脱除了硫化物的回收溶剂;(3) contacting the light fraction after the oxidative deodorization with an extraction solvent to carry out solvent extraction by distillation, obtaining a sulfur-containing solvent and the light fraction after solvent extraction, and then distilling the sulfur-containing solvent with the solvent containing The sulfide is separated to obtain the sulfur-containing material after solvent extraction and the recovery solvent from which the sulfide has been removed;
(4)将所述重馏分与加氢脱硫催化剂接触以进行选择性加氢脱硫反应,得到加氢后重馏分;(4) contacting the heavy fraction with a hydrodesulfurization catalyst to carry out a selective hydrodesulfurization reaction to obtain a heavy fraction after hydrogenation;
(5)将步骤(4)的所述加氢后重馏分与步骤(3)的所述溶剂抽提后轻馏分混合以得到汽油产品。(5) Mixing the hydrogenated heavy fraction of step (4) with the solvent extraction light fraction of step (3) to obtain a gasoline product.
第二方面,本发明提供一种用于汽油深度脱硫的设备,包括:In a second aspect, the present invention provides a device for deep desulfurization of gasoline, comprising:
分馏系统,汽油原料通过该分馏系统进行分馏以得到轻馏分和重馏分;A fractionation system through which the gasoline feedstock is fractionated to obtain light ends and heavy ends;
氧化脱臭系统,该氧化脱臭系统用于将所述轻馏分进行氧化脱臭反应,得到氧化脱臭后轻馏分;an oxidative deodorization system, which is used for carrying out an oxidative deodorization reaction on the light fraction to obtain a light fraction after oxidative deodorization;
溶剂抽提系统,包括溶剂抽提蒸馏单元和溶剂回收单元,所述溶剂抽提蒸馏单元用于将来自氧化脱臭系统的氧化脱臭后轻馏分进行溶剂抽提,得到含硫溶剂和溶剂抽提后轻馏分;所述溶剂回收单元用于将所述含硫溶剂与其中含有的硫化物分离以得到溶剂抽提后含硫物料和脱除了硫化物的回收溶剂;A solvent extraction system, including a solvent extraction distillation unit and a solvent recovery unit, the solvent extraction and distillation unit is used to perform solvent extraction on the light fractions after oxidative deodorization from the oxidative deodorization system to obtain a sulfur-containing solvent and a solvent-extracted Light ends; the solvent recovery unit is used to separate the sulfur-containing solvent from the sulfide contained therein to obtain the sulfur-containing material after solvent extraction and the recovered solvent from which the sulfide has been removed;
选择性加氢系统,来自分馏系统的重馏分通过管线引入至该选择性加氢系统中进行选择性加氢脱硫反应以得到加氢后重馏分;A selective hydrogenation system, the heavy fractions from the fractionation system are introduced into the selective hydrogenation system through pipelines for selective hydrodesulfurization reaction to obtain the heavy fractions after hydrogenation;
所述加氢后重馏分与所述溶剂抽提后轻馏分混合并作为汽油产品通过管线引出。The hydrogenated heavy fraction is mixed with the solvent-extracted light fraction and withdrawn as gasoline product through a pipeline.
本发明为了获得更低硫的汽油产品,并避免辛烷值的较大损失,在采用加氢方式的同时灵活运用如氧化脱臭、溶剂抽提等非加氢方式,使得由本发明前述提供的方法能够在避免辛烷值的较大损失的前提下,获得更低硫的汽油产品。In order to obtain lower-sulfur gasoline products and avoid a large loss of octane number, the present invention flexibly utilizes non-hydrogenation methods such as oxidative deodorization and solvent extraction while adopting a hydrogenation method, so that the method provided by the present invention is provided above. A lower sulfur gasoline product can be obtained on the premise of avoiding a large loss of octane number.
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the detailed description that follows.
附图说明Description of drawings
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the specification, and together with the following specific embodiments, are used to explain the present invention, but do not constitute a limitation to the present invention. In the attached image:
图1是本发明的一种优选实施方式的汽油深度脱硫设备结构示意图。FIG. 1 is a schematic structural diagram of a gasoline deep desulfurization equipment according to a preferred embodiment of the present invention.
附图标记说明Description of reference numerals
1、汽油原料 2、分馏系统1. Gasoline
3、重馏分 4、轻馏分3. Heavy fraction 4. Light fraction
5、氧化脱臭系统 6、氧化脱臭后轻馏分5.
7、溶剂抽提系统 8、溶剂抽提后含硫物料7. Solvent extraction system 8. Sulfur-containing material after solvent extraction
9、溶剂抽提后轻馏分 10、加氢后重馏分9. Light fraction after
11、醚化系统 12、醚化后轻馏分11. Etherification system 12. Light fractions after etherification
13、选择性加氢系统13. Selective hydrogenation system
具体实施方式Detailed ways
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, but not to limit the present invention.
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints of ranges and any values disclosed herein are not limited to the precise ranges or values, which are to be understood to encompass values proximate to those ranges or values. For ranges of values, the endpoints of each range, the endpoints of each range and the individual point values, and the individual point values can be combined with each other to yield one or more new ranges of values that Ranges should be considered as specifically disclosed herein.
第一方面,本发明提供了一种汽油深度脱硫的方法,包括:In a first aspect, the present invention provides a method for deep desulfurization of gasoline, comprising:
(1)将汽油原料在70~140℃的切割点温度下分馏以得到轻馏分和重馏分;(1) fractional distillation of gasoline feedstock at a cut-point temperature of 70 to 140° C. to obtain light ends and heavy ends;
(2)在氧化脱臭催化剂存在下,将所述轻馏分与氧化剂接触以进行氧化脱臭反应,得到氧化脱臭后轻馏分;(2) in the presence of an oxidative deodorization catalyst, contacting the light fraction with an oxidant to carry out an oxidative deodorization reaction to obtain the light fraction after oxidative deodorization;
(3)将所述氧化脱臭后轻馏分与抽提溶剂接触以通过蒸馏进行溶剂抽提,得到含硫溶剂和溶剂抽提后轻馏分,然后通过减压蒸馏将所述含硫溶剂与其中含有的硫化物分离以得到溶剂抽提后含硫物料和脱除了硫化物的回收溶剂;(3) contacting the light fraction after the oxidative deodorization with an extraction solvent to carry out solvent extraction by distillation, obtaining a sulfur-containing solvent and the light fraction after solvent extraction, and then distilling the sulfur-containing solvent with the solvent containing The sulfide is separated to obtain the sulfur-containing material after solvent extraction and the recovery solvent from which the sulfide has been removed;
(4)将所述重馏分与加氢脱硫催化剂接触以进行选择性加氢脱硫反应,得到加氢后重馏分;(4) contacting the heavy fraction with a hydrodesulfurization catalyst to carry out a selective hydrodesulfurization reaction to obtain a heavy fraction after hydrogenation;
(5)将步骤(4)的所述加氢后重馏分与步骤(3)的所述溶剂抽提后轻馏分混合以得到汽油产品。(5) Mixing the hydrogenated heavy fraction of step (4) with the solvent extraction light fraction of step (3) to obtain a gasoline product.
所述轻馏分为馏程相对轻的馏分,所述重馏分为馏程相对重的馏分。本发明的所述轻馏分中集中了汽油原料中的大部分硫醇与烯烃,重馏分中集中了汽油原料中的大部分其它相对高沸点的主要为噻吩类的硫化物。The light fractions are fractions with a relatively light distillation range, and the heavy fractions are fractions with a relatively heavy distillation range. Most of the mercaptans and olefins in the gasoline raw material are concentrated in the light fraction of the present invention, and most of the other relatively high-boiling sulfides are mainly thiophenes in the gasoline raw material are concentrated in the heavy fraction.
本发明使分馏后的轻馏分在氧化脱臭催化剂存在下与氧化剂接触以进行氧化脱臭反应,成为氧化脱臭后轻馏分,轻馏分中的硫醇被氧化成沸点相对高的二硫化物。In the present invention, the fractionated light fraction is contacted with an oxidant in the presence of an oxidative deodorization catalyst to carry out an oxidative deodorization reaction to become the light fraction after oxidative deodorization, and the mercaptan in the light fraction is oxidized to a relatively high boiling point disulfide.
众所周知的是,轻馏分中富含的硫醇可以通过碱液抽提的方式脱除,并使轻馏分的硫含量降低。然而,碱液抽提通常需要使用大量的苛性碱液,将导致碱渣的产生而难以处理,同时通常需要反抽提操作,以从碱液中脱除由硫醇盐转化而来的二硫化物,这将会产生含硫的物料,需要另外处理。为了克服碱液抽提所带来的技术缺陷,本发明采用氧化脱臭方式对轻馏分进行处理,使轻馏分中的硫醇转化成二硫化物。由于二硫化物的沸点相对较高,很容易在后续的溶剂抽提蒸馏方式中脱除。It is well known that the mercaptans rich in the light ends can be removed by lye extraction and the sulfur content of the light ends can be reduced. However, lye extraction usually requires the use of a large amount of caustic lye, which will result in the production of caustic residues that are difficult to handle, and a back-extraction operation is usually required to remove the disulfide converted from mercaptans from the lye. material, which will produce a sulphur-containing material that requires additional treatment. In order to overcome the technical defects brought by the extraction of alkali liquor, the present invention adopts an oxidative deodorization method to treat the light fraction, so that the mercaptans in the light fraction are converted into disulfides. Due to the relatively high boiling point of disulfides, they can be easily removed in subsequent solvent extraction distillation.
以下提供有关本发明的优选情况下的氧化脱臭步骤:The oxidative deodorization step in the preferred case of the present invention is provided below:
按照本发明,轻馏分在氧化脱臭催化剂作用下与氧化剂接触进行氧化脱臭反应,所述氧化脱臭催化剂是能够将硫醇氧化为二硫化物的氧化脱臭催化剂,包括金属酞菁型催化剂、金属盐(如氯化铜盐)型催化剂、金属氧化物(如氧化铁、氧化锰、氧化铅、氧化铜、氧化锌等)催化剂、铜分子筛或铜离子交换树脂催化剂、钙钛矿型氧化脱臭催化剂、各种具有氧化功能的分子筛催化剂以及具有氧化性的有机化合物型催化剂、杂多酸型氧化脱臭催化剂等。优选为金属酞菁型催化剂,更优选为负载型金属酞菁催化剂。所述氧化剂为氧气、空气、臭氧、过氧化物等能够将硫醇氧化为二硫化物的反应物,更优选地,所述氧化剂为氧气和/或空气。所述空气的注入量通常为脱硫醇反应理论上需氧量的1.0~10倍,优选为1.5~4倍。According to the present invention, the light fraction is contacted with an oxidant under the action of an oxidative deodorization catalyst to carry out an oxidative deodorization reaction. Such as copper chloride salt) type catalyst, metal oxide (such as iron oxide, manganese oxide, lead oxide, copper oxide, zinc oxide, etc.) catalyst, copper molecular sieve or copper ion exchange resin catalyst, perovskite type oxidative deodorization catalyst, various A molecular sieve catalyst with oxidation function, organic compound type catalyst with oxidizing property, heteropolyacid type oxidative deodorization catalyst, etc. Metal phthalocyanine catalysts are preferred, and supported metal phthalocyanine catalysts are more preferred. The oxidant is oxygen, air, ozone, peroxide and other reactants capable of oxidizing mercaptan to disulfide, more preferably, the oxidant is oxygen and/or air. The injection amount of the air is usually 1.0-10 times, preferably 1.5-4 times, the theoretical oxygen demand of the desulfanization reaction.
优选地,所述氧化脱臭反应的条件包括:反应温度为0~300℃,优选为室温~200℃;反应压力为0.01MPa~7.0MPa,优选为0.1MPa~2.0MPa;液时体积空速为0.05~10h-1,优选为0.5h-1~5.0h-1。Preferably, the conditions of the oxidative deodorization reaction include: the reaction temperature is 0~300℃, preferably room temperature~200℃; the reaction pressure is 0.01MPa~7.0MPa, preferably 0.1MPa~2.0MPa; the liquid hourly volume space velocity is 0.05 to 10h -1 , preferably 0.5h -1 to 5.0h -1 .
所述氧化脱臭反应中还可以加入活化剂,所述活化剂是能够提高氧化脱臭反应效率的氧化脱臭助剂。所述活化剂为含氮、磷、氧、硫、砷、锑的鎓类化合物,更优选为季铵类化合物,最优选为季铵碱。通常活化剂溶解在溶剂中以活化剂溶液的形式参与氧化脱臭反应。所述溶剂为水、醇、液态烃中的一种或多种,所述醇包括为C1-6的一元醇、C1-6的多元醇,优选为甲醇、乙醇或异丙醇。An activator can also be added in the oxidative deodorization reaction, and the activator is an oxidative deodorization auxiliary agent capable of improving the efficiency of the oxidative deodorization reaction. The activator is an onium compound containing nitrogen, phosphorus, oxygen, sulfur, arsenic and antimony, more preferably a quaternary ammonium compound, and most preferably a quaternary ammonium base. Usually the activator is dissolved in the solvent and participates in the oxidative deodorization reaction in the form of the activator solution. The solvent is one or more of water, alcohol and liquid hydrocarbon, and the alcohol includes C 1-6 monohydric alcohol and C 1-6 polyhydric alcohol, preferably methanol, ethanol or isopropanol.
优选地,所述负载型金属酞菁催化剂中含有载体和负载在所述载体上的金属酞菁,所述载体为多孔性材料,所述金属酞菁的负载量为0.05~10重量%,优选为0.1~5重量%。该负载量是以负载型金属酞菁催化剂总量为基准的。Preferably, the supported metal phthalocyanine catalyst contains a carrier and a metal phthalocyanine supported on the carrier, the carrier is a porous material, and the supported amount of the metal phthalocyanine is 0.05-10% by weight, preferably 0.1 to 5% by weight. The loading amount is based on the total amount of the supported metal phthalocyanine catalyst.
优选地,所述金属酞菁选自镁酞菁、钛酞菁、铪酞菁、钒酞菁、钽酞菁、钼酞菁、锰酞菁、铁酞菁、钴酞菁、铂酞菁、钯酞菁、铜酞菁、银酞菁、锌酞菁和锡酞菁中的至少一种;更优选所述金属酞菁为钴酞菁和/或钒酞菁。其中,构成所述金属酞菁的酞菁环可以为一环、二环或多环,特别地,所述酞菁环上连接有取代基,所述取代基可以选自磺基、羧基、酰胺基、酰卤基及季铵化物、鎓类化合物和卤素等中的至少一种。所述钴酞菁优选为钴酞菁磺化物和/或钴酞菁羧化物,所述钴酞菁磺化物包括酞菁钴磺酸与钴酞菁磺酸盐,所述钴酞菁磺酸即磺化酞菁钴,包括钴酞菁的单磺酸(单磺化酞菁钴)、钴酞菁的双磺酸(双磺化酞菁钴)、钴酞菁的三磺酸(三磺化酞菁钴)和钴酞菁的四磺酸(四磺化酞菁钴)中的一种或多种的混合物,所述钴酞菁磺化物,也包括双环聚磺化酞菁钴,所述钴酞菁羧化物包括钴酞菁羧酸、钴酞菁羧酸盐,优选为以羧酸基作为取代基的双环聚酞菁钴。Preferably, the metal phthalocyanine is selected from magnesium phthalocyanine, titanium phthalocyanine, hafnium phthalocyanine, vanadium phthalocyanine, tantalum phthalocyanine, molybdenum phthalocyanine, manganese phthalocyanine, iron phthalocyanine, cobalt phthalocyanine, platinum phthalocyanine, At least one of palladium phthalocyanine, copper phthalocyanine, silver phthalocyanine, zinc phthalocyanine and tin phthalocyanine; more preferably, the metal phthalocyanine is cobalt phthalocyanine and/or vanadium phthalocyanine. Wherein, the phthalocyanine ring constituting the metal phthalocyanine may be a single ring, a bicyclic ring or a polycyclic ring, in particular, the phthalocyanine ring is connected with a substituent, and the substituent may be selected from a sulfo group, a carboxyl group, an amide group At least one of the group, an acid halide group, a quaternary ammonium compound, an onium compound, and a halogen. The cobalt phthalocyanine is preferably cobalt phthalocyanine sulfonate and/or cobalt phthalocyanine carboxylate, the cobalt phthalocyanine sulfonate includes cobalt phthalocyanine sulfonic acid and cobalt phthalocyanine sulfonate, and the cobalt phthalocyanine sulfonic acid is Sulfonated cobalt phthalocyanine, including monosulfonic acid of cobalt phthalocyanine (monosulfonated cobalt phthalocyanine), disulfonic acid of cobalt phthalocyanine (bissulfonated cobalt phthalocyanine), trisulfonic acid of cobalt phthalocyanine (trisulfonated cobalt phthalocyanine) Cobalt phthalocyanine) and a mixture of one or more of the tetrasulfonic acids (tetrasulfonated cobalt phthalocyanine) of cobalt phthalocyanine, said cobalt phthalocyanine sulfonate, also including bicyclic polysulfonated cobalt phthalocyanine, said The cobalt phthalocyanine carboxylate includes cobalt phthalocyanine carboxylic acid and cobalt phthalocyanine carboxylate, preferably a bicyclic polycobalt phthalocyanine having a carboxylic acid group as a substituent.
优选地,作为所述负载型金属酞菁催化剂的载体的多孔性材料选自含铝、硅、碱土金属、过渡金属、稀土金属及炭质材料中至少一种的物质,例如,可以选自氧化铝、氧化硅、硅铝酸盐、氧化钙、氧化镁、氧化钛、天然及人造粘土、天然及人造沸石、来自矿物材料(如煤与石油等)、植物材料(如木屑、果壳果核等)及合成树脂等的炭质材料等中的一种或多种,优选作为所述负载型金属酞菁催化剂的载体为活性炭。更优选地,所述作为载体的多孔性材料的比表面积为10~1500m2/g,优选为100~1200m2/g。Preferably, the porous material used as the carrier of the supported metal phthalocyanine catalyst is selected from substances containing at least one of aluminum, silicon, alkaline earth metals, transition metals, rare earth metals and carbonaceous materials, for example, can be selected from oxidation Aluminium, silica, aluminosilicates, calcium oxide, magnesium oxide, titanium oxide, natural and artificial clays, natural and artificial zeolites, derived from mineral materials (such as coal and petroleum, etc.), plant materials (such as wood chips, nut shells and nuts) etc.) and one or more of carbonaceous materials such as synthetic resins, etc., it is preferable to use activated carbon as the carrier of the supported metal phthalocyanine catalyst. More preferably, the specific surface area of the porous material used as the carrier is 10-1500 m 2 /g, preferably 100-1200 m 2 /g.
按照本发明,所述负载型金属酞菁催化剂的制备方法为本领域技术人员所公知,例如,可以采用文献中已知的方式进行制备,即将金属酞菁的溶液浸渍所述多孔性载体,并干燥后制成。According to the present invention, the preparation method of the supported metal phthalocyanine catalyst is well known to those skilled in the art, for example, it can be prepared in a manner known in the literature, that is, the solution of metal phthalocyanine is impregnated into the porous support, and Made after drying.
按照本发明,优选氧化脱臭后轻馏分基本上不含有氧气或空气。According to the present invention, it is preferred that the light ends after oxidative deodorization are substantially free of oxygen or air.
以下提供有关本发明的优选情况下的溶剂抽提:Solvent extraction in the preferred case of the present invention is provided below:
所述溶剂抽提使得氧化脱臭后轻馏分中的以噻吩为主的硫化物转移到抽提溶剂中形成含硫溶剂。The solvent extraction enables the thiophene-based sulfides in the light fraction after oxidative deodorization to be transferred into the extraction solvent to form a sulfur-containing solvent.
优选地,所述溶剂抽提在抽提蒸馏塔内进行,氧化脱臭后轻馏分从抽提蒸馏塔的中间部位进入塔内,抽提溶剂从抽提蒸馏塔的上部进入塔内,在溶剂的选择性作用下,氧化脱臭后轻馏分中的相对高沸点的噻吩与硫醚类化合物随抽提溶剂进入抽提蒸馏塔的塔底。抽提蒸馏塔塔顶蒸出的低硫轻馏分一部分在塔顶回流循环,一部分外排成为溶剂抽提后轻馏分。抽提蒸馏塔塔底的富硫溶剂一部分在塔底循环,一部分外排至溶剂回收单元进行处理。Preferably, the solvent extraction is carried out in an extractive distillation column, the light ends after oxidative deodorization enter the column from the middle part of the extractive distillation column, and the extraction solvent enters the column from the upper part of the extractive distillation column, and the solvent Under the selective action, the relatively high-boiling thiophene and sulfide compounds in the light fraction after oxidative deodorization enter the bottom of the extractive distillation column with the extraction solvent. A part of the low-sulfur light fraction distilled from the top of the extractive distillation tower is refluxed at the top of the tower, and a part is discharged to the light fraction after solvent extraction. Part of the sulfur-rich solvent at the bottom of the extractive distillation tower is circulated at the bottom of the tower, and part is discharged to the solvent recovery unit for processing.
所述抽提溶剂与所述氧化脱臭后轻馏分的重量比为(0.5~20):1,更优选为(1~5):1。发明人发现,在液-液抽提方式中,含硫溶剂除吸收了轻馏分中的硫化物外,往往还吸收了其中较硫化物多得多的其他组分,从而给蒸馏方式的溶剂回收系统带来诸多问题,如能耗增加、回收后的溶剂中残留组分较多,返回溶剂抽提系统容易导致溶剂抽提能力的快速下降。而本发明的溶剂抽提蒸馏脱硫方式中,抽提溶剂吸收的待处理物料组分较少,回收溶剂抽提能力能够有效恢复。The weight ratio of the extraction solvent to the light fraction after oxidative deodorization is (0.5-20):1, more preferably (1-5):1. The inventors found that, in the liquid-liquid extraction method, the sulfur-containing solvent often absorbs other components that are much more than sulfides in addition to sulfides in the light fraction, so that the solvent in the distillation method can be recovered. The system brings many problems, such as increased energy consumption, more residual components in the recovered solvent, and returning to the solvent extraction system will easily lead to a rapid decline in the solvent extraction capacity. However, in the solvent extraction distillation desulfurization method of the present invention, the extraction solvent absorbs less components of the material to be treated, and the extraction capacity of the recovered solvent can be effectively recovered.
优选地,所述溶剂抽提在抽提蒸馏塔中进行,所述抽提蒸馏塔中的条件包括:塔顶压力为100kPa~500kPa,优选为110kPa~300kPa;塔顶温度为65~180℃;塔底温度为80~260℃,优选为140~200℃。Preferably, the solvent extraction is carried out in an extractive distillation column, and the conditions in the extractive distillation column include: the pressure at the top of the column is 100kPa~500kPa, preferably 110kPa~300kPa; the temperature at the top of the column is 65~180℃; The column bottom temperature is 80 to 260°C, preferably 140 to 200°C.
优选地,通过所述溶剂抽提后得到的溶剂抽提后轻馏分中的硫含量≯10μg/g。Preferably, the sulfur content in the solvent-extracted light fraction obtained after the solvent extraction is ≯ 10 μg/g.
优选地,所述抽提溶剂中含有主抽提溶剂,所述主抽提溶剂的沸点为175~320℃,更优选沸点为175~250℃。Preferably, the extraction solvent contains a main extraction solvent, and the boiling point of the main extraction solvent is 175-320°C, and more preferably, the boiling point is 175-250°C.
优选地,所述主抽提溶剂选自环丁砜、3-甲基环丁砜、2,4-二甲基环丁砜、3-乙基环丁砜、甲基乙基砜、二甲基砜、二乙基砜、二丙基砜、二丁基砜、二甲基亚砜、糠醛、糠醇、α-吡咯烷酮、N-甲基-2-吡咯烷酮、N-乙基-2-吡咯烷酮、N-丙基-2-吡咯烷酮、N-甲酰基吗啉、二甲基甲酰胺、三甘醇、四甘醇、五甘醇、三甘醇甲醚、四甘醇甲醚、碳酸亚乙酯、碳酸丙烯酯、碳酸异丙烯酯、乙腈、硝基苯、相对分子质量在200~400之间的聚乙二醇和相对分子质量在200~400之间的聚乙二醇甲醚中的至少一种;更优选地,所述主抽提溶剂选自环丁砜、N-甲酰基吗啉、N-甲基-2-吡咯烷酮、四甘醇和五甘醇中的至少一种。Preferably, the main extraction solvent is selected from sulfolane, 3-methyl sulfolane, 2,4-dimethyl sulfolane, 3-ethyl sulfolane, methyl ethyl sulfone, dimethyl sulfone, diethyl sulfone, Dipropyl sulfone, dibutyl sulfone, dimethyl sulfoxide, furfural, furfuryl alcohol, α-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone , N-formyl morpholine, dimethylformamide, triethylene glycol, tetraethylene glycol, pentaethylene glycol, triethylene glycol methyl ether, tetraethylene glycol methyl ether, ethylene carbonate, propylene carbonate, propylene carbonate At least one of esters, acetonitrile, nitrobenzene, polyethylene glycol with a relative molecular mass between 200 and 400, and polyethylene glycol methyl ether with a relative molecular mass between 200 and 400; more preferably, the The main extraction solvent is selected from at least one of sulfolane, N-formylmorpholine, N-methyl-2-pyrrolidone, tetraethylene glycol and pentaethylene glycol.
在溶剂抽提蒸馏塔中,既有气相,又有液相,所述液相为单一液相,即在液相区间,液相的溶剂与液相的轻馏分处于溶解状态,如此有利于轻馏分中的硫化物转移入抽提溶剂中,一旦形成了多液相状态,就不利于硫化物的抽提。为了提高抽提溶剂对硫化物的吸收能力,以及有助于抽提蒸馏塔的液相区域保持单一的液相,优选地,所述抽提溶剂中进一步含有助剂,所述助剂为能够与所述主抽提溶剂互溶且其沸点或干点不高于所述主抽提溶剂的沸点或干点的醇类、酮类、有机酸类和有机氮化物中的至少一种物质和/或水,所述有机氮化物为胺类、脲类和醇胺类化合物中的至少一种。In the solvent extraction distillation column, there are both a gas phase and a liquid phase, and the liquid phase is a single liquid phase, that is, in the liquid phase interval, the solvent in the liquid phase and the light fraction in the liquid phase are in a dissolved state, which is conducive to light The sulfide in the fraction is transferred into the extraction solvent, and once a multi-liquid phase state is formed, it is not conducive to the extraction of the sulfide. In order to improve the absorption capacity of the extraction solvent for sulfides, and to help keep a single liquid phase in the liquid phase region of the extraction distillation column, preferably, the extraction solvent further contains an auxiliary agent, and the auxiliary agent is capable of At least one of alcohols, ketones, organic acids and organic nitrides that are miscible with the main extraction solvent and whose boiling point or dry point is not higher than that of the main extraction solvent and/or or water, and the organic nitrogen compound is at least one of amines, ureas and alcoholamines.
优选地,所述助剂为能够与所述主抽提溶剂互溶且其沸点或干点不高于所述主抽提溶剂的沸点或干点的碳原子数不大于6的醇类、碳原子数不大于6的酮类、碳原子数不大于6的有机酸类和碳原子数不大于6的有机氮化物中的至少一种物质和/或水,所述有机氮化物为胺类、脲类和醇胺类中的至少一种。Preferably, the auxiliary agent is an alcohol or carbon atom having a carbon atom number of not more than 6 that can be miscible with the main extraction solvent and whose boiling point or dry point is not higher than the boiling point or dry point of the main extraction solvent. At least one substance and/or water among ketones with no more than 6 carbon atoms, organic acids with no more than 6 carbon atoms, and organic nitrides with no more than 6 carbon atoms, the organic nitrides are amines, urea At least one of alkanolamines and alkanolamines.
优选地,所述碳原子数不大于6的醇类为甲醇、乙醇、正丙醇、异丙醇、正丁醇、叔丁醇、正戊醇和环己醇中的至少一种。Preferably, the alcohols with no more than 6 carbon atoms are at least one of methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-pentanol and cyclohexanol.
优选地,所述碳原子数不大于6的酮类为丙酮和/或甲乙酮。Preferably, the ketones with no more than 6 carbon atoms are acetone and/or methyl ethyl ketone.
优选地,所述碳原子数不大于6的有机酸类为异丁酸、乙二酸、丙二酸和丁二酸中的至少一种。Preferably, the organic acid having no more than 6 carbon atoms is at least one of isobutyric acid, oxalic acid, malonic acid and succinic acid.
优选地,所述碳原子数不大于6的有机氮化物选自尿素、乙二胺、一乙醇胺、N-甲基一乙醇胺、N-乙基一乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、二乙醇胺、N-甲基二乙醇胺、三乙醇胺、正丙醇胺、异丙醇胺和二甘醇胺中的至少一种。Preferably, the organic nitrogen compound with no more than 6 carbon atoms is selected from urea, ethylenediamine, monoethanolamine, N-methylmonoethanolamine, N-ethylmonoethanolamine, N,N-dimethylethanolamine, N , at least one of N-diethylethanolamine, diethanolamine, N-methyldiethanolamine, triethanolamine, n-propanolamine, isopropanolamine and diethylene glycol amine.
更优选地,所述助剂选自水、甲醇、乙醇、正丙醇、异丙醇、丙酮、甲乙酮、异丁酸、乙二酸、丙二酸、丁二酸、尿素、乙二胺、一乙醇胺、N-甲基一乙醇胺、N-乙基一乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、二乙醇胺、N-甲基二乙醇胺、三乙醇胺、正丙醇胺、异丙醇胺和二甘醇胺中的至少一种。特别优选地,所述助剂选自水、甲醇、丙酮、甲乙酮、异丁酸、乙二酸、丙二酸、丁二酸、乙二胺、一乙醇胺、N-甲基一乙醇胺、异丙醇胺和二甘醇胺中的至少一种。More preferably, the auxiliary agent is selected from water, methanol, ethanol, n-propanol, isopropanol, acetone, methyl ethyl ketone, isobutyric acid, oxalic acid, malonic acid, succinic acid, urea, ethylenediamine, Monoethanolamine, N-methylmonoethanolamine, N-ethylmonoethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, diethanolamine, N-methyldiethanolamine, triethanolamine, n-propyl At least one of alkanolamine, isopropanolamine and diethylene glycol amine. Particularly preferably, the auxiliary agent is selected from water, methanol, acetone, methyl ethyl ketone, isobutyric acid, oxalic acid, malonic acid, succinic acid, ethylenediamine, monoethanolamine, N-methylmonoethanolamine, isopropyl At least one of alkanolamine and diethylene glycol amine.
优选地,在所述抽提溶剂中,所述助剂的含量为0.1~20重量%,更优选为0.5~15重量%;特别优选地,所述助剂的含量为1~10重量%。Preferably, in the extraction solvent, the content of the auxiliary agent is 0.1-20% by weight, more preferably 0.5-15% by weight; particularly preferably, the content of the auxiliary agent is 1-10% by weight.
优选地,所述助剂为含有水的混合物。然而,水对多相的形成影响甚大,一旦溶剂中水含量较大时,往往容易在抽提蒸馏塔内形成多相状态。因此,当所述助剂为含有水的混合物时,优选水在所述抽提溶剂中的含量为0.1~5重量%,更优选为0.1~3重量%。Preferably, the adjuvant is a mixture containing water. However, water has a great influence on the formation of multiphase. Once the water content in the solvent is large, it is often easy to form a multiphase state in the extractive distillation column. Therefore, when the auxiliary agent is a mixture containing water, the content of water in the extraction solvent is preferably 0.1-5 wt %, more preferably 0.1-3 wt %.
优选地,所述抽提溶剂中含有消泡剂,所述消泡剂选自硅氧烷化合物、烷基磺酸盐化合物、聚醚类化合物、聚乙二醇类化合物、聚酯类化合物、酰胺类化合物和脂肪醇类化合物中的至少一种。Preferably, the extraction solvent contains a defoamer, and the defoamer is selected from siloxane compounds, alkyl sulfonate compounds, polyether compounds, polyethylene glycol compounds, polyester compounds, At least one of amide compounds and fatty alcohol compounds.
以下提供有关本发明的优选情况下的溶剂回收:Solvent recovery in the preferred case of the present invention is provided below:
富含硫化物的含硫溶剂需要脱除所吸收的硫化物后才能循环使用,脱除硫化物的方式称为溶剂回收。所述溶剂回收采用蒸馏的方式进行,即将来自溶剂抽提过程中的含硫溶剂在加热的条件下蒸出含硫物料,该含硫物料包括来自轻馏分中的芳烃、噻吩、硫醚类化合物,所述含硫物料外排成为溶剂抽提后含硫物料。脱除了硫化物后的溶剂成为回收溶剂,并返回溶剂抽提蒸馏过程循环使用。The sulfur-containing solvent rich in sulfide can be recycled after removing the absorbed sulfide. The method of removing sulfide is called solvent recovery. The solvent recovery is carried out by means of distillation, that is, the sulfur-containing solvent from the solvent extraction process is distilled under heating conditions to extract the sulfur-containing material, and the sulfur-containing material includes aromatic hydrocarbons, thiophenes, and thioether compounds from the light ends. , the sulfur-containing material is discharged into the sulfur-containing material after solvent extraction. The solvent after removing the sulfide becomes the recovered solvent and returns to the solvent extraction and distillation process for recycling.
优选地,所述溶剂回收采用减压蒸馏的方式进行,通过减压蒸馏将所述含硫溶剂与其中含有的硫化物分离的条件包括:溶剂回收塔的塔顶压力为10kPa~100kPa,塔顶温度为50~100℃,塔底温度为100℃~250℃,更优选塔底温度为120~200℃,汽提蒸汽与所述含硫溶剂的重量比为(0.01~5.0):1。Preferably, the solvent recovery is carried out by means of vacuum distillation, and the conditions for separating the sulfur-containing solvent from the sulfide contained therein by vacuum distillation include: the top pressure of the solvent recovery tower is 10kPa~100kPa, The temperature is 50-100°C, the column bottom temperature is 100-250°C, more preferably the column bottom temperature is 120-200°C, and the weight ratio of the stripping steam to the sulfur-containing solvent is (0.01-5.0):1.
回收溶剂中脱除了含硫烃料,但在运转过程中会发生如氧化、分解等副反应,从而形成一些可溶性的高沸点化合物如稳态盐、有机聚合物、沉积物等杂质,这些物质在溶剂中存在并累积,无疑会降低抽提溶剂的溶解能力,从而降低汽油抽提脱硫的效率,因此需要对溶剂进行再生处理,提高溶剂的纯度。Sulfur-containing hydrocarbon materials are removed from the recovered solvent, but side reactions such as oxidation and decomposition will occur during operation, resulting in the formation of some soluble high-boiling compounds such as steady-state salts, organic polymers, sediments and other impurities. The existence and accumulation in the solvent will undoubtedly reduce the solubility of the extraction solvent, thereby reducing the efficiency of gasoline extraction and desulfurization. Therefore, it is necessary to regenerate the solvent to improve the purity of the solvent.
优选地,该方法进一步包括:将至少部分所述回收溶剂在溶剂再生塔中进行注水提纯处理以再生。Preferably, the method further comprises: subjecting at least part of the recovered solvent to a water injection purification treatment in a solvent regeneration tower for regeneration.
以下提供有关本发明的优选情况下的溶剂再生:Solvent regeneration in the preferred case of the present invention is provided below:
所述注水提纯处理可以通过对溶剂进行注水减压蒸馏而实现,回收溶剂中相对轻质的残存烃料与水共沸而从塔顶排出,回收溶剂中相对重质的高沸点化合物杂质以残渣的形式从溶剂再生塔塔底排出,而经过提纯后的溶剂从溶剂再生塔下侧排出,成为再生溶剂。优选地,注水提纯处理中的水来自于溶剂抽提蒸馏过程与溶剂回收过程所收集的冷凝水。再生溶剂可以直接返回溶剂回收塔或者直接与溶剂回收塔流出的回收溶剂混合后循环使用。The water injection purification treatment can be realized by carrying out water injection pressure reduction distillation on the solvent, the relatively light residual hydrocarbon material in the recovered solvent is azeotroped with water and discharged from the top of the tower, and the relatively heavy high-boiling point compound impurities in the recovered solvent are recovered as residues. The purified solvent is discharged from the bottom of the solvent regeneration tower, and the purified solvent is discharged from the lower side of the solvent regeneration tower to become the regeneration solvent. Preferably, the water in the water injection purification treatment comes from the condensed water collected in the solvent extraction distillation process and the solvent recovery process. The regenerated solvent can be directly returned to the solvent recovery tower or directly mixed with the recovered solvent flowing out of the solvent recovery tower and recycled.
优选地,所述溶剂再生塔中的再生条件包括:塔顶压力为1kPa~10kPa,塔顶温度为90~110℃,优选塔顶温度为96~105℃,塔底温度为120℃~200℃,优选塔底温度为150℃~200℃,注入的水与所述回收溶剂的重量比为(0.1~10):1,优选重量比为(0.5~5):1。Preferably, the regeneration conditions in the solvent regeneration tower include: the pressure at the top of the tower is 1kPa-10kPa, the temperature at the top of the tower is 90-110°C, preferably the temperature at the top of the tower is 96-105°C, and the temperature at the bottom of the tower is 120-200°C , the preferred column bottom temperature is 150 ℃~200 ℃, and the weight ratio of the injected water to the recovery solvent is (0.1~10):1, preferably the weight ratio is (0.5~5):1.
优选地,用于进行再生的回收溶剂占全部所述回收溶剂的1~10重量%,更优选占全部所述回收溶剂的1~5重量%。Preferably, the recovered solvent used for regeneration accounts for 1 to 10 wt % of the entire recovered solvent, more preferably 1 to 5 wt % of the entire recovered solvent.
优选地,本发明的方法进一步包括:在与步骤(4)的所述加氢后重馏分混合之前,先将步骤(3)得到的所述溶剂抽提后轻馏分进行醚化反应,得到醚化后轻馏分;然后再将所述醚化后轻馏分与步骤(4)的所述加氢后重馏分混合以得到所述汽油产品。Preferably, the method of the present invention further comprises: before mixing with the heavy fraction after hydrogenation in step (4), first performing etherification reaction on the light fraction after extraction of the solvent obtained in step (3) to obtain ether and then mixing the etherified light fraction with the hydrogenated heavy fraction in step (4) to obtain the gasoline product.
本发明的醚化反应使得能够得到烯烃含量降低而辛烷值增加的醚化后轻馏分。The etherification reaction of the present invention makes it possible to obtain etherified light ends with a reduced olefin content and an increased octane number.
以下提供有关本发明的优选情况下的醚化反应:The etherification reaction in the preferred case of the present invention is provided below:
优选地,所述醚化反应通过将所述溶剂抽提后轻馏分与碳原子数不大于6的低碳醇接触而进行。Preferably, the etherification reaction is carried out by contacting the solvent-extracted light fraction with a low-carbon alcohol having no more than 6 carbon atoms.
优选地,用于醚化反应的所述低碳醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、叔丁醇、正戊醇和环己醇中的至少一种;特别优选为甲醇。Preferably, the low-carbon alcohol used in the etherification reaction is at least one of methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-pentanol and cyclohexanol; particularly preferably methanol.
优选地,所述醚化反应的条件包括:所述低碳醇与所述溶剂抽提后轻馏分中的烯烃的摩尔比为(0.5~3):1,优选为(1.0~1.2):1,接触的温度为20~100℃,压力为0.3MPa~2.0MPa。Preferably, the conditions for the etherification reaction include: the molar ratio of the lower alcohol to the olefin in the light fraction after the solvent extraction is (0.5-3):1, preferably (1.0-1.2):1 , the contact temperature is 20 ~ 100 ℃, and the pressure is 0.3 MPa ~ 2.0 MPa.
优选地,所述醚化反应在作为强酸性离子交换树脂的醚化催化剂存在下进行。所述强酸性离子交换树脂例如可以为磺酸型离子交换树脂。Preferably, the etherification reaction is carried out in the presence of an etherification catalyst which is a strongly acidic ion exchange resin. The strongly acidic ion exchange resin can be, for example, a sulfonic acid type ion exchange resin.
更加优选情况下,所述溶剂抽提后轻馏分与低碳醇接触的条件使得醚化后轻馏分中的烯烃脱除率≮35%。More preferably, the condition of contacting the light fraction with the lower alcohol after the solvent extraction is such that the olefin removal rate in the light fraction after etherification is ≮ 35%.
优选地,本发明的方法进一步包括:在进行所述醚化反应之前,先将所述溶剂抽提后轻馏分进行吸附预处理和/或进行选择性加氢预处理。Preferably, the method of the present invention further comprises: before performing the etherification reaction, performing adsorption pretreatment and/or selective hydrogenation pretreatment on the light fraction after extraction of the solvent.
在本发明中,氧化脱臭后轻馏分经溶剂抽提后,绝大部分硫化物被脱除,选择性加氢预处理可以在更为缓和的条件下进行,例如可以采用容易被硫中毒的高活性贵金属催化剂在较低的温度、较低的压力、较低的氢油体积比下进行以能够有效避免单烯烃的氢化所引起的辛烷值的损失。In the present invention, after oxidative deodorization, after the light fraction is extracted by solvent, most of the sulfides are removed, and the selective hydrogenation pretreatment can be carried out under more moderate conditions. The active precious metal catalyst is carried out at lower temperature, lower pressure, and lower hydrogen-oil volume ratio to effectively avoid the loss of octane number caused by the hydrogenation of monoolefins.
优选地,所述选择性加氢预处理在过渡金属负载型催化剂存在下进行。进行选择性加氢预处理所使用的选择性加氢预处理催化剂可以为在一定的反应条件下能够将二烯烃饱和而避免单烯烃饱和的加氢或临氢催化剂,所述选择性加氢预处理催化剂包括过渡金属负载型催化剂,可以为非贵金属负载型催化剂,也可以为贵金属负载型催化剂,或者是这两类催化剂的组合。所述过渡金属负载型催化剂包括载体和负载在所述载体上的金属活性组分,所述载体选自氧化铝、氧化硅、硅铝酸盐、氧化钛、沸石和活性炭中的至少一种,所述金属活性组分选自镍、钴、钼、铂和钯中的至少一种。Preferably, the selective hydropretreatment is carried out in the presence of a transition metal supported catalyst. The selective hydrogenation pretreatment catalyst used in the selective hydrogenation pretreatment can be a hydrogenation or hydrogenation catalyst that can saturate diolefins and avoid monoolefin saturation under certain reaction conditions. The treatment catalyst includes a transition metal supported catalyst, which can be a non-precious metal supported catalyst, a precious metal supported catalyst, or a combination of these two types of catalysts. The transition metal supported catalyst comprises a carrier and a metal active component supported on the carrier, the carrier is selected from at least one of alumina, silica, aluminosilicate, titania, zeolite and activated carbon, The metal active component is selected from at least one of nickel, cobalt, molybdenum, platinum and palladium.
根据一种优选的具体实施方式,所述过渡金属负载型催化剂中的载体为氧化铝,金属活性组分以氧化物计的负载量为0.05~15重量%。According to a preferred specific embodiment, the carrier in the transition metal-supported catalyst is alumina, and the supported amount of the metal active component in terms of oxide is 0.05-15% by weight.
优选地,所述选择性加氢预处理的条件包括:氢分压为0.1MPa~2.0MPa,温度为室温~250℃,液时体积空速为1.0h-1~10.0h-1,氢油体积比为1~100。Preferably, the conditions for the selective hydrogenation pretreatment include: hydrogen partial pressure of 0.1 MPa to 2.0 MPa, temperature of room temperature to 250°C, liquid hourly volume space velocity of 1.0 h -1 to 10.0 h -1 , hydrogen oil The volume ratio is 1 to 100.
根据另一种优选的情况,也可以采用吸附剂吸附的方式对所述溶剂抽提后轻馏分进行吸附预处理,脱除所述溶剂抽提后轻馏分中对醚化催化剂有害的组分。所述吸附剂优选为酸性的多孔性分子筛材料,所述吸附可以在常温常压下进行。According to another preferred situation, the light fraction after solvent extraction can also be subjected to adsorption pretreatment by means of adsorbent adsorption to remove components harmful to the etherification catalyst in the light fraction after solvent extraction. The adsorbent is preferably an acidic porous molecular sieve material, and the adsorption can be carried out at normal temperature and pressure.
根据本发明的一种优选的具体实施方式,本发明的方法进一步包括:将步骤(3)中的溶剂抽提后含硫物料与所述重馏分一起进行选择性加氢脱硫反应。According to a preferred embodiment of the present invention, the method of the present invention further comprises: subjecting the sulfur-containing material after solvent extraction in step (3) to a selective hydrodesulfurization reaction together with the heavy fraction.
根据本发明的另一种优选的具体实施方式,本发明的方法进一步包括:将步骤(3)中的溶剂抽提后含硫物料引入催化裂化装置中进行催化裂化反应以得到用于步骤(1)的至少部分汽油原料。According to another preferred embodiment of the present invention, the method of the present invention further comprises: introducing the sulfur-containing material after solvent extraction in step (3) into a catalytic cracking device to carry out catalytic cracking reaction to obtain the material used in step (1). ) at least part of the gasoline feedstock.
以下提供有关本发明的优选情况下的选择性加氢脱硫反应:The selective hydrodesulfurization reaction in the preferred case of the present invention is provided below:
优选地,所述选择性加氢脱硫反应在依次连接的第一反应区和第二反应区中进行,所述第一反应区和所述第二反应区中分别装填第一加氢脱硫催化剂和第二加氢脱硫催化剂,所述第一加氢脱硫催化剂和第二加氢脱硫催化剂各自独立地含有氧化铝载体和/或硅铝载体以及负载在所述载体上的加氢活性金属组分,所述加氢活性金属组分为选自钼和/或钨的VIB族非贵金属元素和/或选自镍和/或钴的VIII族非贵金属元素。Preferably, the selective hydrodesulfurization reaction is carried out in a first reaction zone and a second reaction zone which are connected in sequence, and the first reaction zone and the second reaction zone are respectively filled with the first hydrodesulfurization catalyst and the second reaction zone. a second hydrodesulfurization catalyst, the first hydrodesulfurization catalyst and the second hydrodesulfurization catalyst each independently contain an alumina support and/or a silica-alumina support and a hydrogenation active metal component supported on the support, The hydrogenation active metal component is a group VIB non-noble metal element selected from molybdenum and/or tungsten and/or a group VIII non-noble metal element selected from nickel and/or cobalt.
优选地,所述第一加氢脱硫催化剂和第二加氢脱硫催化剂各自独立地含有钼和/或钨、镍和/或钴、氧化铝基质以及大孔沸石和/或中孔沸石。Preferably, the first hydrodesulfurization catalyst and the second hydrodesulfurization catalyst each independently contain molybdenum and/or tungsten, nickel and/or cobalt, an alumina matrix and a large and/or medium pore zeolite.
优选地,以所述加氢脱硫催化剂的总量为基准,所述VIB族非贵金属元素以氧化物计的含量为2~25重量%,所述VIII族非贵金属元素以氧化物计的含量为0.2~6重量%。该处的“加氢脱硫催化剂”为第一加氢脱硫催化剂或第二加氢脱硫催化剂。Preferably, based on the total amount of the hydrodesulfurization catalyst, the content of the VIB group non-precious metal element in terms of oxides is 2-25 wt %, and the content of the VIII group non-precious metal elements in terms of oxides is 0.2 to 6% by weight. The "hydrodesulfurization catalyst" here is the first hydrodesulfurization catalyst or the second hydrodesulfurization catalyst.
优选地,所述第一加氢脱硫催化剂的脱硫活性低于所述第二加氢脱硫催化剂的脱硫活性。本发明的脱硫活性用“处理相同的原料时,单位体积的加氢脱硫催化剂在达到相同的脱硫效果下的反应温度(T)”来表示,T越大表示活性越低。Preferably, the desulfurization activity of the first hydrodesulfurization catalyst is lower than the desulfurization activity of the second hydrodesulfurization catalyst. The desulfurization activity of the present invention is represented by "the reaction temperature (T) of a unit volume of hydrodesulfurization catalyst to achieve the same desulfurization effect when treating the same raw material", and the larger the T, the lower the activity.
优选地,所述第一反应区和第二反应区的反应条件各自独立地包括:氢分压为0.1MPa~4.0MPa,反应温度为200℃~440℃,液时体积空速为1.0h-1~10.0h-1,氢油体积比为200~1000。更优选地,所述第一反应区和第二反应区的反应条件各自独立地包括:氢分压为1.0MPa~3.2MPa,反应温度为200℃~300℃,液时体积空速为2.0h-1~6.0h-1,氢油体积比为200~600。Preferably, the reaction conditions of the first reaction zone and the second reaction zone independently include: a hydrogen partial pressure of 0.1 MPa to 4.0 MPa, a reaction temperature of 200° C. to 440° C., and a liquid hourly volumetric space velocity of 1.0h − 1 ~ 10.0h -1 , the volume ratio of hydrogen to oil is 200 ~ 1000. More preferably, the reaction conditions of the first reaction zone and the second reaction zone independently include: the hydrogen partial pressure is 1.0MPa~3.2MPa, the reaction temperature is 200℃~300℃, and the liquid hourly volume space velocity is 2.0h -1 to 6.0h -1 , the volume ratio of hydrogen to oil is 200 to 600.
优选地,所述选择性加氢脱硫反应的条件使得得到的加氢后重馏分中硫含量≯10μg/g。Preferably, the conditions of the selective hydrodesulfurization reaction are such that the sulfur content in the obtained hydrogenated heavy fraction is ≯ 10 μg/g.
优选地,所述轻馏分和重馏分的切割点为80~120℃。Preferably, the cutting point of the light fraction and the heavy fraction is 80-120°C.
优选地,所述轻馏分的干点不高于抽提溶剂的沸程温度范围的下限。Preferably, the dry point of the light ends is not higher than the lower limit of the boiling range temperature range of the extraction solvent.
优选地,以所述汽油原料为基准,所述轻馏分的收率为40~60重量%,所述重馏分的收率为40~60重量%。Preferably, based on the gasoline feedstock, the yield of the light fraction is 40-60 wt %, and the yield of the heavy fraction is 40-60 wt %.
优选地,所述汽油原料选自催化裂化汽油、催化裂解汽油、直馏汽油、焦化汽油、裂解汽油和热裂化汽油中的至少一种。Preferably, the gasoline feedstock is selected from at least one of catalytically cracked gasoline, catalytically cracked gasoline, straight-run gasoline, coker gasoline, pyrolysis gasoline and thermally cracked gasoline.
优选地,在步骤(5)中,所得汽油产品的硫含量≯10μg/g。特别地,本发明的步骤(5)的汽油产品为加氢后重馏分与溶剂抽提后轻馏分混合而得到的产品,或者为加氢后重馏分与醚化后轻馏分混合而得到的产品。Preferably, in step (5), the sulfur content of the obtained gasoline product is ≯ 10 μg/g. Particularly, the gasoline product of step (5) of the present invention is the product obtained by mixing the heavy fraction after hydrogenation and the light fraction after solvent extraction, or the product obtained by mixing the heavy fraction after hydrogenation and the light fraction after etherification .
第二方面,本发明提供了一种用于汽油深度脱硫的设备,包括:In a second aspect, the present invention provides a device for deep desulfurization of gasoline, comprising:
分馏系统,汽油原料通过该分馏系统进行分馏以得到轻馏分和重馏分;A fractionation system through which the gasoline feedstock is fractionated to obtain light ends and heavy ends;
氧化脱臭系统,该氧化脱臭系统用于将所述轻馏分进行氧化脱臭反应,得到氧化脱臭后轻馏分;an oxidative deodorization system, which is used for carrying out an oxidative deodorization reaction on the light fraction to obtain a light fraction after oxidative deodorization;
溶剂抽提系统,包括溶剂抽提蒸馏单元和溶剂回收单元,所述溶剂抽提蒸馏单元用于将来自氧化脱臭系统的氧化脱臭后轻馏分进行溶剂抽提,得到含硫溶剂和溶剂抽提后轻馏分;所述溶剂回收单元用于将所述含硫溶剂与其中含有的硫化物分离以得到溶剂抽提后含硫物料和脱除了硫化物的回收溶剂;A solvent extraction system, including a solvent extraction distillation unit and a solvent recovery unit, the solvent extraction and distillation unit is used to perform solvent extraction on the light fractions after oxidative deodorization from the oxidative deodorization system to obtain a sulfur-containing solvent and a solvent-extracted Light ends; the solvent recovery unit is used to separate the sulfur-containing solvent from the sulfide contained therein to obtain the sulfur-containing material after solvent extraction and the recovered solvent from which the sulfide has been removed;
选择性加氢系统,来自分馏系统的重馏分通过管线引入至该选择性加氢系统中进行选择性加氢脱硫反应以得到加氢后重馏分;A selective hydrogenation system, the heavy fractions from the fractionation system are introduced into the selective hydrogenation system through pipelines for selective hydrodesulfurization reaction to obtain the heavy fractions after hydrogenation;
所述加氢后重馏分与所述溶剂抽提后轻馏分混合并作为汽油产品通过管线引出。The hydrogenated heavy fraction is mixed with the solvent-extracted light fraction and withdrawn as gasoline product through a pipeline.
优选地,该设备进一步包括醚化系统,来自溶剂抽提系统的溶剂抽提后轻馏分先通过管线引入至该醚化系统中进行醚化反应以得到醚化后轻馏分;然后再将该醚化后轻馏分与所述加氢后重馏分混合以作为汽油产品通过管线引出。Preferably, the equipment further comprises an etherification system, and the light fraction after solvent extraction from the solvent extraction system is first introduced into the etherification system through a pipeline for etherification reaction to obtain the light fraction after etherification; then the ether The hydrogenated light ends are combined with the hydrogenated heavy ends to be withdrawn through a line as a gasoline product.
根据一种优选的情况,该设备进一步包括将所述溶剂抽提后含硫物料引入至选择性加氢系统中的管线。According to a preferred situation, the apparatus further comprises a pipeline for introducing the solvent-extracted sulfur-containing material into the selective hydrogenation system.
根据另一种优选的情况,该设备进一步包括裂化系统,来自所述溶剂抽提系统的溶剂抽提后含硫物料通过管线引入至该裂化系统中进行催化裂化反应,并将该裂化系统中的产物通过管线引入至所述分馏系统中。According to another preferred situation, the equipment further comprises a cracking system, and the sulfur-containing material after solvent extraction from the solvent extraction system is introduced into the cracking system through a pipeline for catalytic cracking reaction, and the sulphur-containing material in the cracking system is removed. The product is introduced into the fractionation system via a line.
优选地,所述溶剂抽提系统进一步包括溶剂再生单元,该溶剂再生单元用于将来自所述溶剂回收单元的回收溶剂通过管线引入至该溶剂再生单元中进行注水提纯处理以再生。Preferably, the solvent extraction system further includes a solvent regeneration unit for introducing the recovered solvent from the solvent recovery unit into the solvent regeneration unit through a pipeline for water injection purification treatment for regeneration.
优选地,所述选择性加氢系统包括依次连接的第一反应区和第二反应区以进行所述选择性加氢脱硫反应。Preferably, the selective hydrogenation system comprises a first reaction zone and a second reaction zone connected in sequence to carry out the selective hydrodesulfurization reaction.
根据一种优选的具体实施方式,本发明的所述用于汽油深度脱硫的设备具有图1所示的结构示意图,具体地:According to a preferred specific embodiment, the equipment for deep desulfurization of gasoline of the present invention has the schematic structural diagram shown in FIG. 1 , specifically:
汽油原料1经过管线进入分馏系统2,分馏出重馏分3和轻馏分4。所述重馏分3经管线流出,并与氢气混合进入选择性加氢系统13,经第一反应区在相对较低活性的第一加氢脱硫催化剂作用下进行选择性加氢反应,然后进入第二反应区在相对较高活性的第二加氢脱硫催化剂作用下进行选择性加氢反应,从管线流出而得到加氢后重馏分10。来自分馏系统2的轻馏分4经管线进入氧化脱臭系统5,在负载型金属酞菁催化剂作用下与空气接触,轻馏分中的硫醇被氧化为二硫化物,得到氧化脱臭后轻馏分6。The
氧化脱臭后轻馏分6进入溶剂抽提系统7中与抽提溶剂接触,轻馏分中剩余的硫化物转移到抽提溶剂中,得到溶剂抽提后轻馏分9,优选情况下,该溶剂抽提后轻馏分9经管线进入醚化系统11中。After oxidative deodorization, the
吸收了硫化物的含硫溶剂进入溶剂回收单元进行溶剂回收,所吸收的硫化物在蒸馏的条件下与抽提溶剂分离,得到溶剂抽提后含硫物料8,该溶剂抽提后含硫物料8与重馏分3一起进入选择性加氢系统13中,或者并入裂化系统中进行裂化反应,裂化后得到的汽油馏分作为本发明的一部分汽油原料1。同时一部分回收溶剂流入溶剂再生单元与水接触,进行提纯再生,溶剂中所吸收的烃类(与水共沸)、富含杂质的重质残液与再生溶剂分离,再生溶剂并入回收溶剂中,继续与溶剂抽提后轻馏分接触而循环使用。The sulfur-containing solvent that has absorbed the sulfide enters the solvent recovery unit for solvent recovery, and the absorbed sulfide is separated from the extraction solvent under the condition of distillation to obtain a sulfur-containing material 8 after solvent extraction, and the sulfur-containing material after the solvent extraction is obtained. 8 enters the
进入醚化系统11中的溶剂抽提后轻馏分9优选先进行预加氢处理,并在处理后与低碳醇接触,使轻馏分中的烯烃与低碳醇反应生成醚,得到醚化后轻馏分12。After entering the solvent extraction in the
所述加氢后重馏分10与所述醚化后轻馏分12混合成为低硫、低烯烃且辛烷值有所增加的汽油产品;或者所述加氢后重馏分10与所述溶剂抽提后轻馏分9混合成为低硫、低烯烃且辛烷值损失较少的汽油产品。The hydrogenated
本发明提供的汽油深度脱硫工艺具有以下优点:The gasoline deep desulfurization process provided by the invention has the following advantages:
本发明采用了对含硫汽油分段处理的方式,并对各馏分段的汽油分别采用氧化脱臭、溶剂抽提、选择性加氢的处理方式。The present invention adopts the method of treating sulfur-containing gasoline in stages, and adopts the treatment methods of oxidative deodorization, solvent extraction and selective hydrogenation for gasoline in each fraction of the gasoline.
为了有效降低汽油馏分的硫含量,本发明在氧化脱臭的基础上采用了对硫化物具有显著选择性吸收的抽提溶剂组合,并且采用了抽提蒸馏的方式抽提脱除汽油馏分中的硫化物以及减压蒸馏的方式使抽提溶剂回收,溶剂抽提后的轻馏分与抽提溶剂分离完全(基本上互不夹带),不需要后续处理,而回收时抽提溶剂与所吸收的硫化物以及含硫物料也能够很好地分离,回收后的溶剂一部分进行再生处理,克服了常规溶剂再生不彻底的缺点,不仅通过与水的共沸作用分离出溶剂中所溶解的残存烃料,而且还将溶剂中累积的高沸点聚合物、沉积物等杂质脱除,溶剂再生时提纯效果显著,从而使得回收后的溶剂在与一部分再生溶剂混合后循环抽提能力得到有效恢复。由于脱硫效率的提高,本发明中轻馏分的干点能够适当升高,如此可以增加汽油分馏时轻馏分的收率而减少重馏分的收率,重馏分进入加氢系统的处理量随之减少,因重馏分的加氢所带来的辛烷值损失就能够有效降低。In order to effectively reduce the sulfur content of the gasoline fraction, the present invention adopts an extraction solvent combination with significant selective absorption of sulfides on the basis of oxidative deodorization, and adopts the method of extractive distillation to extract and remove the sulfur in the gasoline fraction. The extraction solvent is recovered by the method of organic matter and vacuum distillation, and the light fraction after solvent extraction is completely separated from the extraction solvent (basically not entrained with each other), and subsequent treatment is not required, and the extraction solvent and the absorbed sulfide are recovered during recovery. Hydrocarbons and sulfur-containing materials can also be well separated, and a part of the recovered solvent is regenerated, which overcomes the shortcomings of incomplete regeneration of conventional solvents. In addition, impurities such as high-boiling polymers and deposits accumulated in the solvent are removed, and the purification effect is remarkable during solvent regeneration, so that the recycling extraction capacity of the recovered solvent can be effectively restored after being mixed with a part of the regenerated solvent. Due to the improvement of the desulfurization efficiency, the dry point of the light ends can be appropriately increased in the present invention, so that the yield of the light ends during gasoline fractionation can be increased and the yield of the heavy ends can be reduced, and the processing capacity of the heavy ends entering the hydrogenation system can be reduced accordingly. , the octane number loss caused by the hydrogenation of heavy fractions can be effectively reduced.
如果采用液-液溶剂抽提与正压溶剂蒸馏回收的方式,对噻吩类化合物具有较高选择性吸收效率的溶剂在吸收硫醚硫方面的效果通常并不好,难以深度脱硫,而且由于互相夹带,抽提后的汽油馏分往往还需要后续处理,如水洗等,而抽提后的溶剂因为所吸收的物料相对较多,回收通常难以彻底,不利于溶剂的有效使用。If liquid-liquid solvent extraction and positive pressure solvent distillation recovery are adopted, the solvent with high selective absorption efficiency for thiophene compounds is usually not effective in absorbing sulfide sulfur, and it is difficult to deeply desulfurize. Entrainment, the gasoline fraction after extraction often needs subsequent treatment, such as water washing, etc., and the solvent after extraction is usually difficult to recover completely because of the relatively large amount of materials absorbed, which is not conducive to the effective use of the solvent.
本发明采用氧化脱臭对轻馏分预先处理,可以避免因为采用碱液抽提所带来的碱渣处理问题,流程上也相对简单一些,而且炼厂通常都建有汽油脱臭装置,略加改造后即可投用。The invention adopts oxidative deodorization to pre-treat the light fraction, which can avoid the problem of alkali residue treatment caused by the use of lye extraction, and the process is relatively simple, and the refinery usually has a gasoline deodorization device. ready to use.
在本发明中,溶剂抽提会产生富含硫的物料。在本发明条件下,这些富含硫的物料可以进入步骤2)进行选择性加氢脱硫反应,而且对加氢系统的影响很小,也不会引起辛烷值的较大损失。同时,也可以将这些富含硫的物料优选并入催化裂化提升管进行裂化反应,操作上也更为有利。In the present invention, solvent extraction produces a sulfur-rich material. Under the conditions of the present invention, these sulfur-rich materials can enter step 2) for selective hydrodesulfurization reaction, and have little impact on the hydrogenation system, and will not cause a large loss of octane number. At the same time, these sulfur-rich materials can also be preferably incorporated into the catalytic cracking riser for cracking reaction, which is more advantageous in operation.
本发明提供的汽油脱硫工艺的另一显著优点是:本发明所述选择性加氢脱硫系统采用了两种加氢催化剂相配合,分别在第一反应区与第二反应区进行催化加氢脱硫反应,可以稳定得到硫含量不大于10μg/g的汽油产品,且辛烷值损失更小一些。Another significant advantage of the gasoline desulfurization process provided by the present invention is that the selective hydrodesulfurization system of the present invention adopts two kinds of hydrogenation catalysts to cooperate, and the catalytic hydrodesulfurization is carried out in the first reaction zone and the second reaction zone respectively. After the reaction, a gasoline product with a sulfur content of not more than 10 μg/g can be stably obtained, and the loss of octane number is smaller.
为了减少辛烷值的损失,本发明优选在溶剂抽提步骤之后配置轻馏分醚化步骤,使轻馏分中的烯烃与低碳醇反应生成高辛烷值的醚类化合物。由于溶剂抽提脱除了轻馏分中大部分硫化物以及其它杂原子化合物,使得醚化之前的预处理能够在缓和的条件下进行,有利于减少操作成本。In order to reduce the loss of octane number, the present invention preferably configures a light end etherification step after the solvent extraction step, so that olefins in the light end are reacted with lower alcohols to generate ether compounds with high octane number. Since most of the sulfides and other heteroatom compounds in the light fraction are removed by solvent extraction, the pretreatment before etherification can be carried out under mild conditions, which is beneficial to reduce operating costs.
本发明的方法中通过采用抽提蒸馏配合其它工艺手段相比于现有含有常规的液-液抽提的工艺所得到的汽油产品的液收要高。而且,现有技术中的液-液抽提过程中容易出现油携带剂、剂携带油的情形,需要进一步的水洗等方式处理,容易造成液收损失。In the method of the present invention, the liquid yield of the gasoline product obtained by adopting extractive distillation and other process means is higher than that of the existing process including conventional liquid-liquid extraction. Moreover, in the liquid-liquid extraction process in the prior art, oil-carrying agents and oil-carrying agents are prone to occur, and further processing such as water washing is required, which is likely to cause loss of liquid recovery.
总而言之,本发明的深度脱硫工艺无论在脱硫效果上、减少辛烷值损失方面,还是在装置操作的可行性与稳定性、以及环保效应方面,都更高一筹,这是现有技术不能比拟的。All in all, the deep desulfurization process of the present invention is superior in terms of desulfurization effect, reduction of octane number loss, feasibility and stability of device operation, and environmental protection effect, which is incomparable to the prior art. .
以下将通过实例对本发明进行详细描述。以下实例中,在没有特别说明的情况下,使用的各种原料均来自商购。The present invention will be described in detail below by way of examples. In the following examples, all raw materials used are commercially available unless otherwise specified.
以下所使用的选择性加氢脱硫催化剂中的一种为由中国石油化工股份有限公司催化剂分公司长岭催化剂厂提供的商品牌号为RSDS-11的催化剂。One of the selective hydrodesulfurization catalysts used below is the catalyst with the trade name RSDS-11 provided by the Changling Catalyst Factory of the Catalyst Branch of China Petrochemical Corporation.
另一种选择性加氢脱硫催化剂Cat1的组成:氧化钴的含量为4.3重量%,氧化钼的含量为12.4重量%,余量为氧化铝载体。The composition of another selective hydrodesulfurization catalyst Cat1: the content of cobalt oxide is 4.3% by weight, the content of molybdenum oxide is 12.4% by weight, and the balance is alumina carrier.
以下使用的选择性加氢预处理催化剂Cat2的组成为:0.5重量%的Pd,余量为Al2O3载体。The composition of the selective hydrogenation pretreatment catalyst Cat2 used below is: 0.5 wt% Pd, the balance being Al 2 O 3 support.
以下所使用的氧化脱臭催化剂和氧化脱臭助剂均由广州大有精细化工厂提供,商品牌号分别为HUS-C01和HUS-P01。The oxidative deodorization catalysts and oxidative deodorization aids used below are all provided by Guangzhou Dayou Fine Chemical Plant, and the trade names are HUS-C01 and HUS-P01, respectively.
实施例1Example 1
本实施例采用图1所示的设备对表1中的汽油原料A进行深度脱硫处理。In this example, the equipment shown in FIG. 1 is used to perform deep desulfurization treatment on the gasoline feedstock A in Table 1.
将汽油原料A在95℃的切割点温度下分馏以得到收率为50重量%的轻馏分和收率为50重量%的重馏分。Gasoline Feed A was fractionated at a cut point temperature of 95°C to obtain a 50 wt% yield of light ends and a 50 wt% yield of heavy ends.
在针对分馏后轻馏分的氧化脱臭系统中,分馏后轻馏分在HUS-C01催化剂作用下进行氧化,反应温度40℃,压力0.6MPa,液时空速1.0h-1,空气注入量为氧化硫醇所需理论量的2.4倍,氧化脱臭助剂HUS-P01注入量为5μg/g(与轻馏分相比);氧化脱臭后轻馏分硫醇硫含量≯1μg/g。In the oxidative deodorization system for light fractions after fractionation, the light fractions after fractionation are oxidized under the action of HUS-CO1 catalyst, the reaction temperature is 40°C, the pressure is 0.6MPa, the liquid hourly space velocity is 1.0h -1 , and the air injection amount is oxidized mercaptan. 2.4 times of the required theoretical amount, the injection amount of oxidative deodorization aid HUS-P01 is 5 μg/g (compared with light distillate); the mercaptan sulfur content of light distillate after oxidative deodorization is ≯ 1 μg/g.
在溶剂抽提系统中,在溶剂抽提蒸馏塔中对氧化脱臭后轻馏分进行溶剂抽提蒸馏,得到溶剂抽提后轻馏分与含硫溶剂,含硫溶剂为氧化脱臭后轻馏分总量的5重量%。然后通过减压蒸馏在溶剂回收塔中将所述含硫溶剂与其中含有的硫化物分离以得到溶剂抽提后含硫物料和脱除了硫化物的回收溶剂:In the solvent extraction system, the light fractions after oxidative deodorization are subjected to solvent extraction distillation in a solvent extraction distillation column to obtain the light fractions after solvent extraction and sulfur-containing solvent, and the sulfur-containing solvent is the total amount of light fractions after oxidative deodorization. 5% by weight. Then in the solvent recovery tower by vacuum distillation, the sulfur-containing solvent and the sulfide contained therein are separated to obtain the sulfur-containing material after solvent extraction and the recovery solvent from which the sulfide has been removed:
在溶剂抽提蒸馏塔中:抽提溶剂与氧化脱臭后轻馏分的进料重量比为3:1,塔底温度为170℃,塔顶温度为80℃,塔顶压力为180kPa,抽提溶剂中的主抽提溶剂为N-甲酰基吗啉,助剂为水和甲醇,且助剂含量为抽提溶剂的5重量%,水在抽提溶剂中的含量为1重量%。In the solvent extraction distillation column: the feed weight ratio of the extraction solvent to the light fraction after oxidative deodorization is 3:1, the temperature at the bottom of the column is 170 °C, the temperature at the top of the column is 80 °C, the pressure at the top of the column is 180 kPa, and the extraction solvent The main extraction solvent is N-formylmorpholine, the auxiliary agent is water and methanol, and the content of the auxiliary agent is 5% by weight of the extraction solvent, and the content of water in the extraction solvent is 1% by weight.
在溶剂回收塔中:塔底温度为180℃,塔顶温度为80℃,塔顶压力为40kPa,汽提蒸汽与所述含硫溶剂的用量重量比为0.2:1。In the solvent recovery tower: the temperature at the bottom of the tower is 180°C, the temperature at the top of the tower is 80°C, the pressure at the top of the tower is 40kPa, and the weight ratio of the amount of stripping steam to the sulfur-containing solvent is 0.2:1.
在溶剂再生塔中:用于再生的回收溶剂为全部回收溶剂的3重量%,塔底温度为180℃,塔顶温度为100℃,塔顶压力为10kPa,残液从塔底排出,再生溶剂与回收溶剂混合后循环使用,使用的汽提水来自于溶剂抽提蒸馏塔与溶剂回收塔收集的冷凝水。溶剂抽提后轻馏分中的硫含量为≯5μg/g。In the solvent regeneration tower: the recovered solvent used for regeneration is 3% by weight of the total recovered solvent, the temperature at the bottom of the tower is 180°C, the temperature at the top of the tower is 100°C, the pressure at the top of the tower is 10kPa, the residual liquid is discharged from the bottom of the tower, and the solvent is regenerated. After mixing with the recovered solvent, it is recycled. The stripping water used comes from the condensed water collected by the solvent extraction distillation column and the solvent recovery column. The sulfur content in the light ends after solvent extraction was ≯ 5 μg/g.
对溶剂抽提后轻馏分进行选择性加氢预处理和醚化处理,选择性加氢预处理条件为:使用选择性加氢预处理催化剂Cat2,反应温度为80℃,反应压力为1.0MPa,液时体积空速为4.0h-1,氢油体积比5。醚化反应通过将所述溶剂抽提后轻馏分与甲醇接触而进行,醚化条件为:使用磺酸型离子交换树脂作为醚化催化剂,甲醇与所述溶剂抽提后轻馏分中的烯烃的摩尔比为1.02:1,液时空速2.0h-1,反应温度为70℃,反应压力为1.0MPa,得到醚化后轻馏分。The light fractions after solvent extraction are subjected to selective hydrogenation pretreatment and etherification treatment. The selective hydrogenation pretreatment conditions are as follows: the selective hydrogenation pretreatment catalyst Cat2 is used, the reaction temperature is 80 °C, and the reaction pressure is 1.0 MPa, The liquid hourly volume space velocity is 4.0h -1 , and the volume ratio of hydrogen to oil is 5. The etherification reaction is carried out by contacting the light fraction after the solvent extraction with methanol, and the etherification conditions are: using a sulfonic acid type ion exchange resin as the etherification catalyst, methanol and the olefin in the solvent extraction light fraction are separated. The molar ratio was 1.02:1, the liquid hourly space velocity was 2.0h -1 , the reaction temperature was 70°C, and the reaction pressure was 1.0MPa to obtain etherified light fractions.
在针对重馏分的选择性加氢系统中,将溶剂抽提后含硫物料与分馏后重馏分一起进行选择性加氢脱硫反应,选择性加氢脱硫反应的条件:氢分压为1.6MPa,第一反应区采用RSDS-11催化剂,反应温度为200℃,第二反应区采用催化剂Cat1,反应温度为300℃,液时体积空速为3.0h-1,氢油体积比为400。选择性加氢后得到加氢后重馏分,加氢后重馏分中硫含量为8μg/g。In the selective hydrogenation system for heavy fractions, the sulfur-containing material after solvent extraction is subjected to selective hydrodesulfurization reaction together with the fractionated heavy fraction.
将溶剂抽提后轻馏分与加氢后重馏分混合成低硫汽油产品B;或者将醚化后轻馏分与加氢后重馏分混合成低硫、低烯烃汽油产品C。The light fraction after solvent extraction and the heavy fraction after hydrogenation are mixed into low-sulfur gasoline product B; or the light fraction after etherification and the heavy fraction after hydrogenation are mixed into low-sulfur and low-olefin gasoline product C.
汽油产品B和汽油产品C的性质见表1。The properties of gasoline product B and gasoline product C are shown in Table 1.
从表1中可以看出,汽油产品B的脱硫率高达99.2%,产品硫含量仅为7μg/g,满足国家Ⅴ号排放标准汽油产品硫含量不大于10μg/g的要求,烯烃饱和率为15.6%,RON损失值为1.4个单位。It can be seen from Table 1 that the desulfurization rate of gasoline product B is as high as 99.2%, and the sulfur content of the product is only 7 μg/g, which meets the requirement of national V emission standard that the sulfur content of gasoline products is not more than 10 μg/g, and the olefin saturation rate is 15.6 %, the RON loss value is 1.4 units.
从表1中可以看出,汽油产品C的脱硫率高达99.3%,产品硫含量仅为6μg/g,满足国家Ⅴ号排放标准汽油产品硫含量不大于10μg/g的要求,烯烃脱除率为45.3%,RON增加0.5个单位。As can be seen from Table 1, the desulfurization rate of gasoline product C is as high as 99.3%, and the sulfur content of the product is only 6 μg/g, which meets the requirement of national V emission standard that the sulfur content of gasoline products is not more than 10 μg/g, and the olefin removal rate is 45.3%, RON increased by 0.5 units.
由此可以看出,本发明的组合工艺具有很好的脱硫效果以及降低辛烷值损失的效果,若不进行轻馏分的醚化处理,烯烃饱和率少,辛烷值损失也小,而通过轻馏分醚化处理后,能够较大地降低烯烃含量,并使辛烷值有效恢复甚至增加。It can be seen from this that the combined process of the present invention has a good desulfurization effect and the effect of reducing the loss of octane number. After etherification of light ends, the olefin content can be greatly reduced, and the octane number can be effectively recovered or even increased.
并且,在本实施例中,由于在抽提蒸馏时使用了含有助剂的抽提溶剂,使得抽提溶剂的有效利用率明显提高,溶剂再生频次减少,并引起能耗的相对降低与操作成本的相对减少。In addition, in this embodiment, since the extraction solvent containing auxiliary agents is used in the extraction and distillation, the effective utilization rate of the extraction solvent is significantly improved, the frequency of solvent regeneration is reduced, and the relative reduction in energy consumption and operating costs are caused. relative reduction.
表1Table 1
对比例1Comparative Example 1
本对比例采用先将汽油原料进行分馏以得到轻馏分和重馏分,然后将轻馏分进行碱液抽提,以及将重馏分进行加氢脱硫,本对比例采用与实施例1相似的参数进行,本对比例的汽油原料为表1中的原料油A,不同的是:In this comparative example, the gasoline feedstock is first fractionated to obtain light ends and heavy ends, then the light ends are subjected to lye extraction, and the heavy ends are subjected to hydrodesulfurization. The gasoline raw material of this comparative example is the raw material oil A in Table 1, the difference is:
将实施例1中汽油原料的切割点限定为60℃,分馏后得到收率为20重量%的轻馏分与收率为80重量%的重馏分的收率;The cutting point of the gasoline raw material in Example 1 is limited to 60 ° C, and the yield of the light fraction with a yield of 20 wt % and the yield of the heavy fraction with a yield of 80 wt % is obtained after fractionation;
轻馏分采用碱液抽提方式进行处理,碱液抽提条件如下:轻馏分与碱液接触时的体积比为8:2,温度为25℃,压力为0.6MPa,得到碱液抽提后轻馏分;吸收了硫醇的含硫碱液在悬浮在碱液中的金属酞菁催化剂作用下进行氧化,金属酞菁(磺化酞菁钴,市售品)在碱液中的加入量为500μg/g,氧化过程中空气的注入量为理论量的2.4倍,氧化时的压力为0.5MPa,温度为40℃;氧化后的含硫碱液按体积比1:10与来自选择性加氢系统的加氢后重馏分混合以反抽提脱除氧化后的含硫碱液中的二硫化物,得到再生碱液和碱液抽提含硫物料,再生碱液循环使用;所述碱液抽提含硫物料连续排出。The light fraction is treated by lye extraction, and the lye extraction conditions are as follows: the volume ratio of the light fraction and the lye in contact is 8:2, the temperature is 25 ° C, and the pressure is 0.6 MPa. Fraction; the sulfur-containing lye that has absorbed thiol is oxidized under the action of metal phthalocyanine catalyst suspended in the lye, and the amount of metal phthalocyanine (sulfonated cobalt phthalocyanine, commercially available product) in the lye is 500 μg /g, the injection amount of air in the oxidation process is 2.4 times the theoretical amount, the pressure during oxidation is 0.5MPa, and the temperature is 40 °C; The hydrogenated heavy fractions are mixed to remove the disulfides in the oxidized sulfur-containing lye by reverse extraction to obtain regenerated lye and lye to extract sulfur-containing materials, and the regenerated lye is recycled for use; Sulfur-containing materials are continuously discharged.
本对比例仅采用轻馏分的碱液抽提步骤与重馏分的选择性加氢步骤的组合,不对轻馏分进行溶剂抽提及醚化处理。In this comparative example, only the combination of the lye extraction step of the light fraction and the selective hydrogenation step of the heavy fraction is adopted, and the solvent extraction and etherification treatment of the light fraction is not performed.
针对重馏分的选择性加氢系统中仅使用一种加氢催化剂RSDS-11,加氢温度为320℃。Only one hydrogenation catalyst, RSDS-11, was used in the selective hydrogenation system for heavy ends, and the hydrogenation temperature was 320°C.
轻馏分经碱液抽提后硫含量≯10μg/g,而重馏分加氢后硫含量为9μg/g。The sulfur content of the light distillate after lye extraction is ≯ 10 μg/g, while the sulfur content of the heavy distillate after hydrogenation is 9 μg/g.
本对比例将碱液抽提后轻馏分与加氢后重馏分混合成低硫汽油产品D,结果如表2中所示。In this comparative example, the light fractions after lye extraction and the heavy fractions after hydrogenation are mixed into low-sulfur gasoline product D, and the results are shown in Table 2.
从表2可以看出,为了得到硫含量≯10μg/g的汽油产品D,与实施例1中得到汽油产品B的组合工艺相比,对比例1的组合工艺的烯烃饱和率高达50.0%,辛烷值RON损失高达5.5个单位。As can be seen from Table 2, in order to obtain gasoline product D with sulfur content ≯ 10 μg/g, compared with the combined process of obtaining gasoline product B in Example 1, the olefin saturation rate of the combined process of Comparative Example 1 is as high as 50.0%, and the Alkane RON losses are as high as 5.5 units.
表2Table 2
实施例2Example 2
本实施例采用图1所示的设备对汽油原料E进行深度脱硫处理。In this example, the equipment shown in FIG. 1 is used to carry out deep desulfurization treatment on the gasoline raw material E.
将汽油原料E在120℃的切割点温度下分馏以得到收率为60重量%的轻馏分和收率为40重量%的重馏分。The gasoline feedstock E was fractionated at a cut point temperature of 120°C to obtain a yield of 60% by weight of light ends and a yield of 40% by weight of heavy ends.
在针对分馏后轻馏分的氧化脱臭系统中,分馏后轻馏分在HUS-C01催化剂作用下进行氧化,反应温度55℃,压力0.6MPa,液时空速1.2h-1,空气注入量为氧化硫醇所需理论量的2.4倍,氧化脱臭助剂HUS-P01注入量为5μg/g(与轻馏分相比);氧化脱臭后轻馏分硫醇硫含量≯1μg/g。In the oxidative deodorization system for light fractions after fractionation, the light fractions after fractionation are oxidized under the action of HUS-C01 catalyst, the reaction temperature is 55°C, the pressure is 0.6MPa, the liquid hourly space velocity is 1.2h -1 , and the air injection amount is oxidized mercaptan. 2.4 times of the required theoretical amount, the injection amount of oxidative deodorization aid HUS-P01 is 5 μg/g (compared with light distillate); the mercaptan sulfur content of light distillate after oxidative deodorization is ≯ 1 μg/g.
在溶剂抽提系统中,在溶剂抽提蒸馏塔中对氧化脱臭后轻馏分进行溶剂抽提蒸馏,得到溶剂抽提后轻馏分与含硫溶剂,含硫溶剂为氧化脱臭后轻馏分总量的7重量%。然后通过减压蒸馏在溶剂回收塔中将所述含硫溶剂与其中含有的硫化物分离以得到溶剂抽提后含硫物料和脱除了硫化物的回收溶剂:In the solvent extraction system, the light fractions after oxidative deodorization are subjected to solvent extraction distillation in a solvent extraction distillation column to obtain the light fractions after solvent extraction and sulfur-containing solvent, and the sulfur-containing solvent is the total amount of light fractions after oxidative deodorization. 7% by weight. Then in the solvent recovery tower by vacuum distillation, the sulfur-containing solvent and the sulfide contained therein are separated to obtain the sulfur-containing material after solvent extraction and the recovery solvent from which the sulfide has been removed:
在溶剂抽提蒸馏塔中:抽提溶剂与氧化脱臭后轻馏分的进料重量比为4:1,塔底温度为150℃,塔顶温度为95℃,塔顶压力为200kPa,抽提溶剂中的主抽提溶剂为N-甲基-2-吡咯烷酮,助剂为丙酮,且助剂含量为抽提溶剂的4.2重量%。In the solvent extraction distillation column: the feed weight ratio of the extraction solvent to the light fraction after oxidative deodorization is 4:1, the temperature at the bottom of the column is 150 °C, the temperature at the top of the column is 95 °C, the pressure at the top of the column is 200 kPa, and the extraction solvent The main extraction solvent is N-methyl-2-pyrrolidone, the auxiliary agent is acetone, and the content of the auxiliary agent is 4.2% by weight of the extraction solvent.
在溶剂回收塔中:塔底温度为200℃,塔顶温度为90℃,塔顶压力为40kPa,汽提蒸汽与所述含硫溶剂的用量重量比为0.25:1。In the solvent recovery tower: the temperature at the bottom of the tower is 200°C, the temperature at the top of the tower is 90°C, the pressure at the top of the tower is 40kPa, and the weight ratio of the stripping steam to the sulfur-containing solvent is 0.25:1.
在溶剂再生塔中:用于再生的回收溶剂为全部回收溶剂的5重量%,塔底温度为170℃,塔顶温度为100℃,塔顶压力为8kPa,残液从塔底排出,再生溶剂与回收溶剂混合后循环使用,使用的汽提水来自于溶剂抽提蒸馏塔与溶剂回收塔收集的冷凝水。溶剂抽提后轻馏分中的硫含量为3μg/g。In the solvent regeneration tower: the recovered solvent used for regeneration is 5% by weight of the total recovered solvent, the temperature at the bottom of the tower is 170°C, the temperature at the top of the tower is 100°C, the pressure at the top of the tower is 8kPa, the residual liquid is discharged from the bottom of the tower, and the solvent is regenerated. After mixing with the recovered solvent, it is recycled. The stripping water used comes from the condensed water collected by the solvent extraction distillation column and the solvent recovery column. The sulfur content in the light ends after solvent extraction was 3 μg/g.
对溶剂抽提后轻馏分进行选择性加氢预处理和醚化处理,选择性加氢预处理条件为:使用选择性加氢预处理催化剂Cat2,反应温度为100℃,反应压力为1.2MPa,液时体积空速为5h-1,氢油体积比5。醚化反应通过将所述溶剂抽提后轻馏分与甲醇接触而进行,醚化条件为:使用磺酸型离子交换树脂作为醚化催化剂,甲醇与所述溶剂抽提后轻馏分中的烯烃的摩尔比为1.05:1,反应温度为80℃,反应压力为1.0MPa,得到醚化后轻馏分。The light fractions after solvent extraction are subjected to selective hydrogenation pretreatment and etherification treatment. The selective hydrogenation pretreatment conditions are: use the selective hydrogenation pretreatment catalyst Cat2, the reaction temperature is 100 ° C, the reaction pressure is 1.2 MPa, The liquid hourly volume space velocity is 5h -1 , and the volume ratio of hydrogen to oil is 5. The etherification reaction is carried out by contacting the light fraction after the solvent extraction with methanol, and the etherification conditions are: using a sulfonic acid type ion exchange resin as the etherification catalyst, methanol and the olefin in the solvent extraction light fraction are separated. The molar ratio was 1.05:1, the reaction temperature was 80° C., and the reaction pressure was 1.0 MPa to obtain light fractions after etherification.
在针对重馏分的选择性加氢系统中,将溶剂抽提后含硫物料与分馏后重馏分一起进行选择性加氢脱硫反应,选择性加氢脱硫反应的条件:氢分压为1.6MPa,第一反应区采用RSDS-11催化剂,反应温度为220℃,第二反应区采用催化剂Cat1,反应温度为295℃,液时体积空速为3.0h-1,氢油体积比为400。选择性加氢后得到加氢后重馏分,加氢后重馏分中硫含量为6μg/g。In the selective hydrogenation system for heavy fractions, the sulfur-containing material after solvent extraction is subjected to selective hydrodesulfurization reaction together with the fractionated heavy fraction. The RSDS-11 catalyst was used in the first reaction zone at a reaction temperature of 220°C, the second reaction zone was a catalyst Cat1 at a reaction temperature of 295°C, the liquid hourly volume space velocity was 3.0h -1 , and the volume ratio of hydrogen to oil was 400. After selective hydrogenation, a heavy fraction after hydrogenation is obtained, and the sulfur content in the heavy fraction after hydrogenation is 6 μg/g.
将溶剂抽提后轻馏分与加氢后重馏分混合成低硫汽油产品F;或者将醚化后轻馏分与加氢后重馏分混合成低硫、低烯烃汽油产品G。The light fraction after solvent extraction and the heavy fraction after hydrogenation are mixed to form low-sulfur gasoline product F;
汽油产品F和汽油产品G的性质见表3。The properties of gasoline product F and gasoline product G are shown in Table 3.
从表3中可以看出,汽油产品F的脱硫率高达98.7%,产品硫含量仅为4μg/g,满足国家Ⅴ号排放标准汽油产品硫含量不大于10μg/g的要求,烯烃饱和率为13.5%,RON损失值为0.5个单位。As can be seen from Table 3, the desulfurization rate of gasoline product F is as high as 98.7%, and the sulfur content of the product is only 4 μg/g, which meets the requirement of national V emission standard that the sulfur content of gasoline products is not more than 10 μg/g, and the olefin saturation rate is 13.5 %, the RON loss value is 0.5 units.
从表3中可以看出,汽油产品G的脱硫率高达99.0%,产品硫含量仅为3μg/g,满足国家Ⅴ号排放标准汽油产品硫含量不大于10μg/g的要求,烯烃脱除率为59.6%,RON增加0.7个单位。As can be seen from Table 3, the desulfurization rate of gasoline product G is as high as 99.0%, and the sulfur content of the product is only 3 μg/g, which meets the requirement of national V emission standard that the sulfur content of gasoline products is not more than 10 μg/g, and the olefin removal rate is 59.6%, RON increased by 0.7 units.
并且,在本实施例中,由于在抽提蒸馏时使用了含有助剂的抽提溶剂,使得抽提溶剂的有效利用率明显提高,溶剂再生频次减少,并引起能耗的相对降低与操作成本的相对减少。In addition, in this embodiment, since the extraction solvent containing auxiliary agents is used in the extraction and distillation, the effective utilization rate of the extraction solvent is significantly improved, the frequency of solvent regeneration is reduced, and the relative reduction in energy consumption and operating costs are caused. relative reduction.
表3table 3
实施例3Example 3
本实施例采用与实施例2相同的原料油E以及相同的组合脱硫工艺、相同的工艺参数进行,不同的是:This embodiment is carried out using the same raw material oil E and the same combined desulfurization process and the same process parameters as in Example 2, and the difference is:
本实施例的溶剂抽提过程中使用的抽提溶剂中不含有助剂,其余均与实施例2中相同,结果溶剂抽提后轻馏分中的硫含量为6μg/g。The extraction solvent used in the solvent extraction process of this example does not contain auxiliary agents, and the rest are the same as those in Example 2. As a result, the sulfur content in the light ends after solvent extraction is 6 μg/g.
选择性加氢后得到加氢后重馏分,加氢后重馏分中硫含量为6μg/g。After selective hydrogenation, a heavy fraction after hydrogenation is obtained, and the sulfur content in the heavy fraction after hydrogenation is 6 μg/g.
将溶剂抽提后轻馏分与加氢后重馏分混合成低硫汽油产品H;或者将醚化后轻馏分与加氢后重馏分混合成低硫、低烯烃汽油产品I。The light fraction after solvent extraction and the heavy fraction after hydrogenation are mixed into a low-sulfur gasoline product H; or the light fraction after etherification and the heavy fraction after hydrogenation are mixed into a low-sulfur, low-olefin gasoline product I.
汽油产品H和汽油产品I的性质见表4。The properties of gasoline product H and gasoline product I are shown in Table 4.
从表4中可以看出,汽油产品H的脱硫率高达98.0%,产品硫含量仅为6μg/g,满足国家Ⅴ号排放标准汽油产品硫含量不大于10μg/g的要求,烯烃饱和率为13.5%,RON损失值为0.5个单位。It can be seen from Table 4 that the desulfurization rate of gasoline product H is as high as 98.0%, and the sulfur content of the product is only 6 μg/g, which meets the requirement of national V emission standard that the sulfur content of gasoline products is not more than 10 μg/g, and the olefin saturation rate is 13.5 %, the RON loss value is 0.5 units.
从表4中可以看出,汽油产品I的脱硫率高达98.3%,产品硫含量仅为5μg/g,满足国家Ⅴ号排放标准汽油产品硫含量不大于10μg/g的要求,烯烃脱除率为59.6%,RON增加0.7个单位。As can be seen from Table 4, the desulfurization rate of gasoline product I is as high as 98.3%, and the sulfur content of the product is only 5 μg/g, which meets the requirement of national V emission standard that the sulfur content of gasoline products is not more than 10 μg/g, and the olefin removal rate is 59.6%, RON increased by 0.7 units.
对比本实施例和实施例2的结果可以看出,在溶剂抽提过程中使用含有助剂的抽提溶剂,能够使得本发明的方法获得的汽油产品的硫含量更低一些。如果要使产品硫含量完全一致,本实施例中重馏分的加氢程度需加大,这样就会导致产品H(与产品I)的烯烃含量减少,辛烷值损失将会较实施例2的大。Comparing the results of this example and Example 2, it can be seen that the use of an extraction solvent containing an auxiliary agent in the solvent extraction process can make the sulfur content of the gasoline product obtained by the method of the present invention lower. If the sulfur content of the product is to be completely consistent, the degree of hydrogenation of the heavy fraction in this example needs to be increased, which will cause the olefin content of product H (and product I) to decrease, and the loss of octane number will be higher than that of Example 2. big.
并且,在本实施例中,由于未使用助剂,在抽提蒸馏时,抽提溶剂的有效利用率会降低,不利于抽提的长周期进行。In addition, in this embodiment, since no auxiliary agent is used, the effective utilization rate of the extraction solvent will be reduced during the extraction and distillation, which is not conducive to the long-term extraction.
表4Table 4
从上述结果可以看出,本发明提供的方法能够在避免辛烷值的较大损失的前提下,获得更低硫的汽油产品。并且,在溶剂抽提过程中,助剂的使用对溶剂抽提具有一定的促进作用,而且能够进一步推知,在溶剂长期循环使用时,尤其当溶剂发生分解、杂质含量升高,助剂对溶剂抽提硫化物的效果更为有利。特别地,配合醚化反应过程,能够使得本发明的汽油产品的辛烷值升高且硫含量进一步降低,同时烯烃也大幅度降低,有利于满足未来国Ⅵ汽油标准的要求。It can be seen from the above results that the method provided by the present invention can obtain a gasoline product with lower sulfur on the premise of avoiding the large loss of octane number. Moreover, in the process of solvent extraction, the use of additives has a certain promotion effect on solvent extraction, and it can be further inferred that when the solvent is used in a long-term cycle, especially when the solvent is decomposed and the impurity content increases, the auxiliary agent will affect the solvent. The effect of extracting sulfide is more favorable. In particular, with the etherification reaction process, the octane number of the gasoline product of the present invention can be increased, the sulfur content can be further reduced, and the olefins can also be greatly reduced, which is beneficial to meet the requirements of the future National VI gasoline standard.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention are described in detail above, but the present invention is not limited to the specific details of the above-mentioned embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the specific technical features described in the above-mentioned specific embodiments can be combined in any suitable manner unless they are inconsistent. In order to avoid unnecessary repetition, the present invention provides The combination method will not be specified otherwise.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, the various embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the spirit of the present invention, they should also be regarded as the contents disclosed in the present invention.
Claims (40)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610971963.5A CN108018083B (en) | 2016-10-28 | 2016-10-28 | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610971963.5A CN108018083B (en) | 2016-10-28 | 2016-10-28 | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108018083A CN108018083A (en) | 2018-05-11 |
CN108018083B true CN108018083B (en) | 2020-09-18 |
Family
ID=62084745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610971963.5A Active CN108018083B (en) | 2016-10-28 | 2016-10-28 | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108018083B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113769686A (en) * | 2021-09-06 | 2021-12-10 | 山东佳星环保科技有限公司 | Low-temperature normal-pressure fuel oil desulfurization purification equipment and desulfurization purification method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101787307A (en) * | 2009-01-22 | 2010-07-28 | 中国石油化工股份有限公司 | Gasoline hydrodesulfurization method |
CN103509591A (en) * | 2012-06-28 | 2014-01-15 | 中国石油化工股份有限公司 | Gasoline deep etherification modification method |
CN105296000A (en) * | 2015-09-30 | 2016-02-03 | 中国石油大学(北京) | Coupling method of catalytic cracking gasoline desulfurization |
-
2016
- 2016-10-28 CN CN201610971963.5A patent/CN108018083B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101787307A (en) * | 2009-01-22 | 2010-07-28 | 中国石油化工股份有限公司 | Gasoline hydrodesulfurization method |
CN103509591A (en) * | 2012-06-28 | 2014-01-15 | 中国石油化工股份有限公司 | Gasoline deep etherification modification method |
CN105296000A (en) * | 2015-09-30 | 2016-02-03 | 中国石油大学(北京) | Coupling method of catalytic cracking gasoline desulfurization |
Also Published As
Publication number | Publication date |
---|---|
CN108018083A (en) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105296000B (en) | A kind of coupling process of catalytically cracked gasoline desulfurization | |
CN105238441B (en) | A kind of method that deep desulfuration is carried out to gasoline | |
CN104557388A (en) | Deep desulfurization method of refinery C4 | |
CN102851068B (en) | Gasoline desulfurization method | |
JPH05202367A (en) | Method for desulfurizing and denitrating light oil by extraction | |
WO2015070533A1 (en) | Method for deeply desulfurizing catalytic cracking gasoline | |
CN105255515B (en) | Combination method for producing ultralow sulphur gasoline | |
CN108003934B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN108018076B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN108018082B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN108018066B (en) | A kind of method for deep desulfurization of sulfur-containing raw materials | |
CN108018083B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
JP2004323544A (en) | Method of isolating sulfur compound present in oil, method of isolating sulfur compound and aromatic hydrocarbon present in oil, method of preparing high octane value desulfurized gasoline base and method of preparing high octane value desulfurized and dearomatized gasoline base | |
CN102851069B (en) | Gasoline desulfurization method | |
CN108003931B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN108003926B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN112552951A (en) | Composite extracting agent suitable for removing aromatic hydrocarbons in low-content aromatic hydrocarbon straight-run naphtha and application method thereof | |
CN108018077B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN108003930B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN108018081B (en) | Method for deep desulfurization of gasoline and equipment for deep desulfurization of gasoline | |
CN105176581B (en) | A kind of deep desulfurization of gasoline method | |
CN108018079B (en) | Method for reducing sulfur content of gasoline | |
CN108003932B (en) | Method for producing gasoline product | |
CN105567313B (en) | A kind of production method of high-octane rating low-sulphur oil | |
CN106336898B (en) | A kind of production method of low-sulphur oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |