CN108005643B - 胶囊充油承压式声波测井仪注油量计算方法 - Google Patents

胶囊充油承压式声波测井仪注油量计算方法 Download PDF

Info

Publication number
CN108005643B
CN108005643B CN201711162135.8A CN201711162135A CN108005643B CN 108005643 B CN108005643 B CN 108005643B CN 201711162135 A CN201711162135 A CN 201711162135A CN 108005643 B CN108005643 B CN 108005643B
Authority
CN
China
Prior art keywords
oil
capsule
volume
parameters
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711162135.8A
Other languages
English (en)
Other versions
CN108005643A (zh
Inventor
刘先平
柴细元
鞠晓东
付胜利
王志勇
嵇成高
郭运
陈浩
于凤梅
李国英
刘炳中
王浩然
唐宇霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
China Petroleum Logging Co Ltd
Original Assignee
China National Petroleum Corp
China Petroleum Logging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, China Petroleum Logging Co Ltd filed Critical China National Petroleum Corp
Priority to CN201711162135.8A priority Critical patent/CN108005643B/zh
Publication of CN108005643A publication Critical patent/CN108005643A/zh
Application granted granted Critical
Publication of CN108005643B publication Critical patent/CN108005643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种胶囊充油承压式声波测井仪注油量计算方法,包括如下步骤:1)分别获取地层参数、胶囊内使用的油液参数;地层参数包括:地层温度梯度Gt、地层压力梯度Gp、地表恒温带深度h0、地表恒温带温度tc;油液参数包括:油液体积热膨胀系数α和油液体积弹性模量k;2)利用如下公式计算在特定地层深度,胶囊内使用的油液的体积变化率ΔVt,P
Figure DDA0001475327360000011
3)在室温、一个大气压下,胶囊内能容纳油液的体积为V0,则应注油量为V0·(1‑ΔVt,P)。该计算方法,能依据不同油区地质参数定量计算并调整注油量,防止胶囊过度膨胀,从而提高了仪器的可靠性。

Description

胶囊充油承压式声波测井仪注油量计算方法
技术领域
本发明属于石油测井领域,具体涉及一种胶囊充油承压式声波测井仪注油量计算方法。
背景技术
石油井下测井仪器多工作在高温高压的恶劣环境下,所以在仪器设计之初,研发人员除了要考虑温度的因素外,还要考虑仪器的耐高压力性能。大部分井下仪器可以采用高强度的密封承压舱来隔绝压力,但是某些特殊仪器,它需要探测器与被测介质充分耦合才能得到最佳测量效果,譬如声波类测井仪器。声波测井仪器工作时需要保证换能器与井下液体充分耦合,目前采用的方法是将声系放置于耐高温的密封胶囊中并注入绝缘承压油液,如此一来,既实现了声波换能器与井下液体的耦合,也保证了仪器在井中高压力环境下的内外压力平衡,使仪器具备了耐高压力性能。
胶囊虽具有很好弹性,但是机械强度很弱,仪器在井下工作时与井壁的碰撞无法避免,因此在胶囊外部会套上一个高强度的金属外壳,并在正对声波换能器处开声窗,由于要抑制和衰减声波沿仪器金属外壳的传播,在声系金属外壳上会横向多处开槽。在声系金属外壳上开出声窗和开槽会造成的隐患是:仪器在井下工作时,井中的岩屑很容易由开出的声窗和槽处进入,并夹在金属外壳和胶囊之间,这样一来,由于井下温度升高,绝缘承压油液的热膨胀可能会造成胶囊体积的过度膨胀,虽然在井下高压力的作用下,胶囊体积会有一定的收缩,但是却无法抵消其膨胀量,到一定程度,夹在金属外壳和胶囊之间的岩屑会刺破胶囊,造成油井中的液体进入胶囊内部,最终可能会导致声系甚至电路的损坏。
声波测井仪器在上井前要对声系做维护和保养,而以前的做法只是简单的将胶囊内完全充满绝缘承压油液,而不会定量计算实际注油的量。目前并未检索到涉及根据不同油区地层环境对仪器声系注油量进行相应调整的相关文献。
发明内容
为了解决上述技术问题,本发明提供一种胶囊充油承压式声波测井仪注油量计算方法,提供定量计算仪器注油量的计算方法,能依据不同油区地质参数定量计算并调整注油量,防止胶囊过度膨胀,从而提高了仪器的可靠性。
为此,本发明的技术方案如下:
一种胶囊充油承压式声波测井仪注油量计算方法,包括如下步骤:
1)分别获取地层参数、胶囊内使用的油液参数;
所述地层参数包括:地层温度梯度、地层压力梯度、地表恒温带深度、地表恒温带温度;
所述油液参数包括:油液体积热膨胀系数和油液体积弹性模量;
2)利用如下公式计算在特定地层深度,胶囊内使用的油液的体积变化率;
Figure BDA0001475327350000021
其中,α-油液体积热膨胀系数,m3/℃;Gt-地层温度梯度,℃/m;h-计算点垂深,m;tc-地表恒温带温度,℃;t0-室温,℃;h0-地表恒温带深度,m;Gp-地层压力梯度,MPa/m;P0为一个大气压;k-油液体积弹性模量,MPa;ΔVt,P-油液在深度为h时的体积相对于在t0,P0条件下的体积的相对变化率,%;
3)在室温、一个大气压下,胶囊内能容纳油液的体积为V0,则应注油量为V0·(1-ΔVt,P)。
早期的胶囊充油承压式声波测井仪器在出仪修车间前,仪修人员会将胶囊内充上绝缘承压油液,以完全充满为标准,而不会定量计算实际注油液的量。实际上,由于不同油区的地层温度梯度和地层压力梯度存在较大差异,油液在井下高温下的体积热胀量和高压力的体积压缩量很难达到相对平衡,由此可能会造成胶囊过度膨胀而被岩屑刺破,从而导致仪器损坏。本发明提供定量计算仪器注油量的方法,可根据不同油区的地质参数定量计算并调整注油量,防止胶囊过度膨胀,从而提高了仪器的可靠性。
具体实施方式
以下结合实施例对本发明的技术方案进行详细描述。
实施例1
测井地区:大港地区的油田
1)经调研,该油区地层温度梯度Gt=0.040℃/m;地层压力梯度Gp=0.013MPa/m;某油井最大深度h=4000m;地表恒温带深度h0=30m;地表恒温带温度tc=15℃。
胶囊内使用的油液的体积弹性模量k=1508MPa、体积热膨胀系数α=0.00085m3/℃;
2)取室温t0=20℃,一个大气压P0=0.1MPa,h=4000m,代入以下公式
Figure BDA0001475327350000041
得到在h=4000m时,ΔVt,P=9.63%。
3)该测井仪在室温t0=20℃,一个大气压P0=0.1MPa下,胶囊能充满体积为V0=10L的油液,则胶囊内应注油量为V0·(1-ΔVt,P)=9.037L。
实施例2
测井地区:新疆阿克苏地区
1)经调研,该油区地层温度梯度Gt=0.022℃/m;地层压力梯度Gp=0.015MPa/m;某油井最大深度h=8000m;地表恒温带深度h0=30m;地表恒温带温度tc=15℃。
胶囊内使用的油液的体积弹性模量k=1508MPa、体积热膨胀系数α=0.00085m3/℃;
2)取室温t0=20℃,一个大气压P0=0.1MPa,h=8000m,代入以下公式
Figure BDA0001475327350000042
得到在h=8000m时,ΔVt,P=6.53%。
3)该测井仪在室温t0=20℃,一个大气压P0=0.1MPa下,胶囊能充满体积为V0=10L的油液,则胶囊内应注油量为V0·(1-ΔVt,P)=9.347L。

Claims (1)

1.一种胶囊充油承压式声波测井仪注油量计算方法,其特征在于包括如下步骤:
1)分别获取地层参数、胶囊内使用的油液参数;
所述地层参数包括:地层温度梯度、地层压力梯度、地表恒温带深度、地表恒温带温度;
所述油液参数包括:油液体积热膨胀系数和油液体积弹性模量;
2)利用如下公式计算在特定地层深度,胶囊内使用的油液的体积变化率;
Figure FDA0001475327340000011
其中,α-油液体积热膨胀系数,m3/℃;Gt-地层温度梯度,℃/m;h-计算点垂深,m;tc-地表恒温带温度,℃;t0-室温,℃;h0-地表恒温带深度,m;Gp-地层压力梯度,MPa/m;P0为一个大气压;k-油液体积弹性模量,MPa;ΔVt,P-油液在深度为h时的体积相对于在t0,P0条件下的体积的相对变化率,%;
3)在室温、一个大气压下,胶囊内能容纳油液的体积为V0,则应注油量为V0·(1-ΔVt,P)。
CN201711162135.8A 2017-11-21 2017-11-21 胶囊充油承压式声波测井仪注油量计算方法 Active CN108005643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711162135.8A CN108005643B (zh) 2017-11-21 2017-11-21 胶囊充油承压式声波测井仪注油量计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711162135.8A CN108005643B (zh) 2017-11-21 2017-11-21 胶囊充油承压式声波测井仪注油量计算方法

Publications (2)

Publication Number Publication Date
CN108005643A CN108005643A (zh) 2018-05-08
CN108005643B true CN108005643B (zh) 2021-01-01

Family

ID=62052993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711162135.8A Active CN108005643B (zh) 2017-11-21 2017-11-21 胶囊充油承压式声波测井仪注油量计算方法

Country Status (1)

Country Link
CN (1) CN108005643B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136928B (zh) * 2019-04-23 2021-09-07 国网浙江省电力有限公司绍兴供电公司 一种基于温度补偿的变压器补油系统及方法
CN114893166B (zh) * 2022-04-13 2022-11-25 中国石油大学(华东) 一种地层压力系数计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966934A (zh) * 2005-11-16 2007-05-23 中国石油大学(北京) 一种随钻预测钻头底下地层坍塌压力和破裂压力的方法
CN200993010Y (zh) * 2006-12-29 2007-12-19 大港油田集团有限责任公司 声波测井仪器声系连接装置
CN201367897Y (zh) * 2009-03-06 2009-12-23 中国海洋石油总公司 液压油体积压缩系数测试装置
CN201661549U (zh) * 2010-04-28 2010-12-01 中国海洋石油总公司 一种动平衡高温液压测试装置
CN103940731A (zh) * 2014-04-18 2014-07-23 中国海洋石油总公司 液压油弹性模量及热膨胀系数测量装置
CN104213912A (zh) * 2013-05-31 2014-12-17 中国石油化工股份有限公司 一种具有隔声结构的随钻声波探头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966934A (zh) * 2005-11-16 2007-05-23 中国石油大学(北京) 一种随钻预测钻头底下地层坍塌压力和破裂压力的方法
CN200993010Y (zh) * 2006-12-29 2007-12-19 大港油田集团有限责任公司 声波测井仪器声系连接装置
CN201367897Y (zh) * 2009-03-06 2009-12-23 中国海洋石油总公司 液压油体积压缩系数测试装置
CN201661549U (zh) * 2010-04-28 2010-12-01 中国海洋石油总公司 一种动平衡高温液压测试装置
CN104213912A (zh) * 2013-05-31 2014-12-17 中国石油化工股份有限公司 一种具有隔声结构的随钻声波探头
CN103940731A (zh) * 2014-04-18 2014-07-23 中国海洋石油总公司 液压油弹性模量及热膨胀系数测量装置

Also Published As

Publication number Publication date
CN108005643A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CA2561257C (en) Methods and apparatus for estimating physical parameters of reservoirs using pressure transient fracture injection/falloff test analysis
EP2610432B1 (en) Downhole ultrasonic transducer and method of making same
Wiese et al. Hydraulic characterisation of the Stuttgart formation at the pilot test site for CO2 storage, Ketzin, Germany
CA1122114A (en) Method of producing self-propping fluid-conductive fractures in rock
Bols et al. Origin of overpressures in shales: Constraints from basin modeling
Archer et al. A log based analysis to estimate mechanical properties and in-situ stresses in a shale gas well in North Perth Basin
AU2017352105B2 (en) Apparatus and method for dynamic acousto-elasticity technique measurements at simulated subsurface pressures
CN108005643B (zh) 胶囊充油承压式声波测井仪注油量计算方法
EP1114334A1 (en) Method and apparatus for creating an image of an earth borehole or a well casing
Ito et al. Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis: A case study in the IODP Expedition 319
CN113625364A (zh) 一种基于双重校正的泥页岩地层孔隙压力的计算方法
Holt et al. Comparing mechanical and ultrasonic behaviour of a brittle and a ductile shale: Relevance to prediction of borehole stability and verification of shale barriers
CN116150695A (zh) 一种钻井液漏失位置确定及漏失参数计算方法
CN114547906A (zh) 一种深部含软弱结构面地层的井壁稳定测井解释方法
Tan et al. An analytical method for determining horizontal stress bounds from wellbore data
CN115655133B (zh) 基于光纤应变感测管柱的地应力测量方法
Zhang et al. Geomechanical evaluation enabled successful stimulation of a HPHT tight gas reservoir in western China
Kuhlman et al. Field tests of downhole extensometer used to obtain formation in-situ stress data
GB2328746A (en) Determining the shape of an earth borehole and measuring the acoustic velocity in the earth formation
US11860328B2 (en) Detection system for detecting discontinuity interfaces and/or anomalies in pore pressures in geological formations
Plumb et al. Constraining the state of stress in tectonically active settings
CN109033698B (zh) 一种用于层状地层水平井破裂压力计算的方法
Zhao et al. Rock Damage and aquifer property estimation from water level fluctuations in wells induced by seismic waves: A case study in X10 Well, Xinjiang, China
US5272916A (en) Methods of detecting and measuring in-situ elastic anisotropy in subterranean formations
Abilov Improving Formation Pressure Integrity Tests with Field-Wise Test Data Analysis and Hydraulic Impedance Testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200109

Address after: 100120 Beijing Xicheng District six laying Kang

Applicant after: PetroChina Natural Gas Group Co., Ltd.

Applicant after: China National Petroleum Group Logging Co., Ltd.

Address before: 300457 Tianjin Binhai New Area Development Zone No. second, No. 83, China Petroleum Tianjin building Bohai Drilling Engineering Co., Ltd.

Applicant before: CNPC Bohai Drilling Engineering Co., Ltd.

GR01 Patent grant
GR01 Patent grant