CN108002978B - The method that butadiene prepares 1,4- butanediol - Google Patents

The method that butadiene prepares 1,4- butanediol Download PDF

Info

Publication number
CN108002978B
CN108002978B CN201610935571.3A CN201610935571A CN108002978B CN 108002978 B CN108002978 B CN 108002978B CN 201610935571 A CN201610935571 A CN 201610935571A CN 108002978 B CN108002978 B CN 108002978B
Authority
CN
China
Prior art keywords
catalyst
nitrae
isosorbide
diacetoxy
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610935571.3A
Other languages
Chinese (zh)
Other versions
CN108002978A (en
Inventor
查晓钟
杨运信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Shanghai Research Institute of Petrochemical Technology
China Petrochemical Corp
Original Assignee
Sinopec Shanghai Research Institute of Petrochemical Technology
China Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Shanghai Research Institute of Petrochemical Technology, China Petrochemical Corp filed Critical Sinopec Shanghai Research Institute of Petrochemical Technology
Priority to CN201610935571.3A priority Critical patent/CN108002978B/en
Publication of CN108002978A publication Critical patent/CN108002978A/en
Application granted granted Critical
Publication of CN108002978B publication Critical patent/CN108002978B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/095Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of organic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/628Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • C07C67/055Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/283Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds

Abstract

The present invention relates to the method for butadiene preparation 1,4-butanediol, mainly solve since Isosorbide-5-Nitrae-diacetoxy butylene adds yield and poor selectivity after hydrogen, to cause in the prior art the problem that the yield of 1,4-butanediol and selectivity are low after Isosorbide-5-Nitrae-diacetoxy butane hydrolysis.The production of 1,4-butanediol, comprising the following steps: using butadiene, acetic acid and oxygen as raw material, Acetoxylation reaction is carried out in the presence of Acetoxylation catalyst and obtains Isosorbide-5-Nitrae-diacetoxy butylene;In the presence of a hydrogenation catalyst, hydrogen and Isosorbide-5-Nitrae-diacetoxy butene reaction obtain Isosorbide-5-Nitrae-diacetoxy butane;The hydrolysis of 1,4- diacetoxy butane obtains 1,4- butanediol;Wherein, the hydrogenation catalyst uses active carbon for carrier, and active component includes Pt element and promoter elements, and the promoter elements include being selected from least one of lanthanide series metal and IVA race metal metallic element.

Description

The method that butadiene prepares 1,4- butanediol
Technical field
The present invention relates to the methods that butadiene prepares 1,4- butanediol.
Background technique
1,4-butanediol (Isosorbide-5-Nitrae-BDO) is a kind of important organic and fine chemical material, it be widely used in medicine, The fields such as chemical industry, weaving, papermaking, automobile and daily-use chemical industry.It can derive a series of fine chemical product of high added values. For example, tetrahydrofuran (THF), polybutylene terephthalate (PBT) (PBT), γ-fourth lactones (GBL) can be produced by Isosorbide-5-Nitrae-BDO It is ground with polyurethane resin (PU Resin) especially as the base stock of production PBT engineering plastics and PBT fiber Study carefully the extensive concern of mechanism.
The process route of the preparation of 1,4-butanediol is relatively more, and dividing from raw material used has acetylene, ethylene, propylene, fourth The raw material routes such as diene and cis-butenedioic anhydride, identical raw material also have different synthesis technologies.Since technical barrier is higher and raw material sources Limited, global Isosorbide-5-Nitrae-BDO produces Relatively centralized.2011, global Isosorbide-5-Nitrae-BDO production capacity was mainly distributed on Asia, US and European, Wherein Asia 1,4-BDO production capacity accounting is up to 56.6%.Currently, the industrialized preparing process of Isosorbide-5-Nitrae-BDO specifically includes that 1. alkynes aldehyde Method (Reppe method): this method makees catalyst using methanol copper and generates butynediols, butynediols using acetylene and formaldehyde as raw material Two-stage hydrogenation obtains 1,4-BDO again.Its prevailing technology mainly have BASF Corp. of Germany, the U.S. DuPont exploitation Reppe method with And the Reppe method of improvement.2. maleic anhydride process: this method carries out two steps to it and adds hydrogen using cis-butenedioic anhydride as raw material.The first step is urged in Ni-Re Under agent effect, maleic anhydride hydrogenation generates gamma-butyrolacton and tetrahydrofuran;Second step gamma-butyrolacton is in Mo-Cr-K2O catalyst is made 1,4-BDO is hydrogenated under.Its prevailing technology is mainly with the two-stage hydrogenation work of Japanese two water chestnut oilings and Mitsubishi's chemical conversion exploitation Skill.3. propylene method: mainly including allyl acetate method, acryladehyde method and allyl acetate-allyl alcohol method, Kuraray company develops at present Allyl acetate-allyl alcohol method has obtained industrial application, it is under rhodium catalyst, and allyl alcohol liquid-phase hydrogenatin formylated generates 4- hydroxyl fourth Aldehyde, then repeated hydrogenation generates 1,4-butanediol.4. butadiene process: the method that Isosorbide-5-Nitrae-BDO is produced as raw material using butadiene, it is main to wrap Butadiene acetoxylation method and butadiene chloridising are included, the technique of mainstream is by Mitsubishi chemical conversion and Cao Da company in 20 generation It records 80 years and develops, it successfully breaks the technical barrier and obstacle of Reppe method.Especially butadiene acetoxylation method is excellent Gesture and prospect have obtained the favor of domestic and international research institution.
It is well known that butadiene acetoxylation method is a three-steps process, i.e., butadiene and acetic acid, oxygen first is sent out Raw acetylization reaction, generates Isosorbide-5-Nitrae-diacetoxy butylene and by-product 3.4- diacetoxy butylene;Then 1,4- diacetyl Oxygroup butylene catalytic hydrogenation generates Isosorbide-5-Nitrae-diene acetoxyl group butane, and reaction is finally hydrolyzed and obtains Isosorbide-5-Nitrae-BDO.In Isosorbide-5-Nitrae-fourth For diene into 1,4-butanediol process route, Isosorbide-5-Nitrae-diacetoxy butylene catalytic hydrogenation generates Isosorbide-5-Nitrae-diene acetoxyl group butane As one of step, the yield and selectivity of hydrogenation products directly influence 1,4-butanediol relative to Isosorbide-5-Nitrae-butadiene Yield and selectivity.
It teaches in the patents such as patent US4032458 (production of 1,4-butanediol) and is being urged using furans Agent exists, and prepares 1,4-butanediol under the conditions of certain temperature and pressure.Patent CN94108094.3 (the system of 1,4- butanediol Preparation Method) it describes using cis-butenedioic anhydride as raw material, gas phase catalytic hydrogenation reaction preparation is carried out in the presence of the catalyst specifically designed 1,4- butanediol.Patent CN104326871A (a kind of preparation method of butanediol) is described using fixed-bed catalytic technology, will Content greater than 99% 2- butylene mixed with acetic acid, nitrogen, oxygen and water vapour high temperature after be passed through in fixed bed, catalyst with 1,4- butanediol is prepared under the conditions of certain temperature, pressure etc..But there is 1,4- during preparing 1,4-BDO in the above method The problem that BDO yield is low and selectivity is not high.
Summary of the invention
The technical problem to be solved by the present invention is to the low problems of the yield of 1,4-butanediol and selectivity, provide a kind of new Butadiene preparation 1,4-butanediol method, this method have the characteristics that 1,4-butanediol high income and selectively it is high.
In order to solve the above-mentioned technical problem, The technical solution adopted by the invention is as follows: butadiene prepares 1,4-butanediol Production method, comprising the following steps: (1) using butadiene, acetic acid and oxygen as raw material, carried out in the presence of Acetoxylation catalyst Acetoxylation reaction obtains 1,4- diacetoxy butylene;(2) in the presence of a hydrogenation catalyst, make hydrogen and Isosorbide-5-Nitrae-diethyl acyl-oxygen Base butene reaction obtains 1,4- diacetoxy butane;(3) 1,4- diacetoxy butane hydrolysis obtains 1,4- butanediol;Its In, the hydrogenation catalyst uses active carbon for carrier, and active component includes Pt element and promoter elements, and described help is urged Agent element includes being selected from least one of group of the lanthanides race metal and IVA race metal metallic element.
In above-mentioned technical proposal, the active carbon is preferably coal quality column charcoal, cocoanut active charcoal, apricot shell active carbon and bamboo matter At least one of active carbon.
In above-mentioned technical proposal, the specific surface area of the active carbon is preferably 1000~1500cm2/ g, adsorption hole hold preferred For 0.60~1.00cm3/g。
In above-mentioned technical proposal, in the hydrogenation catalyst group of the lanthanides race metal preferably be selected from La, Ce, Pr, Nd, Sm, Eu, Yb and At least one of Lu.It further simultaneously include La, Lu.La, Lu are improving 1,4- diethyl acyl-oxygen butane yield and 1,4- bis- Acetyl oxygen butane selectivity aspect has synergistic effect.
In above-mentioned technical proposal, IVA race metal is selected from least one of Ge, Sn and Pb in the hydrogenation catalyst, more It further preferably simultaneously include Sn and Pb.Sn and Pb is improving 1,4- diethyl acyl-oxygen butane yield and the choosing of 1,4- diethyl acyl-oxygen butane There is synergistic effect in terms of selecting property.
In above-mentioned technical proposal, the promoter elements preferably include at least one in lanthanide element simultaneously Kind and at least one of selected from IVA race metallic element, at this time in the metallic element in group of the lanthanides and IVA race metal metallic element it Between there is synergistic effect in terms of improving 1,4- diethyl acyl-oxygen butane yield and 1,4- diethyl acyl-oxygen butane selectivity.As non-limit Property citing processed, such as, but not limited to lanthanum is cooperateed with tin, and lanthanum is cooperateed with lead etc..
In above-mentioned technical proposal, the content of Pt is preferably 1.00~8.00g/L in the hydrogenation catalyst, more preferably 1.50~5.00g/L.
In above-mentioned technical proposal, promoter elements content is preferably 0.50~10.00g/L in the hydrogenation catalyst, More preferably 1.00~6.00g/L.
In above-mentioned technical proposal, hydrogenation catalyst can be obtained using the process included the following steps:
1. mixing the solution of platiniferous element with carrier by the composition of catalyst, catalyst precarsor I is obtained;
2. obtaining catalyst precarsor II after catalyst precarsor I is aged;
3. being simple substance platinum by compound state platinum element reduction in catalyst precarsor II, catalyst precarsor III is obtained;
4. being washed, being dried to obtain catalyst precarsor IV;
5. the solution containing promoter elements is supported on catalyst precarsor IV using infusion process by the composition of catalyst, It is dried to obtain the catalyst.
In above-mentioned technical proposal, as non-restrictive, 1. the corresponding particular compound of platinum element preferably is selected from vinegar to step At least one of sour platinum, platinum chloride, ammonium chloroplatinite, dinitroso diammonia platinum, chloroplatinic acid and four ammino platinum chlorides;More preferably Ammonium chloroplatinite.
In above-mentioned technical proposal, as non limiting example, when step 5. in promoter elements include lanthanide series metal When element, the corresponding particular compound of lanthanide element preferably be selected from lanthanum acetate, lanthanum nitrate, lanthanum chloride, lanthanum sulfate, cerium chloride, Cerous nitrate, cerous acetate, praseodymium acetate, praseodymium chloride, praseodymium nitrate, acetic acid neodymium, neodymium chloride, acetic acid samarium, samarium trichloride, samaric nitrate, Europium chloride, At least one of europium nitrate, acetic acid europium, acetic acid ytterbium, ytterbium chloride, ytterbium nitrate, lutecium chloride, lutecium nitrate and acetic acid lutetium;More preferably certainly At least one of lanthanum acetate and acetic acid lutetium.
In above-mentioned technical proposal, as non limiting example, when step 5. in promoter elements include IVA race metal When element, it is sub- that the corresponding particular compound of IVA race metallic element preferably is selected from tetraethyl germanium, tetraphenyl germanium, germanium tetrachloride, oxalic acid Tin, stannous chloride, nitric acid stannous, stannous acetate, stannous oxide, lead acetate, lead stearate, basic lead carbonate, basic lead acetate At least one of with plumbi nitras;More preferably from least one of stannous acetate and lead acetate.
In above-mentioned technical proposal, the reducing agent of step 3. does not specially require understanding based on those skilled in the art, also Former agent can be at least one of gas or liquid, the preferred hydrogen of reducing agent, hydrazine hydrate;4. drying temperature is preferably step 30~120 DEG C, drying time is preferably 1~5 hour;5. the drying temperature is preferably 80~120 DEG C to step, more preferably 100~120 DEG C.
Key of the invention is the selection of hydrogenation catalyst, and skilled person will know how determine according to actual needs Suitable hydrogenation process conditions reaction temperature, reaction time, reaction pressure and proportion of material etc..But:
In above-mentioned technical proposal, the temperature of hydrogenation reaction is preferably 20~120 DEG C.
In above-mentioned technical proposal, the pressure of hydrogenation reaction is preferably 1.0~10.0MPa, more preferable 1.0~6.0MPa.
In above-mentioned technical proposal, the time of hydrogenation reaction is preferably 0.5~5.0h, more preferable 0.5~2.0h.
The present invention synthesizes in the method for 1,4-butanediol, the known suitable butadiene oxygen acetyl of selection of those skilled in the art Change catalysts and determines suitable reaction temperature, time and material proportion.The such as, but not limited to active constituent of catalyst Based on Pd or Rh, it is auxiliary ingredients that Te, Se, Sb, Bi, V etc., which is added,.Carrier used can be active carbon, aluminium glue, silica gel or Molecular sieve.
Preferred Pd-Te/C is butadiene Acetoxylation catalyst in the present invention.Palladium element in suitable Pd-Te/C catalyst Content preferably 2.50~5.00g/L, more preferable 3.00~4.50g/L;The content of tellurium element preferably 0.50~3.00g/L, more It is preferred that 1.00~2.50g/L.Suitable Acetoxylation reaction temperature is preferably 40~150 DEG C;Acetoxylation reaction pressure is preferred 1.0~10.0MPa;The Acetoxylation reaction time is preferably 0.5~5h;The molar ratio of butadiene and acetic acid preferably 0.010~ 2.0.After for step (1), the mixture that can be reacted butadiene Acetoxylation carries out separation and obtains target product Isosorbide-5-Nitrae- Diacetoxy butylene carries out step (2) again, does not separate directly after Isosorbide-5-Nitrae-diacetoxy butylene can also being generated with step (1) Tap into row step (2).But cause system complexity convenient on year-on-year basis, specific embodiment of the invention department is equal to exclude other impurity Step (2) are carried out using the isolated pure 1,4- diacetoxy butylene of step (1) mixture of reaction products.
After step (2), can the mixture to hydrogenation reaction carry out separation obtain target product Isosorbide-5-Nitrae-diethyl acyl-oxygen Base butane carries out step (3) again, can also directly be walked with not separating after step (2) generation Isosorbide-5-Nitrae-diacetoxy butane Suddenly (3).The suitable hydrolyst of the known selection of those skilled in the art and determining suitable hydrolysising reacting temperature, time and object Material proportion.Common hydrolyst can be inorganic acid, inorganic base, organic acid and organic base.Such as hydrochloric acid, nitric acid, sulfuric acid, Phosphoric acid, sodium hydroxide, potassium hydroxide, benzene sulfonic acid and ion exchange resin.Suitable hydrolysising reacting temperature is preferably 30~100 ℃;Hydrolysis pressure preferably 0~2.0MPa;The preferred water of solvent.
Because key of the invention is step (2), in order to year-on-year, it is also used as non-restrictive, the present invention is specifically real The step of applying mode part (1) is all made of following specific method and carries out:
The synthesis of 1,4- butanediol:
Step (1): by 2.10mol acetic acid, 12.8g Pd-Te/C, (Pd constituent content is 3.80g/L, and Te constituent content is 1.85g/L) catalyst is added in 1L titanium reaction kettle, first with 1.0MPa is pressurized to after air in argon gas discharge kettle, then passes to Butadiene and oxygen are up to pressure 6.8MPa, raising mixing speed to 1000rpm, while agitating and heating is warming up to reaction temperature, Controlling reaction temperature is 80 DEG C, and the molar ratio of butadiene and oxygen is 1:1, after sustained response 5.0h, stops reaction.By reaction kettle It is down to room temperature, the product that reaction obtains is washed with water 3 times, organic matter enters oily phase, through rectification and purification, obtains Isosorbide-5-Nitrae-diacetyl Oxygroup butylene.
Because key of the invention is step (2), in order to make it easy to understand, it is also used as non-restrictive, present invention tool The step of body embodiment part (3), can be used following specific method and carry out:
Step (3): by above-mentioned 1,4- diacetoxy butane 18ml, 30ml toluene-water, (10ml toluene and 20ml water are mixed Into), 0.015mol benzene sulfonic acid 100ml titanium reaction kettle is added, first with 0.5MPa is pressurized to after air in argon gas discharge kettle, rise Temperature stirs constant temperature 5h to 30 DEG C.
Step (2) final product mixture of the present invention is analyzed through gas chromatograph-mass spectrometer (GC-MS) (GC-MASS), by following The yield and selectivity of formula calculating 1,4- diacetoxy butane:
Compared with prior art, key of the invention is the new hydrogenation catalyst that step (2) use, and improves Isosorbide-5-Nitrae-two The yield and selectivity of acetyl oxygen butane.
The experimental results showed that Isosorbide-5-Nitrae-diacetoxy butane yield selectively reaches up to 82.49% when using the present invention 94.18%, achieve preferable technical effect.It simultaneously include especially platinum, selected from group of the lanthanides in the active component of hydrogenation catalyst At least one of metal metallic element and when selected from least one of IVA race metal metallic element, achieves more prominent Technical effect, can be used in the industrial production of 1,4-butanediol.Below by embodiment, the present invention is further elaborated.
Specific embodiment
[embodiment 1]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lanthanum acetate (La (OAc) of the La containing 1.90g3·5H2O aqueous solution 180ml) is immersed in catalyst precarsor IV On, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, La content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.49% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.18%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 2]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lead acetate (Pb (OAc) of the Pb containing 1.90g2·3H2O) aqueous solution 180ml is immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Pb content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.35% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.24%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[comparative example 1]
For the comparative example of [embodiment 1] and [embodiment 2].
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 75.15% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 91.33%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
By the way that, as can be seen that the present invention is using the catalyst for adding hydrogen, active component makes simultaneously compared with Examples 1 to 2 With containing Pt, La active component, simultaneously the catalyst performance containing Pt, Pb active component than the performance containing only Pt active constituent catalyst It is more excellent, illustrate activity of hydrocatalyst component and meanwhile include using containing Pt and in lanthanide series metal and IVA race metal extremely A kind of few metallic element compound is conducive to the activity and stability that improve hydrogenation catalyst, Isosorbide-5-Nitrae-diacetoxy butane Yield and selectivity will be high.
[comparative example 2]
For the comparative example of [comparative example 1].
The preparation of hydrogenation catalyst:
1. by the ammonium chloropalladite ((NH containing 2.05gPd4)2PdCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain the catalyst.
The Pd content for measuring the catalyst through ICP is 2.05g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 70.10% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 88.03%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
By can be seen that the present invention compared with comparative example 1 using the catalyst for adding hydrogen, contained using the ratio of active component containing Pt The performance of Pd active constituent catalyst is more excellent, illustrates that activity of hydrocatalyst component is conducive to Isosorbide-5-Nitrae-diacetoxy using Pt Butylene adds hydrogen, and Isosorbide-5-Nitrae-diacetoxy butane yield and selectivity will be high.
[embodiment 3]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the stannous acetate (Sn (OAc) of the Sn containing 1.90g2·2H2O) it is dissolved in the aqueous acetic acid that concentration is 10wt% In, obtain maceration extract 180ml, be immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Sn content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.38% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.29%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 4]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.60cm3/ g, specific surface area 1000cm2The coconut husk circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the cerous acetate (Ce (OAc) of the Ce containing 1.90g3·6H2O) aqueous solution 180ml is immersed on catalyst precarsor IV, 100 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Ce content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.46% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.14%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 5]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 1.00cm3/ g, specific surface area 1500cm2The apricot shell circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the praseodymium acetate (Pr (OAc) of the Pr containing 1.90g3·5H2O) aqueous solution 180ml is immersed on catalyst precarsor IV, 120 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Pr content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.45% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.17%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 6]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The bamboo circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the acetic acid neodymium (Nd (OAc) of the Nd containing 1.90g2·6H2O) aqueous solution 180ml is immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Nd content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.47% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.14%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 7]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the acetic acid lutetium (Lu (OAc) of the Lu containing 1.90g3·6H2O) aqueous solution 180ml is immersed in catalyst precarsor IV On, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Lu content 1.90g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 50 DEG C, sustained response 90min Afterwards, stop reaction.
It is 82.45% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.20%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 8]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 1.50gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the acetic acid europium (Eu (OAc) of the Eu containing 1.00g3·6H2O) aqueous solution 180ml is immersed in catalyst precarsor IV On, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 1.50g/L, Eu content 1.00g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 1.0MPa, is improved first with 0.5MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 20 DEG C, sustained response 30min Afterwards, stop reaction.Reaction kettle is down to room temperature, purified removal of impurities obtains Isosorbide-5-Nitrae-diacetoxy butane.
It is 80.62% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 93.92%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 9]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 5.00gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the acetic acid ytterbium (Yb (OAc) of the Yb containing 6.00g3·6H2O) aqueous solution 180ml is immersed in catalyst precarsor IV On, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 5.00g/L, Yb content 6.00g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 6.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 120 DEG C, sustained response After 120min, stop reaction.
It is 82.54% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 93.89%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 10]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lanthanum acetate (La (OAc) of La containing the 1.20g and Lu containing 0.70g3·5H2) and acetic acid lutetium (Lu (OAc) O3· 6H2O aqueous solution 180ml) is immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, La content 1.20g/L, Lu content 0.70g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 83.43% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.35%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
Found out on year-on-year basis by embodiment 10 and embodiment 1 and embodiment 7, is improving Isosorbide-5-Nitrae-diacetoxy butane yield In the hydrogenation catalyst used with selective aspect, the present invention, metallic element La and metallic element Lu have preferably in lanthanide series metal Synergistic effect.
[embodiment 11]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lead acetate (Pb (OAc) of Pb containing the 0.90g and Sn containing 1.00g2·3H2) and stannous acetate (Sn O (OAc)2·2H2O it) is dissolved in the aqueous acetic acid that concentration is 10wt%, obtains maceration extract 180ml, be immersed in catalyst precarsor On IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Pb content 0.90g/L, Sn content 1.00g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 83.31% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 94.46%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
Found out on year-on-year basis by embodiment 11 and embodiment 2 and embodiment 3, is improving Isosorbide-5-Nitrae-diacetoxy butane yield In the hydrogenation catalyst used with selective aspect, the present invention, metallic element Pb and metallic element Sn have preferably in IVA race metal Synergistic effect.
[embodiment 12]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lanthanum acetate (La (OAc) of La containing the 1.09g and Pb containing 0.81g3·5H2) and lead acetate (Pb (OAc) O2· 3H2O 180ml in aqueous solution) is immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, La content 1.09g/L, Pb content 0.81g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 84.39% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 95.03%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
Found out on year-on-year basis by embodiment 12 and embodiment 1 and embodiment 2, is improving Isosorbide-5-Nitrae-diacetoxy butane yield In the hydrogenation catalyst used with selective aspect, the present invention, metallic element La and metal member in IVA race metal in lanthanide series metal Plain Pb has preferable synergistic effect.
[embodiment 13]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lanthanum acetate (La (OAc) of La containing the 1.09g and Sn containing 0.81g3·5H2) and stannous acetate (Sn O (OAc)2·2H2O it) is dissolved in the aqueous acetic acid that concentration is 10wt%, obtains maceration extract 180ml, be immersed in catalyst precarsor On IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, La content 1.09g/L, Sn content 0.81g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 84.33% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 95.11%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
Found out on year-on-year basis by embodiment 13 and embodiment 1 and embodiment 3, is improving Isosorbide-5-Nitrae-diacetoxy butane yield In the hydrogenation catalyst used with selective aspect, the present invention, metallic element La and metal member in IVA race metal in lanthanide series metal Plain Sn has preferable synergistic effect.
[embodiment 14]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lanthanum acetate (La (OAc) of La containing 1.09g, Pb containing 0.35g and the Sn containing 0.46g3·5H2O), lead acetate (Pb(OAc)2·3H2) and stannous acetate (Sn (OAc) O2·2H2O) it is completely dissolved in the aqueous acetic acid that concentration is 10wt% In, obtain maceration extract 180ml, be immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, La content 1.09g/L, Pb content 0.35g/L, Sn content 0.46g/L。
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 85.27% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 95.44%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
Found out on year-on-year basis by embodiment 14 and embodiment 12 and embodiment 13, is improving Isosorbide-5-Nitrae-diacetoxy butane receipts In terms of rate and selectivity, in the hydrogenation catalyst that the present invention uses, metal in metallic element La and IVA race metal in lanthanide series metal Elements Pb, Sn have preferable synergistic effect.
[embodiment 15]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the acetic acid lutetium (Lu (OAc) of Lu containing 1.09g, Pb containing 0.35g and the Sn containing 0.46g3·6H2O), lead acetate (Pb(OAc)2·3H2) and stannous acetate (Sn (OAc) O2·2H2O) it is completely dissolved in the aqueous acetic acid that concentration is 10wt% In, obtain maceration extract 180ml, be immersed on catalyst precarsor IV, 110 DEG C drying 4 hours, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, Lu content 1.09g/L, Pb content 0.35g/L, Sn content 0.46g/L。
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 85.17% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 95.48%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
[embodiment 16]
The preparation of hydrogenation catalyst:
1. by the ammonium chloroplatinite ((NH containing 2.05gPt4)2PtCl4) be dissolved in the aqueous hydrochloric acid solution that concentration is 8wt%, Maceration extract 200ml is obtained, by 1L diameter 3mm, long 2cm, Kong Rongwei 0.80cm3/ g, specific surface area 1200cm2The coal quality circle of/g Column-shaped active carbon carrier impregnation obtains catalyst precarsor I in above-mentioned maceration extract;
2. it is still aging for 24 hours, obtain catalyst precarsor II;
3. being 8% (with N with concentration2H4·H2O weight ratio meter) 500ml hydrazine hydrate catalyst precarsor II is restored 3h obtains catalyst precarsor III;
4. be washed to no chloride ion, 50 DEG C drying 4 hours, obtain catalyst precarsor IV;
5. by the lanthanum acetate (La (OAc) of La containing 0.69g, Lu containing 0.40g, Pb containing 0.35g and the Sn containing 0.46g3· 5H2O), acetic acid lutetium (Lu (OAc)3·6H2O), lead acetate (Pb (OAc)2·3H2) and stannous acetate (Sn (OAc) O2·2H2O it) fills Divide and be dissolved in the aqueous acetic acid that concentration is 10wt%, obtains maceration extract 180ml, be immersed on catalyst precarsor IV, 110 DEG C It is 4 hours dry, obtain the catalyst.
The Pt content for measuring the catalyst through ICP is 2.05g/L, La content 0.69g/L, Lu content 0.40g/L, Pb content 0.35g/L, Sn content 0.46g/L.
1,4- diacetoxy butylene hydrogenation reaction:
Step (2): 100ml is added in 1,4- diacetoxy butylene 15ml, toluene 30ml, 0.01mol hydrogenation catalyst Titanium reaction kettle then passes to hydrogen until pressure 3.0MPa, is improved first with 1.0MPa is pressurized to after air in argon gas discharge kettle Mixing speed is to 600rpm, while agitating and heating is warming up to reaction temperature, and control reaction temperature is 60 DEG C, sustained response 90min Afterwards, stop reaction.
It is 86.37% through analytical calculation Isosorbide-5-Nitrae-diacetoxy butane yield, selectivity is 95.59%, for the ease of Illustrate and compare, by the preparation of hydrogenation catalyst, reaction condition, material inlet amount, Isosorbide-5-Nitrae-diacetoxy butane yield and Selectivity is listed in Tables 1 and 2 respectively.
Found out on year-on-year basis by embodiment 16 and embodiment 14 and embodiment 15, is improving Isosorbide-5-Nitrae-diacetoxy butane receipts In terms of rate and selectivity, in the hydrogenation catalyst that the present invention uses, in lanthanide series metal in metallic element La, Lu and IVA race metal Metallic element Pb, Sn have preferable synergistic effect.
Table 1
Table 2

Claims (8)

1. the method for butadiene preparation 1,4-butanediol, comprising the following steps: (1) using butadiene, acetic acid and oxygen as raw material, Acetoxylation reaction is carried out in the presence of Acetoxylation catalyst obtains 1,4- diacetoxy butylene;(2) it is deposited in hydrogenation catalyst Under, hydrogen and Isosorbide-5-Nitrae-diacetoxy butene reaction is made to obtain Isosorbide-5-Nitrae-diacetoxy butane;(3) 1,4- diacetoxybut Alkane hydrolysis obtains 1,4- butanediol;Wherein, the hydrogenation catalyst uses active carbon for carrier, and active component includes Pt element And promoter elements, the promoter elements include selected from least one of lanthanide series metal and IVA race metal metal member Element, wherein in the hydrogenation catalyst Pt constituent content be 1.00 ~ 8.00g/L, promoter elements content be 0.50 ~ 10.00g/L。
2. according to the method described in claim 1, it is characterized in that the active carbon is coal quality column charcoal, cocoanut active charcoal, apricot At least one of shell active carbon and activated carbon from bamboo.
3. according to the method described in claim 1, it is characterized in that the specific surface area of the active carbon is 1000 ~ 1500 m2/ g, It is 0.60 ~ 1.00 cm that adsorption hole, which holds,3/g。
4. according to the method described in claim 1, it is characterized in that in the hydrogenation catalyst lanthanide series metal be selected from La, Ce, Pr, At least one of Nd, Sm, Eu, Yb and Lu.
5. according to the method described in claim 1, it is characterized in that in the hydrogenation catalyst IVA race metal be selected from Ge, Sn and At least one of Pb.
6. according to the method described in claim 1, it is characterized in that hydrogenation catalyst is obtained using the process included the following steps:
1. mixing the solution of platiniferous element with carrier by the composition of catalyst, catalyst precarsor I is obtained;
2. obtaining catalyst precarsor II after catalyst precarsor I is aged;
3. being simple substance platinum by compound state platinum element reduction in catalyst precarsor II, catalyst precarsor III is obtained;
4. being washed, being dried to obtain catalyst precarsor IV;
5. the solution containing promoter elements is supported on catalyst precarsor IV using infusion process by the composition of catalyst, it is dry Obtain the catalyst.
7. according to the method described in claim 1, it is characterized in that hydrogenation reaction pressure is 1.0~10.0MPa.
8. according to the method described in claim 1, it is characterized in that the hydrogenation reaction time is 0.5~5.0h.
CN201610935571.3A 2016-11-01 2016-11-01 The method that butadiene prepares 1,4- butanediol Active CN108002978B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610935571.3A CN108002978B (en) 2016-11-01 2016-11-01 The method that butadiene prepares 1,4- butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610935571.3A CN108002978B (en) 2016-11-01 2016-11-01 The method that butadiene prepares 1,4- butanediol

Publications (2)

Publication Number Publication Date
CN108002978A CN108002978A (en) 2018-05-08
CN108002978B true CN108002978B (en) 2019-10-11

Family

ID=62047301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610935571.3A Active CN108002978B (en) 2016-11-01 2016-11-01 The method that butadiene prepares 1,4- butanediol

Country Status (1)

Country Link
CN (1) CN108002978B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457156A (en) * 2019-09-06 2021-03-09 南京延长反应技术研究院有限公司 Reinforcing system and process for preparing 1, 4-butanediol from butadiene and acetic acid
CN112457155A (en) * 2019-09-06 2021-03-09 南京延长反应技术研究院有限公司 Intelligent enhanced production system and process of 1, 4-butanediol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617518B (en) * 2011-01-27 2014-10-01 中科合成油技术有限公司 One-step preparation method for tetrahydrofuran by employing maleic anhydride gas phase hydrogenation
CN103044197B (en) * 2011-10-17 2015-07-22 中国石油化工股份有限公司 Technological method for purifying1,4-butanediol and co-producing gamma-butyrolactone
CN102442874B (en) * 2011-10-28 2015-02-25 山东华懋新材料有限公司 Method for preparing butadiene by oxidization and dehydrogenation of butane using constant-temperature static bed
CN104803828B (en) * 2015-04-29 2017-05-10 内蒙古东源科技有限公司 Device and method for improving 1,4-butanediol yield

Also Published As

Publication number Publication date
CN108002978A (en) 2018-05-08

Similar Documents

Publication Publication Date Title
CN108002978B (en) The method that butadiene prepares 1,4- butanediol
CN107778135B (en) The method for producing 1,4- butanediol
CN108017509B (en) The method of butadiene production 1,4- butanediol
CN107915579A (en) The method that butadiene synthesizes 1,4 butanediols
CN108002979B (en) The method that butadiene Acetoxylation prepares 1,4- butanediol
CN107867972B (en) The production method of 1,4-butanediol
CN108014794B (en) Synthesize hydrogenation catalyst used in 1,4- diacetoxy butane
CN107778144B (en) The method for synthesizing 1,4- butanediol
CN107778134B (en) The synthetic method of 1,4- butanediol
CN107790182B (en) 1,4- diacetoxy butylene hydrogenation process catalyst
CN107774255B (en) 1,4- diacetoxy butylene hydroprocessing catalysts
CN107867971B (en) The preparation method of 1,4-butanediol
CN107778136B (en) The method for preparing 1,4- butanediol
CN107866217B (en) Catalyst suitable for the preparation of 1,4- diacetoxy butane
CN107774336B (en) Catalyst for 1,4- diacetoxy butylene hydrogenation process
CN107774250B (en) Catalyst for 1,4- diacetoxy butylene hydrogenation technique
CN107774253B (en) For synthesizing the hydrogenation catalyst of 1,4- diacetoxy butane
CN108014793A (en) Prepare the hydrogenation catalyst used in 1,4- diacetoxy butane
CN107999067A (en) Produce the hydrogenation catalyst used in 1,4- diacetoxy butane
CN107866233A (en) Catalyst suitable for the synthesis of 1,4 diacetoxy butane
CN107866232A (en) Catalyst suitable for the production of 1,4 diacetoxy butane
CN107999065A (en) Butadiene synthesizes the catalyst of 1,4- diacetoxy butane processes
CN107999066A (en) Butadiene prepares the catalyst of 1,4- diacetoxy butane processes
CN107774251A (en) Manufacture the hydrogenation catalyst of 1,4 diacetoxy butane
CN107774256A (en) 1,4 diacetoxy butylene hydrogenation catalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant