CN108012272B - 基于认知网络中动态功率分配的干扰对齐方法 - Google Patents

基于认知网络中动态功率分配的干扰对齐方法 Download PDF

Info

Publication number
CN108012272B
CN108012272B CN201711243344.5A CN201711243344A CN108012272B CN 108012272 B CN108012272 B CN 108012272B CN 201711243344 A CN201711243344 A CN 201711243344A CN 108012272 B CN108012272 B CN 108012272B
Authority
CN
China
Prior art keywords
matrix
interference
user
representing
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711243344.5A
Other languages
English (en)
Other versions
CN108012272A (zh
Inventor
李兆玉
马东亚
张进彦
唐青青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201711243344.5A priority Critical patent/CN108012272B/zh
Publication of CN108012272A publication Critical patent/CN108012272A/zh
Application granted granted Critical
Publication of CN108012272B publication Critical patent/CN108012272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术领域,特别涉及一种基于认知网络中动态功率分配的干扰对齐方法,包括:将次用户的第一预编码矩阵和第一干扰抑制矩阵进行矩阵分解;得到第一干扰消除参数和第二预编码矩阵,第二干扰消除参数和第二干扰抑制矩阵;通过消除主次用户间干扰的成立条件来求解第一干扰消除参数和第二干扰消除参数;在消除了主用户与次用户之间干扰的的情况下,考虑功率分配对系统性能带来的影响,使用交替迭代法求解出最优的第二预编码矩阵、第二干扰抑制矩阵及用户的发射功率;本发明充分考虑功率对系统性能的影响,动态的求解出最优的预编码、干扰抑制矩阵及用户的发射功率,提高了系统性能。

Description

基于认知网络中动态功率分配的干扰对齐方法
技术领域
本发明涉及无线通信技术领域,特别涉及一种基于认知网络中动态功率分配的干扰对齐方法。
背景技术
无线通信在最近二十年里经历了飞速的发展,2009年中国政府发放了3G运营牌照,4年之后的2013年,4G技术已成功商用。随着无线移动终端的普及,尤其是近几年移动互联网业务的兴起,用户能够随时随地十分方便的接入网络享受高速的数据服务。然而随着用户数的增加,干扰问题变得尤为突出。如何提高无线通信系统的容量、数据速率以及稳定性、有效的降低系统的干扰成为亟待解决的问题。在无线通信系统中,干扰问题总是如影随形,是一个至关重要的问题。因此,在当前频谱资源紧缺并且无线通信需求还在不断增长的情况下,研究如何对抗干扰,提高频谱利用率就显得十分必要而有意义。
传统的干扰管理技术方法主要有:将干扰视作噪声、干扰正交化和将干扰解码等。但是上述几种干扰管理方法都有着各自不可避免的问题,如频谱利用率低,计算复杂度高等。2008年加州大学的Jafar教授最早提出利用干扰对齐(Interference Alignment,IA)解决干扰问题,干扰对齐的实现是通过在发送端采用预编码矩阵将期望信号和干扰信号在空间、时间或频率上隔离,并利用波束成型技术压缩干扰信号在非期望接收端上的维度,最后在接收端采用接收矩阵最小化干扰和噪声所带来的影响。相较于“切蛋糕”式的正交化频谱共享方式,干扰对齐技术能够极大的提高频谱利用率,获得更高的系统自由度(Degrees ofFreedom,DoF)。干扰对齐从理论上证明了,无线通信系统的信道容量不是干扰受限的,在K对用户的无线信道中,每个用户最多可以获得相对于只存在一对用户时总频谱资源的1/2,K对用户最多可以获得相对于只存在一对用户时总频谱资源的K/2倍,也就是说信道容量是随着用户数的增加而线性增加的,从而极大的提高了信道容量和频谱利用率。
此后,在多用户多输入多输出(Multiple-Input Multiple-Output,MIMO)无线网络中,利用干扰对齐对抗干扰成为了重要的研究方向。近年来干扰对齐逐渐应用到认知无线电中,在认知无线电(Cognitive Radio,CR)中,次用户通过频谱感知技术检测主用户的空闲子信道,在发送端通过干扰对齐技术将对主用户的干扰对齐在主用户的空闲子信道上。这样,次用户就可以在相同的频段上进行通信,并且不对主用户产生干扰,提高了频谱的利用率,符合认知无线电的思想。但是,传统的认知无线电干扰对齐算法只考虑了次用户对主用户的干扰对齐,忽略了次用户之间的干扰对齐。而当存在多对次用户时,只考虑次用户对主用户的干扰对齐是不够的,因为次用户之间的干扰将严重影响着次用户的通信性能;因此,还要考虑次用户之间的干扰对齐。
发明内容
针对以上技术问题,本发明提出一种基于认知网络中动态功率分配的干扰对齐方法,包括:
S1、将次用户的第一预编码矩阵Vi分解为第一干扰消除参数Gi和第二预编码矩阵
Figure BDA0001490257230000021
将第一干扰抑制矩阵Ui分解为第二干扰消除参数Bi和第二干扰抑制矩阵
Figure BDA0001490257230000022
S2、通过消除主次用户间干扰的成立条件来求解第一干扰消除参数Gi和第二干扰消除参数Bi
S3、在消除了主用户与次用户之间干扰的的情况下,使用交替迭代法求解出最优的预编码矩阵、干扰抑制矩阵及功率分配Pi
优选地,将次用户的预编码矩阵Vi和干扰抑制矩阵Ui进行矩阵分解包括:
次用户的预编码矩阵:
Figure BDA0001490257230000023
次用户的干扰抑制矩阵:
Figure BDA0001490257230000031
其中,
Figure BDA0001490257230000032
为第二预编码矩阵,
Figure BDA0001490257230000033
为第二干扰抑制矩阵,Kp为主用户的用户数,K为主用户与次用户的用户数之和。
优选地,通过消除主次用户间干扰的成立条件来求解第一干扰消除参数Gi和第二干扰参数Bi包括:
Figure BDA0001490257230000034
且i=Kp+1,Kp+2,…,K,j=1,2,…,Kp
其中,
Figure BDA0001490257230000035
为Uj的转置共轭矩阵,
Figure BDA0001490257230000036
为Bi的转置共轭矩阵,Hij是发送端j到接收端i的信道矩阵,Hji是发送端i到接收端j的信道矩阵。
优选地,交替迭代法包括:
首先通过满足主用户与次用户之间干扰对齐成立条件,即消除主用户与次用户之间干扰求出次用户的第一干扰参数Gi和第二干扰参数Bi
101、开始迭代求解消除次用户间干扰的次用户预编码
Figure BDA0001490257230000037
干扰抑制矩阵
Figure BDA0001490257230000038
及每个用户所分配的功率pi,设置迭代的收敛阈值z,及系统总功率Pt
102、令n=1,初始化功率分配pi与干扰抑制矩阵
Figure BDA0001490257230000039
以及与预编码矩阵
Figure BDA00014902572300000310
求此时f0
103、首先固定功率分配、干扰抑制矩阵,利用最小干扰泄漏算法求此时最优预编码矩阵;
104、在反向通信中,利用信道互易性,固定功率分配、预编码矩阵求此时最优干扰抑制矩阵;
105、固定干扰抑制矩阵、预编码矩阵,利用最大和容量算法求此时最优功率分配;
106、利用步骤103~106所求功率分配与干扰抑制矩阵以及与预编码矩阵求fn,;
107、当|fn-fn-1|≤z迭代结束,否则令n=n+1并返回步骤103。
优选地,固定功率分配、干扰抑制矩阵,利用最小干扰泄漏算法求此时最优第二预编码矩阵为:
Figure BDA0001490257230000041
其中,pi为用户i的功率,
Figure BDA0001490257230000042
为第二干扰矩阵,
Figure BDA0001490257230000043
为第二预编码矩阵,Gi表示第一干扰消除参数,Bi表示第二干扰消除参数,Hij是发送端j到接收端i的信道矩阵,Hij是发送端i到接收端j的信道矩阵,sj是发送端i的发送信号,
Figure BDA0001490257230000046
表示di个最小特征值对应的特征向量,
Figure BDA0001490257230000044
上标H表示矩阵的转置共轭矩阵。
优选的,利用信道互易性,固定功率分配、预编码矩阵求此时最优第二干扰抑制矩阵为:
Figure BDA0001490257230000045
本发明在主用户间和次用户间的干扰对齐,大多数认知干扰对齐迭代优化算法只是关注预编码和干扰抑制矩阵的设计,忽略了用户间功率分配的影响,而阻碍了系统整体性能的进一步提升;在多个主用户和多个次用的认知MIMO网络中,首先,为保证主用户次用户的接入不对主用户的通信造成不利的影响,由次用户单方面进行消除主用户与次用户之间的干扰;其次,为充分考虑功率对系统性能的影响,在根据干扰功率在期望信号空间最小求解最优的预编码和干扰抑制矩阵时,联合用户间功率分配,动态的求解出最优的预编码、干扰抑制矩阵及功率分配,使每个用户动态的分配最优的功率从而提高了系统性能。
附图说明
图1为本发明所需的多主用户、多次用户的认知MIMO系统模型框架;
图2为本发明一种基于认知网络中动态功率分配的干扰对齐方法的流程图;
图3为本发明一种基于认知网络中动态功率分配的干扰对齐方法中的交替迭代法流程图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明提出的一种基于认知网络中动态功率分配的干扰对齐方法,如图2所示,具体包括以下步骤:
S1、将次用户的第一预编码矩阵Vi分解为第一干扰消除参数Gi和第二预编码矩阵
Figure BDA0001490257230000051
将第一干扰抑制矩阵Ui分解为第二干扰消除参数Bi和第二干扰抑制矩阵
Figure BDA0001490257230000052
S2、令主用户与次用户之间的干扰为零,求解第一干扰消除参数Gi和第二干扰消除参数Bi
S3、在消除了主用户与次用户之间干扰的情况下,使用交替迭代法求解出最优的第二预编码矩阵、第二干扰抑制矩阵及功率分配Pi
进一步地,还可以包括:
S4、根据求解最优的第二预编码矩阵
Figure BDA0001490257230000053
第二干扰抑制矩阵
Figure BDA0001490257230000054
及功率分配Pi分析次用户干扰对齐成立的必要性条件。
特别说明的是,S1-S3已经达成了干扰对齐,S4只是分析,得到的是次用户自由度的上限,表达出与传统MIMO干扰信道中的制约条件不同。
本发明考虑主用户、多次用户的认知MIMO系统,图1为多主用户、多次用户的认知MIMO系统模型框架图。考虑共有K=Kp+Ks对用户,其中Kp个主用户对、KS个次用户对。每个主用户发收两端均分别配置Mp和Np根天线,同样地,每个次用户发收两端均分别配置Ms和Ns根天线,假设用户i(i=1,2,…K)发送di个数据流(即用户i的自由度为di),系统模型如图1所示。
在特定的时频资源上,接收端i的接收信号为:
Figure BDA0001490257230000061
Figure BDA0001490257230000062
其中Vj和Vi分别为发送端j和i的预编码矩阵,其维度分别为Mj×dj和Mi×di,且
Figure BDA0001490257230000063
维度为di×1的si是发送端i的发送信号,且满足
Figure BDA0001490257230000064
其中E[·]表示·的期望;定义Hij(Ni×Mj)为发送端j到接收端i的信道矩阵,Hii(Ni×Mi)是发送端i到接收端i的信道矩阵,假设信道是平坦衰落的,信道中每个元素独立同分布,服从均值为0方差为1的复高斯分布。ni为均值为0方差1的加性高斯白噪声,且满足
Figure BDA0001490257230000065
其中E[·]表示·的期望,接收信号yi经过干扰抑制矩阵Ui(Ni×di)处理之后为:
Figure BDA0001490257230000066
Figure BDA0001490257230000067
其中
Figure BDA0001490257230000068
且满足条件:
Figure BDA0001490257230000069
其中
Figure BDA00014902572300000610
i,j=1,2,…K。
本发明的方法具体包括如下步骤:
S1、将次用户的第一预编码矩阵Vi分解为第一干扰消除参数Gi和第二预编码矩阵
Figure BDA00014902572300000611
将第一干扰抑制矩阵Ui分解为第二干扰消除参数Bi和第二干扰抑制矩阵
Figure BDA00014902572300000612
包括:
在认知无线网络中,由于主用户是授权用户,甚至不知道次用户的存在。次用户作为非授权用户只有在不影响主用户通信的前提下才允许接入。因此在设计次用户的第一预编码矩阵Vi和第一干扰抑制矩阵Ui时不仅要消除次用户对主用户和主用户对次用户的干扰而且还要在消除次用户间干扰的同时尽量使其性能最优。为此,分别对Vi和Ui进行分解:
Figure BDA0001490257230000071
Figure BDA0001490257230000072
S2、令主用户与次用户之间的干扰为零,求解第一干扰消除参数Gi和第二干扰消除参数Bi
分别用Gi和Bi来消除次用户i对每一个主用户的干扰和每一个主用户对次用户i的干扰,公式表达如下:
Figure BDA0001490257230000073
Figure BDA0001490257230000074
j=1,2,…,Kp
Figure BDA0001490257230000075
Figure BDA0001490257230000076
Gi取Li的零空间,且维数为
Figure BDA0001490257230000077
Figure BDA0001490257230000078
的维数为
Figure BDA0001490257230000079
Bi取Oi的零空间,且维数为
Figure BDA00014902572300000710
Figure BDA00014902572300000711
的维数为
Figure BDA00014902572300000712
S3、在消除了主用户与次用户之间干扰的的情况下,使用交替迭代法求解出最优的第二预编码矩阵、第二干扰抑制矩阵及功率分配Pi
优选的,如图3,交替迭代法求解出最优的第二预编码矩阵、第二干扰抑制矩阵及功率分配Pi包括:
101、开始迭代求解消除次用户间干扰的次用户预编码
Figure BDA0001490257230000081
干扰抑制矩阵
Figure BDA0001490257230000082
及每个用户所分配的功率pi,设置迭代的收敛阈值z,及系统总功率Pt
102、令n=1,初始化功率分配pi与干扰抑制矩阵
Figure BDA0001490257230000083
以及与预编码矩阵
Figure BDA0001490257230000084
求此时f0
103、首先固定功率分配、干扰抑制矩阵,利用最小干扰泄漏算法求此时最优预编码矩阵;
104、在反向通信中,利用信道互易性,固定功率分配、预编码矩阵求此时最优干扰抑制矩阵;
105、固定干扰抑制矩阵、预编码矩阵,利用最大和容量算法求此时最优功率分配;
106、利用所求功率分配与干扰抑制矩阵以及与预编码矩阵求fn
107、当|fn-fn-1|≤z迭代结束,否则令n=n+1并返回步骤103;
通过迭代的方式为每个用户动态的分配最优的功率从而提高系统性能。
在消除主次用户间的干扰之后,为提高次用户的性能,充分考虑功率对系统性能的影响,在根据干扰功率在期望信号空间最小的原则求解最优的第二预编码矩阵
Figure BDA0001490257230000085
和第二干扰抑制矩阵
Figure BDA0001490257230000086
时,联合用户间功率分配,动态的求解出最优的预编码、干扰抑制矩阵及功率分配Pi
在消除了主次用户间的干扰之后,在次用户系统间进行干扰对齐,使用根据干扰功率在期望信号空间最小的原则求解最优的预编码矩阵和干扰抑制矩阵。
为求出最优
Figure BDA0001490257230000087
固定功率pi,并满足下式:
Figure BDA0001490257230000088
根据瑞利熵定理,固定定功率分配、干扰抑制矩阵,利用最小干扰泄漏算法求此时最优第二预编码矩阵,可以得到:
Figure BDA0001490257230000091
其中,
Figure BDA00014902572300000911
表示di个最小特征值对应的特征向量,上标H表示矩阵的转置共轭矩阵,pk表示用户k的功率,tr(·)表示矩阵·的迹。
由信道互易性,固定功率分配、预编码矩阵求此时最优第二干扰抑制矩阵,可以得到:
Figure BDA0001490257230000092
其中,
Figure BDA00014902572300000912
表示di个最小特征值对应的特征向量,pi表示用户i的功率。
根据次用户系统和容量最优,求解每一个用户的所分配的功率,固定第二干扰抑制矩阵、第二预编码矩阵,利用最大和容量算法求此时最优功率分配,求出最优的pi,需要满足下式:
Figure BDA0001490257230000093
Figure BDA0001490257230000094
由凸优化可知上式的最优问题可以通过拉格朗日乘数法解决:
Figure BDA00014902572300000913
其中,
Figure BDA0001490257230000096
是拉格朗日乘子且
Figure BDA0001490257230000097
不等于0,令
Figure BDA0001490257230000098
得到:
Figure BDA0001490257230000099
Figure BDA00014902572300000910
得到:
Figure BDA0001490257230000101
将上式写成矩阵的形式为:
Figure BDA0001490257230000102
化简得:
Figure BDA0001490257230000103
其中,bki为干扰信号功率系数矩阵,
Figure BDA0001490257230000104
bki表示第i个用户对第k个用户的干扰信号功率系数,表示为
Figure BDA0001490257230000105
bkk为期望信号功率系数矩阵,bkk表示用户k的期望信号功率系数,表示为
Figure BDA0001490257230000106
k,i∈[1,K],
Figure BDA0001490257230000107
表示用户k的干扰抑制矩阵的转置共轭矩阵,Hki表示发送端i到接收端k的信道矩阵,Vki表示发送端i到接收端k的预编码矩阵,K为主用户与次用户的用户数之和,C为信道容量,I为单位矩阵,k∈[1,K],Hkk表示发送端k到接收端k的信道矩阵,Vkk表示发送端k到接收端k的期望信号的预编码矩阵,Pt表示系统总功率。
首先通过满足主用户与次用户之间干扰对齐成立条件,即消除主用户与次用户之间干扰求出次用户的第一干扰参数Gi和第二干扰参数Bi
根据求解最优的第二预编码矩阵
Figure BDA0001490257230000108
第二干扰抑制矩阵
Figure BDA0001490257230000109
及功率分配Pi分析次用户干扰对齐成立的必要条件,得到次用户自由度的上限;
次用户系统中干扰对齐成立所需的最优的第二预编码矩阵和最优的第二干扰抑制矩阵已经求解出来了,在认知无线网络中,当主用户存在时次用户干扰对齐成立的必要条件是不同于传统MIMO干扰信道干扰对齐成立的必要条件的;所以,必须分析次用户干扰对齐成立的必要条件,已知次用户干扰对成立条件为:
Figure BDA0001490257230000111
要使上述方程组有解,根据Bezout定理,独立方程个数Ne应不大于独立变量的个数Nv
Figure BDA0001490257230000112
Figure BDA0001490257230000113
由Nv≥Ne可以得到得次用户干扰对齐成立的必要条件:
Figure BDA0001490257230000114
其中,ds表示次用户的自由度,dp表示主用户的自由度。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征,不能理解为对本发明的限制。
以上所举实施例,对本发明的目的、技术方案和优点进行了进一步的详细说明,所应理解的是,以上所举实施例仅为本发明的优选实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于认知网络中动态功率分配的干扰对齐方法,其特征在于,包括:
S1、将次用户的第一预编码矩阵Vi,i=Kp+1,Kp+2,…,K,分解为第一干扰消除参数Gi和第二预编码矩阵
Figure FDA0003279159100000011
将第一干扰抑制矩阵Ui分解为第二干扰消除参数Bi和第二干扰抑制矩阵
Figure FDA0003279159100000012
S2、令主用户与次用户之间的干扰为零,求解第一干扰消除参数Gi和第二干扰消除参数Bi
S3、在消除了主用户与次用户之间干扰的的情况下,使用交替迭代法求解出最优的第二预编码矩阵、第二干扰抑制矩阵及功率分配Pi,具体包括:
101、开始迭代求解消除次用户间干扰的第二预编码矩阵
Figure FDA0003279159100000013
第二干扰抑制矩阵
Figure FDA0003279159100000014
及每个用户所分配的功率pi,设置迭代的收敛阈值z及系统总功率Pt
102、令n=1,初始化功率分配pi与第二干扰抑制矩阵
Figure FDA0003279159100000015
以及与第二预编码矩阵
Figure FDA0003279159100000016
求此时f0
103、固定功率分配、第二干扰抑制矩阵,利用最小干扰泄漏算法求此时最优第二预编码矩阵;
104、在反向通信中,利用信道互易性,固定功率分配、第二预编码矩阵求此时最优第二干扰抑制矩阵;
105、固定第二干扰抑制矩阵、第二预编码矩阵,利用最大和容量算法求此时最优功率分配;
106、利用所求功率分配与第二干扰抑制矩阵以及与预编码矩阵求fn
107、当|fn-fn-1|≤z迭代结束,否则令n=n+1并返回步骤103;
其中,n为迭代次数,f0表示初始的信道容量,z表示收敛阈值,fn=Cn表示第n次迭代时的信道容量;Kp为主用户的用户数,K为主用户与次用户的用户数之和。
2.根据权利要求1所述的一种基于认知网络中动态功率分配的干扰对齐方法,其特征在于,所述将次用户的第一预编码矩阵Vi分解为第一干扰消除参数Gi和第二预编码矩阵
Figure FDA0003279159100000021
将第一干扰抑制矩阵Ui分解为第二干扰消除参数Bi和第二干扰抑制矩阵
Figure FDA0003279159100000022
包括:
预编码矩阵:
Figure FDA0003279159100000023
干扰抑制矩阵:
Figure FDA0003279159100000024
3.根据权利要求1所述的一种基于认知网络中动态功率分配的干扰对齐方法,其特征在于,所述令主用户与次用户之间的干扰为零,求解第一干扰消除参数Gi和第二干扰消除参数Bi包括:
Figure FDA0003279159100000025
其中
Figure FDA0003279159100000026
且i=Kp+1,Kp+2,…,K,j=1,2,…,Kp
若令
Figure FDA0003279159100000027
Figure FDA0003279159100000028
Gi取Li的零空间,且维数为
Figure FDA0003279159100000029
Figure FDA00032791591000000210
的维数为
Figure FDA00032791591000000211
Bi取Oi的零空间,且维数为
Figure FDA00032791591000000212
Figure FDA00032791591000000213
的维数为
Figure FDA00032791591000000214
其中,
Figure FDA00032791591000000215
为Uj的转置共轭矩阵,
Figure FDA00032791591000000216
为Bi的转置共轭矩阵,Hij是发送端j到接收端i的信道矩阵,Hik表示用户k到接收端i的信道矩阵,Hki表示用户i到接收端k的信道矩阵,其中k∈[1,Kp],Kp为主用户的用户数,
Figure FDA0003279159100000031
表示第Kp个用户的的预编码矩阵,Mi表示用户i发送端的天线数,di表示用户i的自由度,Ni表示用户i接收端的天线数,dj表示用户j的自由度、即用户j发送dj个数据流则用户j的自由度为dj,Hji是发送端i到接收端j的信道矩阵,上标H表示矩阵的转置共轭矩阵,K表示总的用户数。
4.根据权利要求1所述的一种基于认知网络中动态功率分配的干扰对齐方法,其特征在于,所述固定第二干扰抑制矩阵、第二预编码矩阵,利用最大和容量算法求此时最优功率分配包括:
为了求解功率分配,固定最优的预编码矩阵和干扰抑制矩阵,需要满足条件:
Figure FDA0003279159100000032
由凸优化可知上式的最优问题可以通过拉格朗日乘数法解决:
Figure FDA0003279159100000033
其中,
Figure FDA0003279159100000034
是拉格朗日乘子且
Figure FDA0003279159100000035
不等于0,令
Figure FDA0003279159100000036
得到:
Figure FDA0003279159100000037
Figure FDA0003279159100000038
得到:
Figure FDA0003279159100000041
将上式写成矩阵的形式为:
Figure FDA0003279159100000042
化简得:
Figure FDA0003279159100000043
其中,bki为干扰信号功率系数矩阵,
Figure FDA0003279159100000044
bki表示第i个用户对第k个用户的干扰信号功率系数,表示为
Figure FDA0003279159100000045
bkk为期望信号功率系数矩阵,bkk表示用户k的期望信号功率系数,表示为
Figure FDA0003279159100000046
k,i∈[1,K],Uk表示用户k的干扰抑制矩阵,Hki表示发送端i到接收端k的信道矩阵,Vki表示发送端i到接收端k的预编码矩阵,
Figure FDA0003279159100000047
表示矩阵的范数,K为主用户与次用户的用户数之和,C为信道容量,I为单位矩阵,pi表示用户i的功率,Hkk表示发送端k到接收端k的信道矩阵,Hki表示发送端i到接收端k的信道矩阵,Vkk表示发送端k到接收端k的期望信号的预编码矩阵,Vki表示发送端i到接收端k的期望信号的预编码矩阵,Pt表示系统总功率,上标H表示矩阵的转置共轭矩阵。
CN201711243344.5A 2017-11-30 2017-11-30 基于认知网络中动态功率分配的干扰对齐方法 Active CN108012272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711243344.5A CN108012272B (zh) 2017-11-30 2017-11-30 基于认知网络中动态功率分配的干扰对齐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711243344.5A CN108012272B (zh) 2017-11-30 2017-11-30 基于认知网络中动态功率分配的干扰对齐方法

Publications (2)

Publication Number Publication Date
CN108012272A CN108012272A (zh) 2018-05-08
CN108012272B true CN108012272B (zh) 2021-11-12

Family

ID=62055585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711243344.5A Active CN108012272B (zh) 2017-11-30 2017-11-30 基于认知网络中动态功率分配的干扰对齐方法

Country Status (1)

Country Link
CN (1) CN108012272B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526570A (zh) * 2019-02-01 2020-08-11 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN112954806B (zh) * 2021-01-26 2022-10-21 西安电子科技大学 异构网络中基于弦图着色的联合干扰对齐与资源分配方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8787259B2 (en) * 2010-09-22 2014-07-22 Ntt Docomo, Inc. Method for efficient MU-MIMO transmission by joint assignments of transmission architecture, and interference alignment schemes using optimized user-code assignments and power-allocation
CN103368702B (zh) * 2013-07-15 2016-05-25 东南大学 无线局域网分布式干扰对齐中的流数自适应方法
CN104883214B (zh) * 2015-05-11 2017-12-26 大连理工大学 基于自由度调度的干扰对齐方法
CN105704721B (zh) * 2016-01-13 2018-11-09 上海师范大学 一种提高频谱利用率的d2d-p复用蜂窝网络通信方法
CN105680925A (zh) * 2016-03-04 2016-06-15 上海师范大学 一种基于干扰对齐的d2d用户的功率控制方法
CN107070520B (zh) * 2017-04-26 2020-08-04 重庆邮电大学 一种基于级联预编码和esinr准则的d2d通信干扰对齐方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Interference alignment and power allocation for multi-user MIMO interference channels;Fereidoun H. Panahi etc.;《2016 IEEE International Conference on Communications (ICC)》;20160714;全文 *

Also Published As

Publication number Publication date
CN108012272A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
Ashikhmin et al. Interference reduction in multi-cell massive MIMO systems with large-scale fading precoding
Yi et al. User scheduling for heterogeneous multiuser MIMO systems: A subspace viewpoint
CN102055563B (zh) 一种适用于多基站协作的自适应联合线性预编码方法
CN110492915A (zh) 一种基于mimo-noma短包传输的功率分配方法
Miandoab et al. A user pairing method to improve the channel capacity for multiuser MIMO channels in downlink mode based on NOMA
CN103780356A (zh) 一种认知mimo通信系统的两级预编码的设计方法
CN107070520B (zh) 一种基于级联预编码和esinr准则的d2d通信干扰对齐方法
Al-Abbasi et al. Resource allocation for MU-MIMO non-orthogonal multiple access (NOMA) system with interference alignment
CN108012272B (zh) 基于认知网络中动态功率分配的干扰对齐方法
Yang et al. Heterogeneous semi-blind interference alignment in finite-SNR networks with fairness consideration
Gharagezlou et al. Secrecy sum rate analysis and power allocation with OSTBC and artificial noise for MIMO systems
CN105356917A (zh) 一种大规模mimo异构网络中的干扰抑制传输方法
Shrestha et al. A leakage-based solution for interference alignment in MIMO interference channel networks
Yoon et al. Downlink interference alignment with multi-user and multi-beam diversity for fog RANs
Kaleva et al. Decentralized sum MSE minimization for coordinated multi-point transmission
Bogale et al. Linear transceiver design for downlink multiuser MIMO systems: Downlink-interference duality approach
Aycan Beyazıt et al. On stream selection for interference alignment in heterogeneous networks
KR101741361B1 (ko) 간섭 정렬 기반의 인지 무선 네트워크에서 최적의 송수신 장치 설계 방법
Xu et al. Joint interference alignment and power allocation in MIMO interference network
Böhnke et al. Weighted sum rate maximization for MIMO-OFDM systems with linear and dirty paper precoding
Kaleva et al. Successive convex approximation for simultaneous linear TX/RX design in MIMO BC
Hsu et al. Power minimization for cooperative MIMO-OFDM systems with individual user rate constraints
Hu et al. A Single-Loop Algorithm for Weighted Sum Rate Maximization in Multiuser MIMO Systems with Per-Antenna Power Constraints
Seo et al. Macrocell Protection Interference Alignment in Two‐Tier Downlink Heterogeneous Networks
Pradeep Kumar et al. Hybrid optimization-based pilot scheduling for reducing pilot contamination in massive MIMO systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant